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Abstract 

Layout design for integrated circuits (IC) 

is an important step in the fabrication process. As 

the device sizes are shrinking and more devices 

can be fit in the same area, the space left for wire 

routing diminishes, and the task of routing all 

devices to the wire bonding pads become more 

challenging. This work, presents two types of 

escape routing problems: 1) a minimum capacity 

escape routing of a full array, and 2) differential 

pairs escape routing.  

The minimum capacity escape routing 

can provide a dense solution where the wire width 

and pitch can be optimized to achieve high yield 

in the fabrication process. Two solutions are 

presented for the minimum capacity escape 

routing, which is a polynomial algorithm 

designed by employing the shortest path 

algorithm, and a mixed integer programming 

(MIP) approach. The results of the two 

approaches are in agreement, while the 

polynomial algorithm provides a faster solution 

for larger arrays.  

The differential pairs escape routing 

problem, involves finding routes that minimize 

the path length where members of each pair are 

traveling separately. After joining, the pair travels 

together to the boundary. The nature of this 

problem is NP-hard, thus there is no polynomial 

algorithm known to solve this problem. 

Therefore, in this work, a mixed integer 

programming (MIP) approach was used. This 

approach is designed to solve the problem in a 

single step to provide an optimal solution. This 

approach can be used to solve mixed differential 

pairs and single signals in the layout. 

 

1. Introduction 

Computer-aided design (CAD) tools 

were a huge step forward in speeding up the 

design process for integrated circuits (IC). As the 

device sizes become smaller, designers are able 

to fit more devices in smaller areas. These 

electronic devices still need to be wired to the 

outside world for incorporation in various 

electronic applications. As number of devices to 

be routed reaching large numbers (thousands and 

even millions), automated routing tools are 

becoming of immense importance to speed up the 

design process, and removing human-related 

errors in detecting the optimal route for wiring.  

An example of such a scenario can be 

seen in the transition edge sensor (TES) arrays 

used for X-ray detection [1-2] (as shown 

schematically in Fig. 1). In such scenarios, the 

goal is to maximize the area used by a sensor to 

capture as much signal as possible. On the other 

hand, since all sensors are required to be wired, 

the routing is limited to the channel space 

available between every two sensors. For an 

optimal design, a designer requires information 

regarding the minimum capacity (maximum 

number of wires that can be fit in each channel 

space) to route all sensors in the array. With such 

information, a designer can decide the maximum 

wire width and pitch (therefore maximizing the 

fabrication yield) and maximum sensor size 

(minimum channel size). 

There has been a considerable amount of 

work conducted in finding escape routing 

algorithms for routing selected number of pins 

with a predefined channel capacity by various 

research groups [3-5]. It has been shown that a 

maximum network flow algorithm [3], as well as 

linear programming [4], can be successfully used 

in solving escape routing problem families. 

However, to our knowledge, no work has been 

focused on finding the minimum capacity 

required to be able to route all the pins. It can be 

argued that available escape routing models can 

be used iteratively from a high capacity value 

while decrementing to find the minimum 

capacity. However, such an approach can take a 

long time to find the optimal solution. Hence in 

this work, we propose a polynomial time 
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algorithm designed using the shortest path 

algorithm to solve the problem in a very short 

time. Furthermore, a mixed integer programming 

approach was investigated for an optimal 

solution, and it was observed that the results of 

the two approaches are in agreement. 

 

 

Fig. 1. Schematic of the device array geometry 

and available channel spacing for escape routing. 

The array can be split into 8 symmetrical regions. 

A solution for this 1/8 area can be mirrored for all 

other regions. 

 

In electronic design, often, it is required 

that routes of certain devices travel together, to 

minimize the noise between them [6]. This 

problem is known as differential pair escape 

routing. This problem in nature is a multi-

commodity flow problem which is NP-hard. 

Current solutions to this problem use 2-steps [6-

8]. In the first step, non-crossing paths between 

each pair are determined and then polynomial 

algorithms such as network flow are used to route 

the paired routes to the boundary. Using a two-

step algorithm, enhances the running time 

significantly, however, the solution is not always 

optimal [8]. Optimality becomes important when 

a dense array of pairs or a mix of device pairs and 

single signals are used in a layout. In such cases, 

it is important to use maximum available 

resources to be able to determine the minimum 

capacity required to route the layout or detect 

whether the layout is routable. Hence, in this 

work, we present a mixed integer programming 

approach to solving the problem in a single step 

to produce an optimal solution.  

The structure of this report is as follows: 

Section (2) provides the details of a polynomial 

time algorithm design to solve minimum cost 

escape routing of a full array problem. Section (3) 

Solves the same problem as discussed in section 

2 using a mixed integer programming approach. 

Section (4) provides a mixed integer 

programming approach for solving differential 

pairs escape routing problem. Section (5) 

concludes the work and provides future insights. 

 

2. Minimum capacity escape routing 

for a full array of singular devices. 

 

2.1 Problem formulation 

As shown in Fig. 1, a grid layout for an 

array of n × n devices can be used to model the 

problem. The goal is to find the escape routed 

pattern as well as the minimum channel capacity 

to be able to route all devices to the grid boundary 

(exit channels), with design rules that wires 

cannot cross each other (avoid forming shorts), 

and the routing is limited to a single layer (i.e. no 

via allowed).  

 

2.2 Definitions: 

In this section, basic preliminaries such 

as nodes and edges used in the current 

formulation are defined and discussed.   

 

2.2.1. Nodes: 

In a flow model, a flow starts from a 

source and travels through channels to reach the 

sink. The junction between four channels is 

where a flow can change its direction, and hence 

flow nodes can be defined. Each junction can be 

represented by a node. Following are the different 

types of nodes used in this study (Fig. 1). 
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1) Junction nodes (ni): Each junction can be 

represented by a node, which is referred to as 

a junction node.  

