
Metacognitive Guidance in a Dialog Agent

Elizabeth McNany∗, Darsana Josyula∗†, Michael Cox∗, Matthew Paisner∗ and Don Perlis∗
† Bowie State University, Bowie, MD, USA

∗ University of Maryland, College Park, MD, USA
{beth, darsana, mcox, mpaisner, perlis}@cs.umd.edu

Abstract—The paper discusses the benefits of metacognitive
guidance for a natural language dialog agent. These capabilities
may be included directly in the agent or through a general
purpose external module. We report on the specific case of
handling pause time in dialog, using a metacognitive loop
within the agent, and discuss future experiments implementing
guidance for this example also using the general module.

Keywords-metacognition; dialog management

I. INTRODUCTION

In human dialog, if the listener does not understand the
speaker, the listener will typically notice the problem and
take some action to address it. He may ask the speaker
to repeat the statement, ask for clarification, or ignore the
anomaly in hopes of determining the meaning later from
context. In this way normal flow of conversation may be
maintained. Similarly, if the speaker does not respond,
several scenarios may have occurred: the speaker has left the
conversation; the speaker forgot; or the speaker is thinking,
and does not yet have a response. The listener then has to
choose an appropriate course of action. This may include
reminding the speaker by repeating the question, waiting a
bit longer for an answer, or deciding the speaker is no longer
responsive and ending the conversation.

When faced with such anomalies in dialog, humans very
effectively note the anomaly, assess how to deal with it, and
guide a response strategy into place. We call this the N-A-G
process [2], and have modeled it in our artificial dialog agent,
Alfred.

N-A-G is an example of so-called metacognition. Normal
cognition entails reasoning with knowledge available to the
agent; meta-cognition is reasoning about this reasoning. For
instance, in the previous example, the speaker reasons that
after asking a question the listener will respond; after this
fails, the speaker must then decide (via logical reasoning,
presumably) where his or her logic failed and thus how
to recover from the anomaly. N-A-G is an essential com-
ponent of a larger reasoning process, which we call the
metacognitive loop (MCL) [13], [3]. To employ MCL, a
system must (i) have expectations about what it will observe;
(ii) note deviations from those expectations, reason about,
and respond to them; and (iii) adjust those expectations
as suggested by experience; item (ii) is simply the N-A-G
process.

We have implemented several applications with MCL built
in; and we more recently implemented a general purpose
MCL module, which we call GP-MCL. GP-MCL is designed
to be attached to many types of systems and includes
facilities to handle many types of anomalies - from physical
or external errors such as unexpected obstacles or user input,
to logical or internal errors based on incorrect assumptions.
Because it is created with no specific system in mind,
GP-MCL is flexible enough to deal with failures in a variety
of possible situations.

We are exploring the possibility of applying the general
guidance provided by MCL to the particular case of the
dialog agent Alfred. The specific application we examine
is that of an expected pause time between utterances in a
conversation. We also propose future experiments in a 2x2
design, of location of anomaly versus location of anomaly
handling, detailed later in Section VI.

II. RELATED WORK

Work in linguistics focusing on conversational compe-
tence has shown the importance of meta-reasoning and
error handling in natural dialog. Based on Chomsky’s [6]
notion of linguistic competence, Hymes introduced the idea
of communicative competence [8]. Hymes identified four
characteristics of communicative competence, namely if
the utterance is: formally possible (that is, grammatical),
feasible with available means, context-appropriate, and ac-
tually performed. Canale [5] expanded on this idea, also
with four types of communicative competence: grammatical,
sociolinguistic, discourse (cohesion of utterances within a
dialog), and strategic (strategies used when communication
breaks down). Of these four, sociolinguistic and strategic
were identified by Savignon [12] as necessary and sufficient
conditions for communicative competence. Some examples
of strategies given in Tarone [14] include approximation,
circumlocution, repetition, asking for help, and abandoning
the utterance.

Even prior to these findings in linguistics, Rieger [11] con-
cluded that sufficient meta-reasoning when handling natural
language can overcome deficiences in other language skills.
McRoy [10] echoed this, including the ability to deal with
mistakes as a central component of reasoning and linguistic
capabilities. These mistakes were defined as inconsistencies
between actual utterances and expectations of the dialog



participant in [7]. More recently, Anderson and Lee [1]
found that more than half of dialog management is meta-
linguistic, dealing with mistakes and references to previous
conversation. Clearly, the ability to handle anomalies in
conversation is a crucial part of natural dialog management.

