
1

Minimum capacity full array escape routing

Pouya Moetakef, Samir Khuller

Department of Computer Science, University of Maryland, College Park

Abstract

Layout design for integrated circuits (IC)

is an important step in the fabrication process. As

the device sizes are shrinking and more devices

can be fit in the same area, the space left for wire

routing diminishes, and the task of routing all

devices to the wire bonding pads become more

challenging. This work, presents two types of

escape routing problems: 1) a minimum capacity

escape routing of a full array, and 2) differential

pairs escape routing.

The minimum capacity escape routing

can provide a dense solution where the wire width

and pitch can be optimized to achieve high yield

in the fabrication process. Two solutions are

presented for the minimum capacity escape

routing, which is a polynomial algorithm

designed by employing the shortest path

algorithm, and a mixed integer programming

(MIP) approach. The results of the two

approaches are in agreement, while the

polynomial algorithm provides a faster solution

for larger arrays.

The differential pairs escape routing

problem, involves finding routes that minimize

the path length where members of each pair are

traveling separately. After joining, the pair travels

together to the boundary. The nature of this

problem is NP-hard, thus there is no polynomial

algorithm known to solve this problem.

Therefore, in this work, a mixed integer

programming (MIP) approach was used. This

approach is designed to solve the problem in a

single step to provide an optimal solution. This

approach can be used to solve mixed differential

pairs and single signals in the layout.

1. Introduction

Computer-aided design (CAD) tools

were a huge step forward in speeding up the

design process for integrated circuits (IC). As the

device sizes become smaller, designers are able

to fit more devices in smaller areas. These

electronic devices still need to be wired to the

outside world for incorporation in various

electronic applications. As number of devices to

be routed reaching large numbers (thousands and

even millions), automated routing tools are

becoming of immense importance to speed up the

design process, and removing human-related

errors in detecting the optimal route for wiring.

An example of such a scenario can be

seen in the transition edge sensor (TES) arrays

used for X-ray detection [1-2] (as shown

schematically in Fig. 1). In such scenarios, the

goal is to maximize the area used by a sensor to

capture as much signal as possible. On the other

hand, since all sensors are required to be wired,

the routing is limited to the channel space

available between every two sensors. For an

optimal design, a designer requires information

regarding the minimum capacity (maximum

number of wires that can be fit in each channel

space) to route all sensors in the array. With such

information, a designer can decide the maximum

wire width and pitch (therefore maximizing the

fabrication yield) and maximum sensor size

(minimum channel size).

There has been a considerable amount of

work conducted in finding escape routing

algorithms for routing selected number of pins

with a predefined channel capacity by various

research groups [3-5]. It has been shown that a

maximum network flow algorithm [3], as well as

linear programming [4], can be successfully used

in solving escape routing problem families.

However, to our knowledge, no work has been

focused on finding the minimum capacity

required to be able to route all the pins. It can be

argued that available escape routing models can

be used iteratively from a high capacity value

while decrementing to find the minimum

capacity. However, such an approach can take a

long time to find the optimal solution. Hence in

this work, we propose a polynomial time

2

algorithm designed using the shortest path

algorithm to solve the problem in a very short

time. Furthermore, a mixed integer programming

approach was investigated for an optimal

solution, and it was observed that the results of

the two approaches are in agreement.

Fig. 1. Schematic of the device array geometry

and available channel spacing for escape routing.

The array can be split into 8 symmetrical regions.

A solution for this 1/8 area can be mirrored for all

other regions.

In electronic design, often, it is required

that routes of certain devices travel together, to

minimize the noise between them [6]. This

problem is known as differential pair escape

routing. This problem in nature is a multi-

commodity flow problem which is NP-hard.

Current solutions to this problem use 2-steps [6-

8]. In the first step, non-crossing paths between

each pair are determined and then polynomial

algorithms such as network flow are used to route

the paired routes to the boundary. Using a two-

step algorithm, enhances the running time

significantly, however, the solution is not always

optimal [8]. Optimality becomes important when

a dense array of pairs or a mix of device pairs and

single signals are used in a layout. In such cases,

it is important to use maximum available

resources to be able to determine the minimum

capacity required to route the layout or detect

whether the layout is routable. Hence, in this

work, we present a mixed integer programming

approach to solving the problem in a single step

to produce an optimal solution.