2) Source nodes (nsi): Source nodes represent 

devices. These nodes can be considered the 

starting point of each flow (wire), and hence 

the flow can only exit the source nodes. 

3) Sink node (ns): Which represent the union of 

all boundary nodes, and the destination for a 

flow. Therefore, the sink node can only 

accept incoming flow. 

Collection of all nodes are referred to as 

V. 

 

2.2.2. Edges: 

Edges represent the flow direction 

between two adjacent nodes. Edges between 

junction nodes are all orthogonal and 

bidirectional. The edges from source nodes to 

junction nodes are unidirectional, i.e. flow cannot 

enter a source node. Edges between boundary 

nodes and the sink node are also unidirectional, 

where the flow enters the sink node. Furthermore, 

nodes on the boundary are not connected to each 

other. 

In this work, edges are represented by ei,j 

which corresponds to an edge from node i to node 

j. The collection of all edges is referred to as E. 

There are few properties associated with 

each edge which are discussed in the following 

sections. 

 

2.2.2.1. Edge cost: 

The heuristic used in the algorithm is 

based on a variable cost for edges. A row of edges 

that are farther from the boundary is more 

expensive than those closer to the boundary. This 

heuristic ensures that a chosen route descends 

faster towards boundary rather than traveling 

within a row, to prevent trapping unvisited 

devices. 

 

2.2.2.2. Edge capacity: 

Edge capacity represents the maximum 

number of wires (amount of flow) that can be fit 

in an edge. Two capacity variables can be defined 

which are geometrically related to each other. 

CO: Orthogonal capacity, which corresponds to 

the capacity of the channels. 

CD: Diagonal capacity, which corresponds to the 

diagonal capacity at junctions. 

Geometrically CO and CD are dependent, 

and hence both can be viewed as the same 

variable. In this study the ratio 
𝐶𝐷

𝐶𝑂
⁄ = 𝑑 = √2 

was used, which means that: 

𝐶𝐷 = 𝑟𝑜𝑢𝑛𝑑(√2 𝐶𝑂). 

In this model all edges have a capacity 

CO. Diagonal capacity is modeled by giving each 

node a capacity of CD. Due to single commodity 

flow nature of the problem, at any junction only 

one of the two scenarios discussed below can be 

found: 

1) Single incoming (outgoing) flow and 

multiple outgoing (incoming) flows: in this 

case the capacity within the node cannot 

exceed CO which is dictated by the incoming 

flow, and hence the amount of flow is always 

< CO < CD. 

2) Two incoming flows and two outgoing flows: 

In this case, each incoming flow can be 

maximum CO and hence 2CO maximum flow 

can enter and leave, which is more than CD. 

Therefore, having a capacity limit of CD on 

the node, it can be guaranteed that no more 

than CD flow can enter and leave. It must be 

noted that a horizontal flow and a vertical 

flow can be replaced by non-crossing flows.  

Therefore, as discussed having a flow limit of CD 

on a node is sufficient to prevent illegal routes.  

 

2.3 Minimum Capacity 

One of the goals of this work is to find 

the minimum capacity (CO) required for routing 

all devices (full array) to borders. As we can see, 

devices sitting on the border, face no restriction 

for the available routing space. Therefore, these 

devices get their routes for free. Out of n × n 

devices only (n - 2) × (n - 2) device array requires 

routing. Therefore, in total there are (𝑛 − 2)2 

wires exiting the borders. Looking at the borders, 
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there are only (n – 1) channels available at each 

side, and hence, in total there would be 4 (n -1) 

exit channels. Since all the wires have to escape, 

the minimum capacity of channels will be: 

𝐶𝑂 = 𝑐𝑒𝑖𝑙 (
(𝑛 − 2)2

4(𝑛 − 1)
) 

Having solved the minimum capacity 

problem, the next objective is to find the escape 

routing pattern for the full array using minimum 

capacity. 

 

2.4 Algorithm 

In this section, algorithm design for 

solving minimum capacity escape routing of a 

full array is discussed, as shown below. 

 

 

As discussed in section (2.3) minimum 

capacity of channels can be calculated 

mathematically. Hence, in the first step of the 

algorithm, minimum capacity is calculated. The 

rest of the algorithm discusses the generation of 

the routing pattern. 

Considering the symmetrical nature of 

this problem, the device array can be split into 8 

regions as shown in Fig. 1. Solving any of the 1/8 

regions will lead to a full solution after applying 

mirror operations. Hence, after finding a solution 

for the 1/8 segment, a mirror operation on the 

diagonal edge of the segment gives a solution to 

a quadrant. Performing a mirror operation on one 

of the edges of the quadrant gives half and 

another mirror operation on the half region gives 

the full solution. Therefore, in this study, the 

focus is given to solving the 1/8 region.  

 

 

Fig. 2. Illustration of routing network 

construction for 1/8 segment for (a) 14 × 14, and 

(b) 15 × 15 grid size. Node traversals are shown 

by dashed lines. Blue arrow in (a) shows traversal 

direction between traversal layers, and orange 

arrows show traversal direction with a layer.  

 

The next step is creating the routing 

network (graph) for the 1/8 segment, as shown in 

Fig. 2. The network is a directed graph G = (V, 

E). Geometrically, depending on the number of 

devices (even or odd) the segments can share half 

of the devices or node capacity on their borders 

with other segments. These conditions are shown 

in Fig. 2. In Fig. 2a, an even number of n results 

in sharing half the capacity on the far right border 
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with a segment on its right. On the other hand, 

Fig. 2b shows that for an odd number of n, half of 

the devices on the far right border are being 

shared. For the diagonal border, devices are 

always shared between the two neighboring 

segments.  