III. ALFRED

Alfred is a dialog agent which acts as an interface between
a human user and a task-oriented domain [9]. It accepts
English sentences as input and parses them into appropriate
commands, based on the particular domain and information
in its knowledge base (KB). Alfred is designed to be a gen-
eral agent and flexible enough to handle a variety of different
scenarios. For each domain, Alfred has a dictionary listing
the possible commands and objects, as well as specifying
the command syntax for that domain.

To implement the N-A-G cycle, Alfred maintains a set
of expectations regarding time, content and feedback; i.e,
when a certain predicate is expected, the expected values of
parameters in a predicate, and expected predicate. The ex-
pectations are represented as expectation(α, t1, t2) , where
t1 and t2 are values for time steps, and α is a predicate.
That is, α is expected between time steps t1 and t2, or if
t2 is zero, sometime after t1. If t1 is zero, α is expected to
be true from the current time step, Now, until t2. If both
times are zero, α is expected to always be true. alpha is
of the form predicate(param list) where param list can
contain values, variables and predicates. Any parameter in
the param list can be set to to indicate that the specific
parameter can take any value, that is, the value does not
matter. If a parameter is set to a specific value then that
value is expected for that parameter. On the other hand,
if the parameter is set to a variable, then that variable is
assumed to be universally quantified.

One specific expectation in Alfred is that of a pause time.
During a typical dialog, Alfred will respond to the user,
asking questions or informing them of a completed task.
The user will then reply to carry the conversation forward.
Thus, when Alfred speaks to the user, it has the expectation
of a response within a reasonable time frame. If the user
does not respond within this time frame, Alfred notes an
expectation violation and may then take steps to respond to
this violation.

In Alfred, the expected pause time is represented
as expectation(pause less than(100), 0, 0). An expecta-
tion of the form expectation(pause less than(100), 0, 0)
translates to expecting the predicate pause less than(100)
to be universally true across all time steps. As a result, Alfred
asserts pause less than(100) in its KB. However, when
the current pause exceeds 100, not(pause less than(100)
gets asserted. As a result, a contradiction gets asserted in
the Alfred knowledge base, and the corresponding formulas
get distrusted. The contradiction handler built in to Alfred

will then deal with the particular contradiction based on the
type of violation that has occurred.

When the expectation is not met, Alfred interprets it as
an indication of a failure: noting the problem, assessing
the situation, and guiding a response strategy into place. In
the example of a too-long pause, Alfred may say “Please
tell me what to do now.” When the expectation is met,
the corresponding violation is removed from the knowledge
base; when it is not, Alfred will attempt another response
strategy until the issue is resolved.

IV. GP-MCL

GP-MCL has been used in a variety of other applications
[3], [4], which indicates to us that it can be useful as a
general component of any host system. As an addition to an
existing system, it may monitor the host’s expectations and
attempt to resolve anomalies —but as a general component,
it must handle many types of expectation failures and
possible responses. We have developed a set of abstracted
ontologies that aim to cover all potential categories of
failures and responses [4]. They correspond to the steps of
the N-A-G strategy: an ontology of indications for noticing
expectation failures, an ontology of failures to categorize and
assess the causes, and an ontology of responses to choose
an appropriate strategy to guide the system in recovering.

A. Ontologies

The indications ontology corresponds to the Note phase,
and includes definitions of nodes to represent various types
of sensor and expectation failures (reading did not change,
reading is out of range, etc.) and indications from the host
(counter increased, current state, etc.). This layer is the
entry point for information from the host into GP-MCL’s
reasoning system.

The second layer is the failures ontology, which roughly
corresponds to the Assess phase. These nodes connect to
the indications layer and represent the various types of
errors possible in the host AI. The classes include categories
for physical error, sensor noise or misconfiguration, and
knowledge errors.

The responses ontology is the final layer, with connections
from nodes from the previous. These nodes determine which
course of action to recommend to the host, analogous to the
Guide step of the N-A-G cycle. The classes are related to the
action required, and whether it pertains to a physical error
or knowledge error. Responses include recommendations to
run a diagnostic, reset a sensor, rebuild models, fix the
knowledge base, try again, or even ask for help.

B. Architecture

Given the general ontologies and nodes described, systems
of arbitrary complexity may be constructed to handle errors
in the host. Links between nodes are specified and given
default weights, forming a chain of reasoning from the initial



failed expectation to a possible solution. The ontologies and
their linkages form a directed graph which can be viewed as
a Bayes net. Conditional probability tables associated with
each node allow computation of probabilities for responses.