The structure of this report is as follows:

Section (2) provides the details of a polynomial

time algorithm design to solve minimum cost

escape routing of a full array problem. Section (3)

Solves the same problem as discussed in section

2 using a mixed integer programming approach.

Section (4) provides a mixed integer

programming approach for solving differential

pairs escape routing problem. Section (5)

concludes the work and provides future insights.

2. Minimum capacity escape routing

for a full array of singular devices.

2.1 Problem formulation

As shown in Fig. 1, a grid layout for an

array of n × n devices can be used to model the

problem. The goal is to find the escape routed

pattern as well as the minimum channel capacity

to be able to route all devices to the grid boundary

(exit channels), with design rules that wires

cannot cross each other (avoid forming shorts),

and the routing is limited to a single layer (i.e. no

via allowed).

2.2 Definitions:

In this section, basic preliminaries such

as nodes and edges used in the current

formulation are defined and discussed.

2.2.1. Nodes:

In a flow model, a flow starts from a

source and travels through channels to reach the

sink. The junction between four channels is

where a flow can change its direction, and hence

flow nodes can be defined. Each junction can be

represented by a node. Following are the different

types of nodes used in this study (Fig. 1).

3

1) Junction nodes (ni): Each junction can be

represented by a node, which is referred to as

a junction node.

2) Source nodes (nsi): Source nodes represent

devices. These nodes can be considered the

starting point of each flow (wire), and hence

the flow can only exit the source nodes.

3) Sink node (ns): Which represent the union of

all boundary nodes, and the destination for a

flow. Therefore, the sink node can only

accept incoming flow.

Collection of all nodes are referred to as

V.

2.2.2. Edges:

Edges represent the flow direction

between two adjacent nodes. Edges between

junction nodes are all orthogonal and

bidirectional. The edges from source nodes to

junction nodes are unidirectional, i.e. flow cannot

enter a source node. Edges between boundary

nodes and the sink node are also unidirectional,

where the flow enters the sink node. Furthermore,

nodes on the boundary are not connected to each

other.

In this work, edges are represented by ei,j

which corresponds to an edge from node i to node

j. The collection of all edges is referred to as E.

There are few properties associated with

each edge which are discussed in the following

sections.

2.2.2.1. Edge cost:

The heuristic used in the algorithm is

based on a variable cost for edges. A row of edges

that are farther from the boundary is more

expensive than those closer to the boundary. This

heuristic ensures that a chosen route descends

faster towards boundary rather than traveling

within a row, to prevent trapping unvisited

devices.

2.2.2.2. Edge capacity:

Edge capacity represents the maximum

number of wires (amount of flow) that can be fit

in an edge. Two capacity variables can be defined

which are geometrically related to each other.

CO: Orthogonal capacity, which corresponds to

the capacity of the channels.

CD: Diagonal capacity, which corresponds to the

diagonal capacity at junctions.

Geometrically CO and CD are dependent,

and hence both can be viewed as the same

variable. In this study the ratio
𝐶𝐷

𝐶𝑂
⁄ = 𝑑 = √2

was used, which means that:

𝐶𝐷 = 𝑟𝑜𝑢𝑛𝑑(√2 𝐶𝑂).

In this model all edges have a capacity

CO. Diagonal capacity is modeled by giving each

node a capacity of CD. Due to single commodity

flow nature of the problem, at any junction only

one of the two scenarios discussed below can be

found:

1) Single incoming (outgoing) flow and

multiple outgoing (incoming) flows: in this

case the capacity within the node cannot

exceed CO which is dictated by the incoming

flow, and hence the amount of flow is always

< CO < CD.

2) Two incoming flows and two outgoing flows:

In this case, each incoming flow can be

maximum CO and hence 2CO maximum flow

can enter and leave, which is more than CD.