Initially, flow values for all nodes and 

edges are 0, except for the sources which is 1. As 

shown in Fig. 2a, algorithm traverses through 

each node via the traversal path shown (following 

blue arrow between layers, and orange arrows 

within each layer), and finds the shortest (least 

cost) path from the source to the sink, using 

Dijkstra’s algorithm. Along the path, the flow 

value for all edges is incremented by 1. When an 

edge exceeds CO, that edge is being deleted from 

the network graph. Furthermore, for each node on 

the path, if the sum of incoming flow or outgoing 

flow exceeds CD, all incoming and outgoing 

edges involving that node are being removed. 

Furthermore, each node on the path will undergo 

a cleaning step. Since the flow problem is a single 

commodity, the crossing paths can be replaced by 

non-crossing path as discussed in [3]. Therefore, 

path shortening scenario shown in Fig. 3, can be 

applied on the resolved crossing routes. In the 

cleaning step, if there exists an incoming edge 

from source to node ni, and an outgoing edge 

from ni to nj such that eij lies next to the same 

source (as shown in Fig. 3), the edge, esi, can be 

replaced by the edge, esj.  

 

 

Fig. 3. Cleaning step to shorten a path after 

resolving crossings. 

 

The process of traversing through source 

nodes, finding the shortest path to the boundary, 

update, and clean the edges, continues until all 

sources are routed to the sink. The flow results are 

then geometrically separated (as discussed in [3]) 

to produce the final routing pattern. 

 

2.4.1. Proof: 

The proof of optimality is composed of 

two parts: (1) proof that minimum capacity holds 

for any grid size, n, which is already proven 

through the derivation of the minimum capacity 

equation, and (2) proof that the CD is never 

exceeded in the junctions. Following represents 

the proof for (2). 

A cut can be viewed as a separation 

between two sides of a node column, as shown in 

Fig. 4 by the dashed line. All the devices on the 

right-hand side of the cut are required to be wired. 

As routing progresses, the exit nodes from right 

to left are being filled. Therefore, a cut also 

separates filled and empty exit nodes (exit nodes 

to the right of the cut are all filled, while the ones 

on the left side are all empty). In this condition, it 

can be observed that some devices can be routed 

to the available exit nodes, while the rest has to 

pass through the cut to be routed to empty ones. 

So, here it can be shown that the total capacity of 

junction nodes on the cut, each with a capacity of 

CD, exceeds the number of remaining routes 

(devices). 

 

Fig. 4. Schematic of the cut (dashed line) in the 

grid geometry. 
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Assuming an N × N grid of devices, the 

1/8 segment will have 1 2⁄ (𝑁 2⁄ × 𝑁 2⁄ ) devices. 

Considering a cut placed at node column i, the 

number of devices on the right side can be 

calculated as the following: 

(𝑁 2⁄ − 𝑖)(𝑁 2⁄ − 1) −
(𝑁 2⁄ − 𝑖)

2

2
 

Where the first term represents the 

number of devices in a rectangular shape, without 

considering the bottom row (since we get them 

for free), and the second term is the number of 

devices missing from the top triangular section. 

Considering CO is the capacity of each 

exit node, and the fact that a node column located 

at the right-hand border is shared between 2 

segments, following equation provides the 

number of routes that can exit before reaching the 

cut: 

(𝑁 2⁄ − 𝑖 − 1 + 1 2⁄ )𝐶𝑂 = (
𝑁
2⁄ − 𝑖 − 1 2⁄ )𝐶𝑂 

Since the objective is to prove that the 

number of routes reaching cut is less than the 

diagonal capacity available at the cut, following 

inequality can be written. 

(𝑁 2⁄ − 𝑖)(𝑁 2⁄ − 1) −
(𝑁 2⁄ − 𝑖)

2

2
− (𝑁 2⁄ − 𝑖 − 1 2⁄ )𝐶𝑂 ≤ 𝑖𝐶𝐷 

Furthermore, from geometrical 

constrains the relationship between CO and CD is 

known: 

𝐶𝐷 = √2𝐶𝑂 

And hence the inequality equation can be 

rewritten as: 

[(𝑁 2⁄ − 𝑖)(𝑁 2⁄ − 1) −
(𝑁 2⁄ − 𝑖)

2

2

− (𝑁 2⁄ − 𝑖 − 1 2⁄ )𝐶𝑂]

− √2𝑖𝐶𝑂 ≤ 0 

Which can be simplified as the following 

after substituting CO with its equation: 

2𝑖 − 1 −
1

𝑁 − 1
− (𝑁 − 3

+
1

𝑁 − 1
)(
2√2𝑖 − 1

𝑁 − 2𝑖
) ≤ 0 

Given that N – 3 > N – 2i for i > 1, 

therefore: 

𝑁 − 3 + 𝜀

𝑁 − 2𝑖
> 1 

Which can be estimated to be  

2𝑖 −
1

𝑁 − 1
− 2√2𝑖 ≤ 0 

Which is always true (i.e. the left-hand is 

always negative). 

As for i = 1 case, we have: 

1 −
1

𝑁 − 1
− (𝑁 − 3 +

1

𝑁 − 1
)(

1.8

𝑁 − 2
) ≤ 0 

The minimum value for N is 3, which 

gives the left-hand side a value of -0.4 < 0, which 

means inequality holds. For N > 3, the value 

approaches 1 – 1.8 = -0.8 < 0, meaning inequality 

holds for all N > 3.  

As shown above, it can be observed that 

the inequality holds for all values of i and N, and 

hence it can be concluded that a number of wires 

passing a cut cannot exceed the diagonal capacity 

of that cut. 

 

2.4.2. Running time: 

The shortest path algorithm used is the 

Dijkstra’s algorithm with a running time of O (V 

log V + E log V). Considering we find shortest 

paths for V = N2 devices, therefore the overall 

running time will be O (V2 log V + EV log V). 

However, it can be argued that the actual running 

time is much shorter since bottom row nodes 

reach the exit faster than top row nodes (having a 

shorter search domain). 