The host may send information to a GP-MCL server
over a TCP/IP interface using a socket interface. After
initialization of the nodes, sensors, and expectations for the
host, the host is responsible for sending periodic updates of
the salient values. When updates are received, GP-MCL will
respond with suggestions, if any, for the host to implement
or ignore. Finally, the host replies to GP-MCL indicating
whether it implemented the suggestion and if the action was
successful.

GP-MCL stores certain information about the state of
the host, including sensor states and type of expectation
failure, as well as meta-information like previous ontology
states and number of failed or successful repairs. This allows
GP-MCL to update the probability tables such that it learns
which responses are better for particular types of expectation
failures and does not repeatedly suggest an action that fails.

V. ONGOING APPLICATION

In the initial design of Alfred, with minimal implementa-
tion of MCL, a too-long pause time was handled by asking
the user, “Please tell me what to do now.” This continues
periodically each time the pause limit was exceeded, until
the user responded or exited the program. However, if the
user is always slow to respond or has left the conversation,
asking again and again after the same pause time is not
productive. Alfred must notice that it is repeatedly initiating
the same response for an expectation violation (actual pause
exceeded expected pause time) without making progress in
the conversation, and hence consider an alternate response
to the violation.

To achieve this, Alfred may keep track of the success of
its repeated questioning. If the response is successful, the
violation is removed from its KB. Otherwise, the original
violation remains in the KB, and so when the same violation
occurs again Alfred may evaluate candidate responses and
choose an alternative. For example, the framework previ-
ously described may be extended to change the typical pause
time dynamically when the user changes or responds at
a slower pace. For instance, if the typical pause duration
is t, a pause violation occurred at time t1, and removal
of the violation occurred at t1 + t + 5, then Alfred’s
metacognitive reasoning can retract its expectation regarding
a pause duration of t and assert an expectation of pause time
t+ 5.

An example in a different experimental set up involves
using Alfred as an interface to direct trains. In this setting,
we have implemented the monitoring of the success of ini-
tiated responses and evaluation of candidate options before
immediately initiating the same response again. For instance,
if a user requests “send the Chicago train to New York”,

Alfred may choose Metroliner as the candidate, a train that is
currently in Chicago. However, if the user replies “No” and
repeats the same request, Alfred evaluates its options, notices
that its previous first choice, Metroliner, was an unsuccessful
response, and instead chooses Northstar, a train that starts at
Chicago. In this way Alfred is able to “learn” which entity is
meant by “the Chicago train”, instead of repeatedly choosing
the same, incorrect train as a response to the user’s request.

VI. PLANNED EXPERIMENTS

Alfred’s current set of expectations are based on its view
of the current world. If the external world changes or
Alfred’s view of the external world changes, Alfred has to
update its expectations. The mechanism for revising existing
expectations may be implemented in either Alfred alone or
with the attachment of GP-MCL to Alfred. This mechanism
has two components: (i) noticing the need for revising
expectations, and (ii) updating the expectations to match
reality. The first component is implemented by keeping track
of expectation violations, responses initiated to deal with the
violations, and success of the responses initiated to deal with
each violation. The second component is implemented by
assessing how far Alfred’s expectations deviated from the
actual observations and making adjustments accordingly.

Expectation violations can be categorized as internal
errors —ones due to internal model error, or external errors
—ones due to changes in the external world. Internal errors
refer to incorrect assumptions in Alfred’s KB, which may
be corrected by adjusting said expectations; external errors
are anomalies that the agent cannot control, such as the
user leaving the conversation. Although both types must
be accounted for in a complete implementation, we have
chosen to address these issues independent of each other
using two different techniques: (i) through a metacognitive
handler built in to Alfred, and (ii) via an external method
such as GP-MCL.

If expectation violations are handled by internal MCL,
then it is easy for the internal MCL to access any part of
Alfred’s KB, and hence, making changes to any part of
Alfred’s KB becomes easier. However, since the internal
MCL would share the same resources as the underlying
deliberative component, the metacognitive processing could
potentially slow down the normal deliberative processing of
Alfred. On the other hand, utilizing an external module like
GP-MCL for handling expectation violations may involve
additional overhead costs of connecting it to the host system,
but may result in a more flexible system overall. In future
work, we will examine this tradeoff between including MCL
directly in Alfred versus externally through the GP-MCL
framework to handle one or both types of anomalies.

With these variables we have a 2x2 experimental design,
shown in Table I. Each number 1 - 4 in the table represents
a potential experiment, combining techniques for handling
the two categories of errors. Hence, set-up 1 handles both



TABLE I. FUTURE EXPERIMENTAL SETUPS.