Therefore, having a capacity limit of CD on

the node, it can be guaranteed that no more

than CD flow can enter and leave. It must be

noted that a horizontal flow and a vertical

flow can be replaced by non-crossing flows.

Therefore, as discussed having a flow limit of CD

on a node is sufficient to prevent illegal routes.

2.3 Minimum Capacity

One of the goals of this work is to find

the minimum capacity (CO) required for routing

all devices (full array) to borders. As we can see,

devices sitting on the border, face no restriction

for the available routing space. Therefore, these

devices get their routes for free. Out of n × n

devices only (n - 2) × (n - 2) device array requires

routing. Therefore, in total there are (𝑛 − 2)2

wires exiting the borders. Looking at the borders,

4

there are only (n – 1) channels available at each

side, and hence, in total there would be 4 (n -1)

exit channels. Since all the wires have to escape,

the minimum capacity of channels will be:

𝐶𝑂 = 𝑐𝑒𝑖𝑙 (
(𝑛 − 2)2

4(𝑛 − 1)
)

Having solved the minimum capacity

problem, the next objective is to find the escape

routing pattern for the full array using minimum

capacity.

2.4 Algorithm

In this section, algorithm design for

solving minimum capacity escape routing of a

full array is discussed, as shown below.

As discussed in section (2.3) minimum

capacity of channels can be calculated

mathematically. Hence, in the first step of the

algorithm, minimum capacity is calculated. The

rest of the algorithm discusses the generation of

the routing pattern.

Considering the symmetrical nature of

this problem, the device array can be split into 8

regions as shown in Fig. 1. Solving any of the 1/8

regions will lead to a full solution after applying

mirror operations. Hence, after finding a solution

for the 1/8 segment, a mirror operation on the

diagonal edge of the segment gives a solution to

a quadrant. Performing a mirror operation on one

of the edges of the quadrant gives half and

another mirror operation on the half region gives

the full solution. Therefore, in this study, the

focus is given to solving the 1/8 region.

Fig. 2. Illustration of routing network

construction for 1/8 segment for (a) 14 × 14, and

(b) 15 × 15 grid size. Node traversals are shown

by dashed lines. Blue arrow in (a) shows traversal

direction between traversal layers, and orange

arrows show traversal direction with a layer.

The next step is creating the routing

network (graph) for the 1/8 segment, as shown in

Fig. 2. The network is a directed graph G = (V,

E). Geometrically, depending on the number of

devices (even or odd) the segments can share half

of the devices or node capacity on their borders

with other segments. These conditions are shown

in Fig. 2. In Fig. 2a, an even number of n results

in sharing half the capacity on the far right border

5

with a segment on its right. On the other hand,

Fig. 2b shows that for an odd number of n, half of

the devices on the far right border are being

shared. For the diagonal border, devices are

always shared between the two neighboring

segments.

Initially, flow values for all nodes and

edges are 0, except for the sources which is 1. As

shown in Fig. 2a, algorithm traverses through

each node via the traversal path shown (following

blue arrow between layers, and orange arrows

within each layer), and finds the shortest (least

cost) path from the source to the sink, using

Dijkstra’s algorithm. Along the path, the flow

value for all edges is incremented by 1. When an

edge exceeds CO, that edge is being deleted from

the network graph. Furthermore, for each node on

the path, if the sum of incoming flow or outgoing

flow exceeds CD, all incoming and outgoing

edges involving that node are being removed.

Furthermore, each node on the path will undergo

a cleaning step. Since the flow problem is a single

commodity, the crossing paths can be replaced by

non-crossing path as discussed in [3]. Therefore,

path shortening scenario shown in Fig. 3, can be

applied on the resolved crossing routes. In the

cleaning step, if there exists an incoming edge

from source to node ni, and an outgoing edge

from ni to nj such that eij lies next to the same

source (as shown in Fig. 3), the edge, esi, can be

replaced by the edge, esj.

Fig. 3. Cleaning step to shorten a path after

resolving crossings.