 

2.5 Results and discussion 

The algorithm was implemented in 

Python, and tests were performed on an Intel Core 

i7 CPU at 3.4 GHz, with 64 GB of RAM.  
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 Figure 5, shows the routing results for the 

two case scenarios presented in Fig. 2 (e.g. even 

and odd grid size). As it can be seen in both cases, 

all design rules are respected, and no junction 

exceeds diagonal capacity.  

 

 

 

Fig. 5. Routing results for (a) 14×14, and (b) 

15×15 grid size. 

 

Figure 6, shows the solution for a larger 

network of N = 35, with more congested, routes. 

As expected, all design rules are respected, and 

all devices were routed to exit nodes using the 

calculated minimum capacity. 

 

Fig. 6. Routing solution for 35×35 grid size. 

 

 

Fig. 7. Schematic of an n × m array quadrant split 

into 2 sub-sections. 

 

2.6 Model extension 

The minimum capacity escape routing 

model discussed was designed based on an n × n 

array of devices. This model can be extended to 

an n × m array. As shown in Fig. 7, an n × m array 

can be divided into 4 sections. Then each 

quadrant can be split into two subsections as 

shown in Fig. 7. Minimum capacity escape 

routing algorithm then can be applied to each 

subsection, and the union of the two can be 

mirrored to produce the full geometry. Following 



8 

 

equation, represents the revised minimum 

capacity for n × m array. 

𝐶𝑂 = 𝑐𝑒𝑖𝑙 (
(𝑛 − 2)(𝑚 − 2)

2(𝑛 − 1) + 2(𝑚 − 1)
) 

 

3. Minimum Capacity escape routing of 

a full array using mixed integer 

programming 

 

3.1 Problem formulation 

Similar to section (2), a grid layout of m 

× n device array can be used for this model. The 

goal is to find the escape routed pattern as well as 

the minimum channel capacity to be able to route 

all devices to the grid borders, with design rules 

that wires cannot cross each other (avoid forming 

shorts), and the routing is limited to a single layer 

(i.e. no via allowed).  

 

3.2 Algorithm 

This problem can be solved using a flow 

model [3, 4]. In the flow model, a flow starts from 

a source (in this case a device), travels through 

the channels, and ends up in a sink (in this case a 

channel on the border). The algorithm to solve 

this problem consists of constructing the routing 

network, G = (V, E), as shown in Fig. 8. Then 

routing formulation is applied to a mixed integer 

programming. Gurobi optimizer [9] is used to 

solve the mixed integer programming. The flow 

results are then geometrically separated (as 

discussed in [3]) to produce the final routing 

pattern.  

 

3.3 Definitions: 

3.3.1. Nodes: 

In a flow model, a flow starts from a 

source and travels through channels to reach the 

sink. The junction between four channels is 

where a flow can change its direction, and hence 

flow nodes can be defined. A tile can be defined 

as a collection of 4 neighboring junctions. Each 

junction can be represented by a node or set of 

nodes. Therefore, four types of nodes were 

introduced in this model (Fig. 8). 

 

 

 

Fig. 8. a) Schematic of the device array geometry 

and available channel spacing for escape routing. 

A Tile consists of four neighboring tile nodes (as 

shown by dashed lines). b) A magnified 

schematic of a tile, where each tile node is 

replaced by 4 junction nodes to account for 

diagonal capacity (CD), while tile edges are 

capped with orthogonal capacity (CO). Each 

device is connected to neighboring junction 

nodes via directed edges with a capacity of unity. 
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1) Tile nodes (ni): Each junction can be 

represented by a node, which is referred to as 

a tile node. The tile nodes denote the flow 

within channels. 
2) Junction nodes (𝑛𝑖𝑘  ∀𝑘 ∈ [𝑡, 𝑏, 𝑟, 𝑙], where [t, 

b, r, l] represent the top, bottom, right, and 

left junction nodes, respectively): To 

improve routability, it is of immense 

importance to take advantage of diagonal 

spacing at channel junctions. Hence, each tile 

node is divided into 4 nodes at the corners of 

the junction, which are referred to as junction 

nodes. These junction nodes correspond to 

the internal flow within a tile node. 

3) Source nodes (nsi): Source nodes represent 

devices. These nodes can be considered the 

starting point of each flow (wire), and hence 

the flow can only exit the source nodes. 

4) Sink node (ns): Which represent the union of 

all boundary nodes, and the destination for a 

flow. Therefore, the sink node can only 

accept incoming flow. 

A complete node layout schematic is 

presented in Fig. 8b. 

 

3.3.2. Edges: 

Edges represent the flow direction 

between two adjacent nodes. Here, an edge 

between two adjacent tile nodes is referred to as 

tile edge. Tile edges are all orthogonal and 

bidirectional. Edges between junction nodes are 

referred to as internal edges. As shown in Fig. 8b, 

six bidirectional internal edges between junction 

nodes can be observed, where four edges are 

diagonal and the other two are orthogonal. The 

edges from source nodes to junction nodes are 

unidirectional, i.e. flow cannot enter a source 

node. Edges between boundary nodes and the 

sink node are also unidirectional, where the flow 

only enters the sink node. Since these boundary 

nodes are not connected to each other, junction 

nodes were not considered for them. 

 

 

 

Fig. 9. Junction nodes and internal edges showing 

two possible configurations (red arrows) that can 

be substituted with a shorter length edge (green 

arrow), and hence show sub-optimality of the 

chosen path. 

 

In this work, edges are represented by ei,j 

which corresponds to an edge from node i to node 

j. Based on this definition, ei,j signifies a tile edge 

between tile nodes, i and j, 𝑒𝑖𝑘,𝑖𝑙  ∀𝑘, 𝑙 ∈ [𝑡, 𝑏, 𝑟, 𝑙] 
represents an internal edge in tile node i, between 

junction nodes k and l, esi,jk represents an edge 

from source si and junction node jk, and ei,s 

denotes an edge from tile node i to sink s. The 

collection of all edges is referred to as E. 
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There are few properties associated with 

each edge which are discussed in the following 

sections. 