Expectation Error User Error

Internal Handler 1, 2 1, 4
External Handler 3, 4 3, 2

internal and external errors by a metacognitive process
built internally within Alfred, while set-up 3 handles both
externally; setups 2 and 4 are combinations of the two. In
set-up 2, internal errors are handled by the internal MCL,
while external errors are handled by GP-MCL, and in set-up
4, internal errors are handled by GP-MCL and external errors
are handled by the internal MCL. The ongoing application
described previously thus corresponds to set-up 1 in Table
I: implementing MCL within Alfred to handle both internal
and external errors.

Many particular capacities can be tested with the above
experimental setups, from pause time to word disambigua-
tion, new words and/or meanings, etc. We are currently
nearly finished with a Wizard-of-Oz pilot study of pause
time in set-up 3: external MCL with both expectation- and
user-error handling. We anticipate a complete implemented
study of this and much more in the near future.

VII. CONCLUSION

Metacognition is a neccessity for natural dialog, and dif-
ferent strategies may be used to implement that capability. In
the specific case of pauses in dialog, there is an expectation
that the user will respond within a specified time. A failed
expectation may be caused by an external (user) or internal
(knowledge) error; both must be accounted for. However,
these two types of anomalies may be handled either with
logic internal to Alfred itself, or by the external module
GP-MCL. Implementing MCL within Alfred requires keep-
ing track of previous actions, to detect repeated failures and
thus know when to adopt a new strategy. Future work will
explore different methods of including MCL within Alfred’s
dialog system and the benefits and tradeoffs involved.

ACKNOWLEDGMENT

This material is based upon work supported by ONR
Grant # N00014-12-1-0430 and ARO Grant # W911NF-12-
1-0471.

REFERENCES

[1] M. Anderson and B. Lee, “Metalanguage for dialog manage-
ment,” in 16th Annual Winter Conference on Discourse, Text
and Cognition, 2005.

[2] M. Anderson and D. Perlis, “Logic, self-awareness and self-
improvement: The metacognitive loop and the problem of
brittleness,” Journal of Logic and Computation, vol. 15, no.
1, 2005, pp. 21-40.

[3] M. Anderson, T. Oates, W. Chong, and D. Perlis, “The
metacognitive loop I: Enhancing reinforcement learning with
metacognitive monitoring and control for improved pertur-
bation tolerance,” Journal of Experimental and Theoretical
Artificial Intelligence, vol. 18, no. 3, 2006, pp. 387-411.

[4] M. Anderson et al., “Ontologies for Reasoning about Failures
in AI Systems,” in Proceedings, Workshop on Metareasoning
in Agent-Based Systems at the Sixth International Joint
Conference on Autonomous Agents and Multiagent Systems,
2007.

[5] M. Canale, “From communicative competence to communica-
tive language pedagogy,” in Language and Communication,
J. Richards and R. Schmidt, Ed., New York: Longman, 1983,
pp. 2-27.

[6] N. Chomsky, Aspects of the theory of syntax. Cambridge, MA:
MIT Press, 1965.

[7] G. Hirst and S. McRoy, “The repair of speech act mis-
understandings by abductive inference,” in Computational
Linguistics vol. 21 no. 4, 1995, pp. 435-478.

[8] D. Hymes, “On Communicative Competence,” in Sociolin-
guistics: Selected Readings, J. B. Pride and J. Holmes, Ed.,
Harmondsworth: Penguin Books, 1972, pp. 269-293.

[9] D. Josyula, “A Unified Theory of Acting and Agency for a
Universal Interfacing Agent,” Ph.D. dissertation, University
of Maryland, College Park, 2005.

[10] S. McRoy, “Abductive Interpretation and Reinterpretation of
Natural Language Utterances,” Ph.D. dissertation, University
of Toronto, 1993.

[11] C. Rieger, “Conceptual Memory: A Theory and Computer
Program for Processing the Meaning Content of Natural-
Language Utterances,” Ph.D. dissertation, Stanford Univer-
sity, 1974.

[12] S. Savignon, Communicative Competence: Theory and Class-
room Practice, Reading, MA: Addison-Wesley Publishing
Co., 1983.

[13] M. Schmill, et al., “The Metacognitive Loop and Reasoning
about Anomalies,” in Metareasoning: Thinking about Think-
ing, M. Cox and A. Raja, Ed., Cambridge, MA: MIT Press,
2011, pp. 183-198.

[14] E. Tarone, “Some thoughts on the notion of communication
strategy,” in TESOL Quarterly vol. 15 no.3, 1981, pp. 285-
295.