The process of traversing through source

nodes, finding the shortest path to the boundary,

update, and clean the edges, continues until all

sources are routed to the sink. The flow results are

then geometrically separated (as discussed in [3])

to produce the final routing pattern.

2.4.1. Proof:

The proof of optimality is composed of

two parts: (1) proof that minimum capacity holds

for any grid size, n, which is already proven

through the derivation of the minimum capacity

equation, and (2) proof that the CD is never

exceeded in the junctions. Following represents

the proof for (2).

A cut can be viewed as a separation

between two sides of a node column, as shown in

Fig. 4 by the dashed line. All the devices on the

right-hand side of the cut are required to be wired.

As routing progresses, the exit nodes from right

to left are being filled. Therefore, a cut also

separates filled and empty exit nodes (exit nodes

to the right of the cut are all filled, while the ones

on the left side are all empty). In this condition, it

can be observed that some devices can be routed

to the available exit nodes, while the rest has to

pass through the cut to be routed to empty ones.

So, here it can be shown that the total capacity of

junction nodes on the cut, each with a capacity of

CD, exceeds the number of remaining routes

(devices).

Fig. 4. Schematic of the cut (dashed line) in the

grid geometry.

6

Assuming an N × N grid of devices, the

1/8 segment will have 1 2⁄ (𝑁 2⁄ × 𝑁 2⁄) devices.

Considering a cut placed at node column i, the

number of devices on the right side can be

calculated as the following:

(𝑁 2⁄ − 𝑖)(𝑁 2⁄ − 1) −
(𝑁 2⁄ − 𝑖)

2

2

Where the first term represents the

number of devices in a rectangular shape, without

considering the bottom row (since we get them

for free), and the second term is the number of

devices missing from the top triangular section.

Considering CO is the capacity of each

exit node, and the fact that a node column located

at the right-hand border is shared between 2

segments, following equation provides the

number of routes that can exit before reaching the

cut:

(𝑁 2⁄ − 𝑖 − 1 + 1 2⁄)𝐶𝑂 = (
𝑁
2⁄ − 𝑖 − 1 2⁄)𝐶𝑂

Since the objective is to prove that the

number of routes reaching cut is less than the

diagonal capacity available at the cut, following

inequality can be written.

(𝑁 2⁄ − 𝑖)(𝑁 2⁄ − 1) −
(𝑁 2⁄ − 𝑖)

2

2
− (𝑁 2⁄ − 𝑖 − 1 2⁄)𝐶𝑂 ≤ 𝑖𝐶𝐷

Furthermore, from geometrical

constrains the relationship between CO and CD is

known:

𝐶𝐷 = √2𝐶𝑂

And hence the inequality equation can be

rewritten as:

[(𝑁 2⁄ − 𝑖)(𝑁 2⁄ − 1) −
(𝑁 2⁄ − 𝑖)

2

2

− (𝑁 2⁄ − 𝑖 − 1 2⁄)𝐶𝑂]

− √2𝑖𝐶𝑂 ≤ 0

Which can be simplified as the following

after substituting CO with its equation:

2𝑖 − 1 −
1

𝑁 − 1
− (𝑁 − 3

+
1

𝑁 − 1
)(
2√2𝑖 − 1

𝑁 − 2𝑖
) ≤ 0

Given that N – 3 > N – 2i for i > 1,

therefore:

𝑁 − 3 + 𝜀

𝑁 − 2𝑖
> 1

Which can be estimated to be

2𝑖 −
1

𝑁 − 1
− 2√2𝑖 ≤ 0

Which is always true (i.e. the left-hand is

always negative).

As for i = 1 case, we have:

1 −
1

𝑁 − 1
− (𝑁 − 3 +

1

𝑁 − 1
)(

1.8

𝑁 − 2
) ≤ 0

The minimum value for N is 3, which

gives the left-hand side a value of -0.4 < 0, which

means inequality holds. For N > 3, the value

approaches 1 – 1.8 = -0.8 < 0, meaning inequality

holds for all N > 3.