 

3.3.2.1. Edge length: 

To minimize the length of wires in the 

solution, a length cost per unit length (l(ei,j)) was 

associated with each edge. Geometrically one can 

observe that the length cost ratio between 

diagonal internal edges to orthogonal internal 

edges is constant, √2 2
⁄ . 

 

3.3.2.2. Edge capacity: 

Edge capacity represents the maximum 

number of wires (amount of flow) that can be fit 

in an edge. Two capacity variables can be defined 

which are geometrically related to each other. 

CO: Orthogonal capacity, which corresponds to 

the capacity of the channels (tile edges). 

CD: Diagonal capacity, which corresponds to the 

diagonal capacity of the internal diagonal edges. 

Geometrically CO and CD are dependent, 

and hence both can be viewed as the same 

variable. In this study the ratio 
𝐶𝐷

𝐶𝑂
⁄ = 𝑑 = √2 

was used, which means that: 

𝐶𝐷 = 𝑟𝑜𝑢𝑛𝑑(√2 𝐶𝑂). 

In this model parallel diagonal edges are 

given the same CD since each edge alone should 

be allowed to use the full CD capacity while 

ensuring that the sum of the flow in parallel edges 

remains below CD. Considering the schematic in 

Fig. 9, a mix of diagonal and orthogonal edges 

can be viewed as a legal choice. So, considering 

sum of the two diagonal edges with same 

orientation cannot exceed CD and capacity of 

orthogonal orientation is capped by CO, it can be 

observed that for every single orthogonal edge, 

CD/CO diagonal capacity will be used. Therefore, 

we can derive inequalities in equation (1) and (2) 

to account for the mix of diagonal and orthogonal 

internal edges. 

𝑒𝑏 + 𝑒𝑑 + 
𝐶𝐷

𝐶𝑂
(𝑒𝑒 + 𝑒𝑓) ≤ 𝐶𝐷  (1) 

𝑒𝑎 + 𝑒𝑐 + 
𝐶𝐷

𝐶𝑂
(𝑒𝑒 + 𝑒𝑓) ≤ 𝐶𝐷  (2) 

Lemma 1: Considering constraint in 

inequalities (1) and (2), in an optimal solution, no 

configuration can be found to exceed CD. 

Constraints in equations (1) and (2) 

already address the case that flow in edges ea, ec, 

ee, and ef (Fig. 9) cannot exceed CD. Now other 

cases can be considered.  

Case I) Two diagonal edges with 

different orientation e.g. eb and ec, and an 

orthogonal edge ee: In this case we know that the 

tile edge capacity from the node is capped by CO. 

If all 3 nodes (eb, ec, and ee) are either incoming 

or outgoing flow then their sum cannot exceed CO 

(due to conservation of flow rule), and hence the 

flow cannot be higher than CO < CD.  

If any two configurations of the 3 edges 

are used for incoming and the third is used for 

outgoing flow (as shown by red arrows in Fig. 9a 

and 9b), then we can find a shorter path between 

the two as shown by green arrows, which 

disagrees with optimality of the solution. 

Case II) Two diagonal edges with 

different orientation e.g. eb, and ec, and an 

orthogonal edge ef: In this case we can see that 

the orthogonal and diagonal edges carry the same 

flow, and since the cost of orthogonal edge is 

lower, the two diagonal edges can be substituted 

with an orthogonal edge, reducing the length cost, 

and hence disagrees with optimality of the 

solution. 

As proven above considering inequalities 

in equations (1) and (2) no flow configuration 

greater than CD can be within a tile node. 

Directed edges with a capacity of unity 

shown in Fig. 8b represent flow from source 

nodes (devices). Each source node is connected 

to 8 neighboring junction nodes via 8 directed 

edges. The boundary nodes are connected to a 

single giant sink node out of the network via a 

directed edge each with a capacity CO. The 

devices (sources) on the border connected with a 

single directed node (capacity of unity) to the 

giant sink node, as we can get a direct wire out of 

them for free. 
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3.4 Integer programming model: 

Having explained all the preliminaries, 

an integer programming model can be 

formulated. Following are a few definitions used 

in this formulation. 

𝑋(𝑒𝑖,𝑗) ∀𝑒𝑖,𝑗 ∈ 𝐸 represents the flow variable for 

an edge ei,j. 

Si represents the initial flow on node i. Therefore:  

𝑆𝑖

=

{
 
 

 
 1 ∀𝑖 ∈ [𝑠𝑜𝑢𝑟𝑐𝑒𝑠]

−∑𝑆𝑗
𝑗

 ∀𝑖 ∈ [𝑔𝑖𝑎𝑛𝑡 𝑠𝑖𝑛𝑘], ∀𝑗 ∈ [𝑠𝑜𝑢𝑟𝑐𝑒𝑠]

0 ∀𝑖 ∈ [𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒]

 

 

3.4.1. Objective function: 

The objective of this model is to 

minimize the length as well as orthogonal 

capacity (CO). Since CD is directly related to CO, 

CD is not used in the objective function. To define 

a priority on the two objectives, a linear 

combination of the two objectives with a priority 

factor () was used as the following: 

𝑀𝑖𝑛 {(1 − 𝛼) ∑ 𝑋(𝑒𝑖,𝑗)𝑙(𝑒𝑖,𝑗) + (𝛼)𝐶𝑂
𝑒𝑖,𝑗∈𝐸

} 

Priority factor can be tuned to give 

higher priority to the capacity minimization 

or length minimization, which can result in 

different solutions. However, for the purpose 

of this study higher priority factor used to 

give higher priority to capacity minimization 

as this is the main objective of this study. 