As shown above, it can be observed that

the inequality holds for all values of i and N, and

hence it can be concluded that a number of wires

passing a cut cannot exceed the diagonal capacity

of that cut.

2.4.2. Running time:

The shortest path algorithm used is the

Dijkstra’s algorithm with a running time of O (V

log V + E log V). Considering we find shortest

paths for V = N2 devices, therefore the overall

running time will be O (V2 log V + EV log V).

However, it can be argued that the actual running

time is much shorter since bottom row nodes

reach the exit faster than top row nodes (having a

shorter search domain).

2.5 Results and discussion

The algorithm was implemented in

Python, and tests were performed on an Intel Core

i7 CPU at 3.4 GHz, with 64 GB of RAM.

7

 Figure 5, shows the routing results for the

two case scenarios presented in Fig. 2 (e.g. even

and odd grid size). As it can be seen in both cases,

all design rules are respected, and no junction

exceeds diagonal capacity.

Fig. 5. Routing results for (a) 14×14, and (b)

15×15 grid size.

Figure 6, shows the solution for a larger

network of N = 35, with more congested, routes.

As expected, all design rules are respected, and

all devices were routed to exit nodes using the

calculated minimum capacity.

Fig. 6. Routing solution for 35×35 grid size.

Fig. 7. Schematic of an n × m array quadrant split

into 2 sub-sections.

2.6 Model extension

The minimum capacity escape routing

model discussed was designed based on an n × n

array of devices. This model can be extended to

an n × m array. As shown in Fig. 7, an n × m array

can be divided into 4 sections. Then each

quadrant can be split into two subsections as

shown in Fig. 7. Minimum capacity escape

routing algorithm then can be applied to each

subsection, and the union of the two can be

mirrored to produce the full geometry. Following

8

equation, represents the revised minimum

capacity for n × m array.

𝐶𝑂 = 𝑐𝑒𝑖𝑙 (
(𝑛 − 2)(𝑚 − 2)

2(𝑛 − 1) + 2(𝑚 − 1)
)

3. Minimum Capacity escape routing of

a full array using mixed integer

programming

3.1 Problem formulation

Similar to section (2), a grid layout of m

× n device array can be used for this model. The

goal is to find the escape routed pattern as well as

the minimum channel capacity to be able to route

all devices to the grid borders, with design rules

that wires cannot cross each other (avoid forming

shorts), and the routing is limited to a single layer

(i.e. no via allowed).

3.2 Algorithm

This problem can be solved using a flow

model [3, 4]. In the flow model, a flow starts from

a source (in this case a device), travels through

the channels, and ends up in a sink (in this case a

channel on the border). The algorithm to solve

this problem consists of constructing the routing

network, G = (V, E), as shown in Fig. 8. Then

routing formulation is applied to a mixed integer

programming. Gurobi optimizer [9] is used to

solve the mixed integer programming. The flow

results are then geometrically separated (as

discussed in [3]) to produce the final routing

pattern.

3.3 Definitions:

3.3.1. Nodes:

In a flow model, a flow starts from a

source and travels through channels to reach the

sink. The junction between four channels is

where a flow can change its direction, and hence

flow nodes can be defined. A tile can be defined

as a collection of 4 neighboring junctions. Each

junction can be represented by a node or set of

nodes. Therefore, four types of nodes were

introduced in this model (Fig. 8).

Fig. 8. a) Schematic of the device array geometry

and available channel spacing for escape routing.

A Tile consists of four neighboring tile nodes (as

shown by dashed lines). b) A magnified

schematic of a tile, where each tile node is

replaced by 4 junction nodes to account for

diagonal capacity (CD), while tile edges are

capped with orthogonal capacity (CO). Each

device is connected to neighboring junction

nodes via directed edges with a capacity of unity.

9

1) Tile nodes (ni): Each junction can be

represented by a node, which is referred to as

a tile node. The tile nodes denote the flow

within channels.
2) Junction nodes (𝑛𝑖𝑘 ∀𝑘 ∈ [𝑡, 𝑏, 𝑟, 𝑙], where [t,

b, r, l] represent the top, bottom, right, and

left junction nodes, respectively): To

improve routability, it is of immense

importance to take advantage of diagonal

spacing at channel junctions. Hence, each tile

node is divided into 4 nodes at the corners of

the junction, which are referred to as junction

nodes. These junction nodes correspond to

the internal flow within a tile node.

3) Source nodes (nsi): Source nodes represent

devices. These nodes can be considered the

starting point of each flow (wire), and hence

the flow can only exit the source nodes.

4) Sink node (ns): Which represent the union of

all boundary nodes, and the destination for a

flow. Therefore, the sink node can only

accept incoming flow.

A complete node layout schematic is

presented in Fig. 8b.

3.3.2. Edges:

Edges represent the flow direction

between two adjacent nodes. Here, an edge

between two adjacent tile nodes is referred to as

tile edge. Tile edges are all orthogonal and

bidirectional. Edges between junction nodes are

referred to as internal edges. As shown in Fig. 8b,

six bidirectional internal edges between junction

nodes can be observed, where four edges are

diagonal and the other two are orthogonal. The

edges from source nodes to junction nodes are

unidirectional, i.e. flow cannot enter a source

node. Edges between boundary nodes and the

sink node are also unidirectional, where the flow

only enters the sink node. Since these boundary

nodes are not connected to each other, junction

nodes were not considered for them.

Fig. 9. Junction nodes and internal edges showing

two possible configurations (red arrows) that can

be substituted with a shorter length edge (green

arrow), and hence show sub-optimality of the

chosen path.

In this work, edges are represented by ei,j

which corresponds to an edge from node i to node

j. Based on this definition, ei,j signifies a tile edge

between tile nodes, i and j, 𝑒𝑖𝑘,𝑖𝑙 ∀𝑘, 𝑙 ∈ [𝑡, 𝑏, 𝑟, 𝑙]
represents an internal edge in tile node i, between

junction nodes k and l, esi,jk represents an edge

from source si and junction node jk, and ei,s

denotes an edge from tile node i to sink s. The

collection of all edges is referred to as E.

10

There are few properties associated with

each edge which are discussed in the following

sections.

3.3.2.1. Edge length:

To minimize the length of wires in the

solution, a length cost per unit length (l(ei,j)) was

associated with each edge. Geometrically one can

observe that the length cost ratio between

diagonal internal edges to orthogonal internal

edges is constant, √2 2
⁄ .

3.3.2.2. Edge capacity:

Edge capacity represents the maximum

number of wires (amount of flow) that can be fit

in an edge. Two capacity variables can be defined

which are geometrically related to each other.

CO: Orthogonal capacity, which corresponds to

the capacity of the channels (tile edges).

CD: Diagonal capacity, which corresponds to the

diagonal capacity of the internal diagonal edges.

Geometrically CO and CD are dependent,

and hence both can be viewed as the same

variable. In this study the ratio
𝐶𝐷

𝐶𝑂
⁄ = 𝑑 = √2

was used, which means that:

𝐶𝐷 = 𝑟𝑜𝑢𝑛𝑑(√2 𝐶𝑂).

In this model parallel diagonal edges are

given the same CD since each edge alone should

be allowed to use the full CD capacity while

ensuring that the sum of the flow in parallel edges

remains below CD. Considering the schematic in

Fig. 9, a mix of diagonal and orthogonal edges

can be viewed as a legal choice. So, considering

sum of the two diagonal edges with same

orientation cannot exceed CD and capacity of

orthogonal orientation is capped by CO, it can be

observed that for every single orthogonal edge,

CD/CO diagonal capacity will be used. Therefore,

we can derive inequalities in equation (1) and (2)

to account for the mix of diagonal and orthogonal

internal edges.