 

3.4.2. Constraints: 

I) Conservation of flow: considering the initial 

flow Si for node i, the difference between the sum 

of incoming flow and sum of outgoing flow 

should be equal to Si.  

∑ 𝑋(𝑒𝑖,𝑗) − ∑ 𝑋(𝑒𝑘,𝑖)

𝑒𝑘,𝑖∈𝐸

 

𝑒𝑖,𝑗∈𝐸

= 𝑆𝑖 

II) The amount of flow for each edge is capped 

by orthogonal/diagonal capacity. 

𝑋(𝑒𝑖,𝑗) ≤ 𝐶𝑂 ∀𝑒𝑖,𝑗 ∈  [𝑂𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 − 𝐸] 

𝑋(𝑒𝑖,𝑗) ≤ 𝐶𝐷 ∀𝑒𝑖,𝑗 ∈  [𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 − 𝐸] 

III) Inequalities in equations (1) and (2) to ensure 

flow within internal edges do not exceed CD. 

𝑋(𝑒𝑖𝑟,𝑖𝑡) + 𝑋(𝑒𝑖𝑏,𝑖𝑙)

+ 𝑑 (𝑋(𝑒𝑖𝑙,𝑖𝑟) + 𝑋(𝑒𝑖𝑡,𝑖𝑏))

≤  𝐶𝐷  ∀𝑖 ∈  [𝑇𝑖𝑙𝑒 𝑛𝑜𝑑𝑒𝑠] 

𝑋(𝑒𝑖𝑙,𝑖𝑡) + 𝑋(𝑒𝑖𝑏,𝑖𝑟)

+ 𝑑 (𝑋(𝑒𝑖𝑙,𝑖𝑟) + 𝑋(𝑒𝑖𝑡,𝑖𝑏))

≤  𝐶𝐷  ∀𝑖 ∈  [𝑇𝑖𝑙𝑒 𝑛𝑜𝑑𝑒𝑠] 

IV) Constraint to ensure CD will accept the 

correct value. 

𝑑 ∗ 𝐶𝑂 −
1
2⁄ ≤ 𝐶𝐷 ≤ 𝑑 ∗ 𝐶𝑂 +

1
2⁄  

V) Real and integer constrain for variables. 

𝐶𝑂 , 𝐶𝐷 ∈ [𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐼𝑛𝑡𝑒𝑔𝑒𝑟] 

𝑋(𝑒𝑖,𝑗) ≥ 0   ∀𝑒𝑖,𝑗 ∈  𝐸 

 

3.5 Results and discussion 

The algorithm was implemented in 

Python, and tests were performed on an Intel Core 

i7 CPU at 3.4 GHz, with 64 GB of RAM. Gurobi 

optimizer package [9] for Python was used to 

solve the mixed integer programming problem. 

During execution, the running time was measured 

through Gurobi package. For evaluation 

purposes, two sets of tests were designed.  

1) In the first series, border nodes were only 

assigned to right and bottom side of the 

design, which can represent ¼ of a full 

design, with one difference, where in real 

¼ design the left and top borders should 

be limited to ½ CO capacity, while in 

current evaluation, left and top borders 

were kept at CO capacity. This ¼ design 

can be used in future implementations to 

speed up the running time by >4 times 

since the other quadrants can be viewed 

as a mirror of the bottom-right quarter.  
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2) In the second series of the tests, a full 

design (with borders assigned to all 4 

sides) was used.  

To further evaluate the correctness of 

minimum capacity, another solver with a fixed 

capacity of CO - 1 was implemented, and it was 

verified that Gurobi cannot produce any solution 

with given conditions.  

 

Table 1. Minimum capacity and MIP running 

time for different sizes of test case series 1 

(quadrant geometry). 

Size Number of 

devices 

Min CO MIP run 

time (sec) 

10×10 81 4 0.13 

20×20 361 9 0.76 

30×30 841 14 3.85 

40×40 1521 20 19.52 

60×60 3481 30 97.68 

80×80 6241 40 596.21 

 

Table 2. Minimum capacity and MIP running 

time for different sizes for test case series 2 

(complete geometry). 

Size Number of 

devices 

Min CO MIP run 

time (sec) 

20×20 361 5 0.30 

30×30 841 7 1.15 

40×40 1521 10 3.26 

60×60 3481 15 36.01 

80×80 6241 20 364.09 

 

Table 1 and 2, show the minimum 

capacity and running times for test cases within 

category 1 and 2, respectively. In all cases, the 

minimum CO was verified to be the minimum 

capacity that can be achieved, through the fixed 

capacity solver. It must be noted that the grid size 

represents the size of tile nodes, and hence for n 

× m grid, there are (n - 1) × (m – 1) devices. 

Comparing running time results from table 1 to 

those of table 2 we can observe that solving 

quarters and then mirroring the results for other 3 

quadrants can save time by about ×10 times.  

Running times of the MIP approach are 

much slower than the polynomial time algorithm 

discussed in section 2. The algorithm in section 2 

can compute the 80 × 80 grid size in 1.5 seconds, 

while MIP approach solves the same problem is 

10 minutes. However, the advantage of the MIP 

approach is the optimality of the solution 

regarding the minimum length, while algorithm 

in section (2) cannot guarantee the minimum 

overall length of the solution. The results of the 

MIP approach, therefore, confirm the correctness 

of the minimum capacity determined via the 

algorithm discussed in section (2), while adding 

optimality to the minimum length to the solution. 

Figure 10, demonstrates the routing 

results after performing a geometrical separation 

on the flow solution. As it can be seen all devices 

have been wired and all boundary nodes (except 

corner ones) are at their full capacity. 

Furthermore, no design rule was found to be 

violated. 