𝑒𝑏 + 𝑒𝑑 +
𝐶𝐷

𝐶𝑂
(𝑒𝑒 + 𝑒𝑓) ≤ 𝐶𝐷 (1)

𝑒𝑎 + 𝑒𝑐 +
𝐶𝐷

𝐶𝑂
(𝑒𝑒 + 𝑒𝑓) ≤ 𝐶𝐷 (2)

Lemma 1: Considering constraint in

inequalities (1) and (2), in an optimal solution, no

configuration can be found to exceed CD.

Constraints in equations (1) and (2)

already address the case that flow in edges ea, ec,

ee, and ef (Fig. 9) cannot exceed CD. Now other

cases can be considered.

Case I) Two diagonal edges with

different orientation e.g. eb and ec, and an

orthogonal edge ee: In this case we know that the

tile edge capacity from the node is capped by CO.

If all 3 nodes (eb, ec, and ee) are either incoming

or outgoing flow then their sum cannot exceed CO

(due to conservation of flow rule), and hence the

flow cannot be higher than CO < CD.

If any two configurations of the 3 edges

are used for incoming and the third is used for

outgoing flow (as shown by red arrows in Fig. 9a

and 9b), then we can find a shorter path between

the two as shown by green arrows, which

disagrees with optimality of the solution.

Case II) Two diagonal edges with

different orientation e.g. eb, and ec, and an

orthogonal edge ef: In this case we can see that

the orthogonal and diagonal edges carry the same

flow, and since the cost of orthogonal edge is

lower, the two diagonal edges can be substituted

with an orthogonal edge, reducing the length cost,

and hence disagrees with optimality of the

solution.

As proven above considering inequalities

in equations (1) and (2) no flow configuration

greater than CD can be within a tile node.

Directed edges with a capacity of unity

shown in Fig. 8b represent flow from source

nodes (devices). Each source node is connected

to 8 neighboring junction nodes via 8 directed

edges. The boundary nodes are connected to a

single giant sink node out of the network via a

directed edge each with a capacity CO. The

devices (sources) on the border connected with a

single directed node (capacity of unity) to the

giant sink node, as we can get a direct wire out of

them for free.

11

3.4 Integer programming model:

Having explained all the preliminaries,

an integer programming model can be

formulated. Following are a few definitions used

in this formulation.

𝑋(𝑒𝑖,𝑗) ∀𝑒𝑖,𝑗 ∈ 𝐸 represents the flow variable for

an edge ei,j.

Si represents the initial flow on node i. Therefore:

𝑆𝑖

=

{

 1 ∀𝑖 ∈ [𝑠𝑜𝑢𝑟𝑐𝑒𝑠]

−∑𝑆𝑗
𝑗

 ∀𝑖 ∈ [𝑔𝑖𝑎𝑛𝑡 𝑠𝑖𝑛𝑘], ∀𝑗 ∈ [𝑠𝑜𝑢𝑟𝑐𝑒𝑠]

0 ∀𝑖 ∈ [𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒]

3.4.1. Objective function:

The objective of this model is to

minimize the length as well as orthogonal

capacity (CO). Since CD is directly related to CO,

CD is not used in the objective function. To define

a priority on the two objectives, a linear

combination of the two objectives with a priority

factor () was used as the following:

𝑀𝑖𝑛 {(1 − 𝛼) ∑ 𝑋(𝑒𝑖,𝑗)𝑙(𝑒𝑖,𝑗) + (𝛼)𝐶𝑂
𝑒𝑖,𝑗∈𝐸

}

Priority factor can be tuned to give

higher priority to the capacity minimization

or length minimization, which can result in

different solutions. However, for the purpose

of this study higher priority factor used to

give higher priority to capacity minimization

as this is the main objective of this study.

3.4.2. Constraints:

I) Conservation of flow: considering the initial

flow Si for node i, the difference between the sum

of incoming flow and sum of outgoing flow

should be equal to Si.

∑ 𝑋(𝑒𝑖,𝑗) − ∑ 𝑋(𝑒𝑘,𝑖)

𝑒𝑘,𝑖∈𝐸

𝑒𝑖,𝑗∈𝐸

= 𝑆𝑖

II) The amount of flow for each edge is capped

by orthogonal/diagonal capacity.