 

 

Fig. 10. A routing solution of minimum capacity 

for 30×30 grid size. 
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4 Escape routing of differential pairs using 

mixed integer programming 

Escape routing of differential pairs is an 

NP-hard problem [7]. So far, the proposed 

methods involve 2 steps: 1) Finding the shortest 

path between each pair using various algorithms 

such as congestion routings [8] or linear 

programming [6, 7]. 2) Then solving the flow 

network from boundaries to any point on the 

shortest paths. Although all these methods 

produce solutions, their optimality is in question. 

For instance when solving for shortest paths 

between pairs, currently available models 

consider shared paths illegal [7], to simplify 

computation and achieve faster running times. 

Yet, considering such paths, can provide denser 

solutions, and utilize the available space to lower 

the minimum capacity of the channels. In this 

section, a mixed integer programming model for 

solving differential pairs escape routing problem 

in a single step is provided, which produces an 

optimal solution. 

 

4.1 Problem formulation 

Assuming a layout consisting of an array 

of m × n devices in a grid geometry, with 

designated devices as pairs, the goal is to find the 

escape routed pattern for all device pairs to the 

grid boundary (or designated exit nodes), with 

design rules that maximum capacity of each 

channel is given by CO, wires cannot cross each 

other (avoid forming shorts), and the routing is 

limited to a single layer (i.e. no via allowed). 

 

4.2 Algorithm 

This problem can be solved using a 

multi-commodity flow model. Similar to single 

commodity flow model (used in section 3), a flow 

starts from a source (in this case a device), travels 

through the channels, and ends up in a sink (in 

this case a channel on the border). Each 

commodity represents the flow for a given pair. 

In multi-commodity flow problem, each path is 

distinct and hence unlike single commodity 

problem, crossings of two different commodities 

cannot be resolved at junctions. Hence it is 

necessary to mark solutions with crossings 

illegal. The algorithm to solve this problem 

consists of constructing the routing network, G = 

(V, E), as shown in Fig. 8a. Then routing 

formulation is applied to a mixed integer 

programming. Gurobi optimizer [9] is used to 

solve the mixed integer programming. The flow 

results represent the final flow pattern.  

It must be noted that the results presented 

in this section are preliminary and hence 

geometrical separation on the wires was not 

applied. 

 

4.3 Definitions 

4.3.1. Commodities: 

Commodities (c) represent the type of 

flow for each pair. Therefore, the number of 

commodities is equal to the number of pairs in the 

problem. 

 

4.3.2. Nodes: 

For this model, a simple grid node 

geometry is used (as shown in Fig. 8a). Therefore, 

each junction is represented by a node (ni), and 

each device is represented by a source node (nsi). 

A sink node (ns) is a union of all the boundary exit 

nodes. 

 

4.3.3. Edges: 

Edges represent the flow direction 

between two adjacent nodes. In addition to 

direction property, each edge can support only a 

single commodity. Therefore, edges represented 

as e(c, ni, nj), which represents the flow of type c 

commodity between nodes ni and nj. Edges 

between junction nodes are bidirectional, while 

edges between source nodes and junction nodes, 

and junction nodes and sink node are 

unidirectional. 

All edges have a length of unity and a 

capacity of CO (fixed). It must be noted to 

simplify the problem and enhance the running 

time, the diagonal capacity is ignored for this 

study. 
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4.4 Mixed integer programming model 

This section presents a mixed integer 

programming model formulated to solve the 

escape routing of differential pair problem in a 

single step. Following are a few definitions used 

in this formulation. 

𝑋(𝑒𝑐,𝑖,𝑗) ∀𝑒𝑐,𝑖,𝑗 ∈ 𝐸 represents the flow variable 

for an edge ec,i,j. 

𝑌(𝑒𝑐,𝑖,𝑗) ∀𝑒𝑐,𝑖,𝑗 ∈ 𝐸 a binary variable which 

represents whether an edge ec,i,j is selected for 

flow (1 represents selected and 0 not selected). 

Si represents the initial flow on node i for 

commodity c. Therefore:  

𝑆𝑐,𝑖 =

{
 
 

 
 1 ∀𝑐, 𝑖 ∈ [𝑠𝑜𝑢𝑟𝑐𝑒 𝑝𝑎𝑖𝑟𝑠]

−∑𝑆𝑗
𝑗

 ∀𝑐, 𝑖 ∈ [𝑠𝑖𝑛𝑘], ∀𝑗 ∈ [𝑠𝑜𝑢𝑟𝑐𝑒𝑠]

0 ∀𝑖 ∈ [𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒]

 

 

4.4.1. Objective function: 

The objective of this model is to 

minimize the length cost, l(ec,i,j). Length cost only 

depends on the number of edges used. Therefore, 

if an edge carries a flow more than unity, the 

length cost will still be the same as if the flow 

value was unity. This ensures that the model 

would find the shortest path to join the flow from 

the same commodity to lower the cost. 

𝑀𝑖𝑛 { ∑ 𝑋(𝑒𝑐,𝑖,𝑗) + 𝑌(𝑒𝑐,𝑖,𝑗)𝑙(𝑒𝑐,𝑖,𝑗)

𝑒𝑐,𝑖,𝑗∈𝐸

} 

In order to solve a mixed differential 

pair and single signal escape routing 

problem, length cost for single signals 

commodity (all single signals are assumed to 

have the same commodity) edge from an exit 

node to sink node can be set to 0, which 

ensures that single signals do not have to 

travel together when they are far. 

 

4.4.2. Constraints: 

I) Conservation of flow: considering the initial 

flow Sc,i, the sum of incoming flow should be 

equal to the sum of outgoing flow for a given 

node ni.  

∑𝑋(𝑒𝑐,𝑖,𝑗) −∑𝑋(𝑒𝑐,𝑘,𝑖)

𝑐,𝑘

 

𝑐,𝑗

= 𝑆𝑐,𝑖 

II) The amount of flow for each edge is capped 

by channel capacity. 

∑𝑋(𝑒𝑐,𝑖,𝑗)

𝑐

≤ 𝐶𝑂  

III) The maximum flow for each edge is zero if 

the edge is not selected. 

𝑋(𝑒𝑐,𝑖,𝑗) ≤ 𝐶𝑂 𝑌(𝑒𝑐,𝑖,𝑗) 

IV) Real and binary constrain for variables. 

𝑋(𝑒𝑐,𝑖,𝑗) ≥ 0   ∀𝑒𝑐,𝑖,𝑗 ∈  𝐸 

𝑌(𝑒𝑐,𝑖,𝑗) ∈ {0, 1}   ∀𝑒𝑐,𝑖,𝑗 ∈  𝐸 

V) Crossing prevention: In order to prevent 

crossing, lazy constraints were used. Due to a 

large number of configurations that can define 

various types of crossings, it is impractical to 

implement all crossing constraints at runtime. 

Instead, lazy constraints are used, where at each 

iteration, the solution is scanned for possible 

crossing violations and only the constraint 

regarding the detected violation will be added to 

the model. Two types of crossings can be 

considered, which are termed as X-crossing, and 

L-crossing, and are illustrated in Fig. 11. In a 

nutshell, X-crossing would look like an X shape, 

where two flows cross at a given node, and L-

crossing involves crossing while sharing a path. 

X-Crossing: This type of crossing occurs 

at a given node when flows of 2 or more 

commodities arrive into a node and leave by 

crossing over each other. The algorithm to detect 

X-crossings is as the following: 
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Fig. 11. Schematic of X-Crossing and L-Crossing 

scenarios. 

 

 

Fig. 12. Numeric labeling of edges for detecting 

X-crossings. 

 

It must be noted that in the given 

algorithm, it is assumed that no two edges would 

occupy the same position, as occupying the same 

position requires checking for L-crossing, as 

discussed next. 

L-crossing: This type of crossing occurs 

along a path. Thus, it cannot be detected only by 

analyzing a given node. Since in L-Crossing a 

part of the path is shared, only nodes exhibiting 

paths that are shared between two different 

commodities are being analyzed. The algorithm 

to detect L-crossing is as following: 

 

In case any crossing is detected following 

lazy constraint will be added to the model: 

∑ 𝑌(𝑒𝑐,𝑖,𝑗)

𝑒𝑐,𝑖,𝑗∈ 𝐸𝐶

≤ 3 

Where EC is the collection of edges in X-

crossing or non-sharing edges in L-crossing, for 

given commodities. Since 4 edges are involved in 

each crossing type, removing any edge would fix 

the problem, and hence the sum of 3 or fewer 

guarantees no such crossing would happen. 

 

 

 

Fig. 13. Resulting differential pair escape routing 

patterns with and without crossing detection. Exit 

nodes located only at the bottom of the grid and 

channel capacities were capped by 2.  
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4.5 Results and discussion 

Figure 13 shows the evolution of the 

pattern as crossing constraints is added. As it can 

be seen, without any crossing checks, all 3 pairs 

are crossing each other multiple time (all having 

X-type). Including X-crossing detection, removes 

all X-type crossing options, while the shortest 

paths now involve L-type crossings. Turning on 

both X- and L-type detections yields to a non-

crossing pattern. 

Figure 14, shows the escape routing 

pattern for a 30 × 30 grid and 14 pairs, with 

channel capacity of 2. Solving this problem takes 

16 seconds, which is much slower than 

comparable problems reported in [6, 8]. Slower 

running time is mainly due to the implementation 

of lazy constraints and search for possible 

crossings which require a considerable amount of 

time at each iteration. However, the benefit of this 

approach is that the solution is produced in a 

single step (unlike other similar works [6-8]), 

where optimality of the solution is guaranteed. 

Furthermore, this approach utilizes the maximum 

capacity available for the routing and does not 

disregard shared legal routes between different 

pairs. 

 

 

Fig. 14. Escape routing pattern for 14 differential 

pairs in a 30 × 30 grid, with a maximum capacity 

of 2. 

 

5 Conclusion and future insights 

In this work, two types of escape routing 

problems were solved. The first was the single 

signal minimum capacity escape routing of a full 

array of devices using a fast polynomial 

algorithm, and minimum length optimality 

guaranteed mixed integer programming 

approach. It was observed that the minimum 

capacity determined via both methods are in good 

agreement. 

A future work can involve uniting the 

two methods together. This can be achieved by 

solving the problem via the polynomial time 

algorithm first, and then use the answer as an 

initial input for mixed integer programming 

model to further reduce the total length of the 

solution (if possible). 

The second problem focused on the 

differential pairs escape routing and mixed single 

signal and differential pairs escape routing. It was 

shown that a mixed integer programming can be 

used to solve this type of problem in a single step 

to guarantee an optimal solution. Although it was 

found that the lazy constraints implementation 

hinders the running time, yet the model allows 

optimal usage of the resources available for 

routing.  

Enhancements that can be considered for 

the differential pairs escape routing model 

include: 

1) As mentioned earlier, to simplify the model 

and enhance the running time, a simple grid 

geometry of nodes was considered, which does 

not take into account the diagonal capacity. 

Therefore, future work can build upon this, and 

utilize the network graph presented in Fig. 8b, for 

multi-commodity flow. This would allow for 

consideration of diagonal capacity. However, due 

to the increase in the number of variables, the 

running time will be hindered even more. 

2) Removing variable Y, and instead adding more 

constraints to simulate the effect of this variable. 

This change would lower the number of variables 

by half, which leads to the speed increase. 

3) Faster algorithms for crossing detection, or 

even better removing them completely and 
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finding linear constraints that would disallow 

crossings. 

4) Design of linear constraints that would allow 

transforming a multi-commodity flow problem 

into a single-commodity flow problem, reducing 

the number of variables greatly, and improving 

the running time significantly. 
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