𝑋(𝑒𝑖,𝑗) ≤ 𝐶𝑂 ∀𝑒𝑖,𝑗 ∈ [𝑂𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙 − 𝐸]

𝑋(𝑒𝑖,𝑗) ≤ 𝐶𝐷 ∀𝑒𝑖,𝑗 ∈ [𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 − 𝐸]

III) Inequalities in equations (1) and (2) to ensure

flow within internal edges do not exceed CD.

𝑋(𝑒𝑖𝑟,𝑖𝑡) + 𝑋(𝑒𝑖𝑏,𝑖𝑙)

+ 𝑑 (𝑋(𝑒𝑖𝑙,𝑖𝑟) + 𝑋(𝑒𝑖𝑡,𝑖𝑏))

≤ 𝐶𝐷 ∀𝑖 ∈ [𝑇𝑖𝑙𝑒 𝑛𝑜𝑑𝑒𝑠]

𝑋(𝑒𝑖𝑙,𝑖𝑡) + 𝑋(𝑒𝑖𝑏,𝑖𝑟)

+ 𝑑 (𝑋(𝑒𝑖𝑙,𝑖𝑟) + 𝑋(𝑒𝑖𝑡,𝑖𝑏))

≤ 𝐶𝐷 ∀𝑖 ∈ [𝑇𝑖𝑙𝑒 𝑛𝑜𝑑𝑒𝑠]

IV) Constraint to ensure CD will accept the

correct value.

𝑑 ∗ 𝐶𝑂 −
1
2⁄ ≤ 𝐶𝐷 ≤ 𝑑 ∗ 𝐶𝑂 +

1
2⁄

V) Real and integer constrain for variables.

𝐶𝑂 , 𝐶𝐷 ∈ [𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐼𝑛𝑡𝑒𝑔𝑒𝑟]

𝑋(𝑒𝑖,𝑗) ≥ 0 ∀𝑒𝑖,𝑗 ∈ 𝐸

3.5 Results and discussion

The algorithm was implemented in

Python, and tests were performed on an Intel Core

i7 CPU at 3.4 GHz, with 64 GB of RAM. Gurobi

optimizer package [9] for Python was used to

solve the mixed integer programming problem.

During execution, the running time was measured

through Gurobi package. For evaluation

purposes, two sets of tests were designed.

1) In the first series, border nodes were only

assigned to right and bottom side of the

design, which can represent ¼ of a full

design, with one difference, where in real

¼ design the left and top borders should

be limited to ½ CO capacity, while in

current evaluation, left and top borders

were kept at CO capacity. This ¼ design

can be used in future implementations to

speed up the running time by >4 times

since the other quadrants can be viewed

as a mirror of the bottom-right quarter.

12

2) In the second series of the tests, a full

design (with borders assigned to all 4

sides) was used.

To further evaluate the correctness of

minimum capacity, another solver with a fixed

capacity of CO - 1 was implemented, and it was

verified that Gurobi cannot produce any solution

with given conditions.

Table 1. Minimum capacity and MIP running

time for different sizes of test case series 1

(quadrant geometry).

Size Number of

devices

Min CO MIP run

time (sec)

10×10 81 4 0.13

20×20 361 9 0.76

30×30 841 14 3.85

40×40 1521 20 19.52

60×60 3481 30 97.68

80×80 6241 40 596.21

Table 2. Minimum capacity and MIP running

time for different sizes for test case series 2

(complete geometry).

Size Number of

devices

Min CO MIP run

time (sec)

20×20 361 5 0.30

30×30 841 7 1.15

40×40 1521 10 3.26

60×60 3481 15 36.01

80×80 6241 20 364.09

Table 1 and 2, show the minimum

capacity and running times for test cases within

category 1 and 2, respectively. In all cases, the

minimum CO was verified to be the minimum

capacity that can be achieved, through the fixed

capacity solver. It must be noted that the grid size

represents the size of tile nodes, and hence for n

× m grid, there are (n - 1) × (m – 1) devices.

Comparing running time results from table 1 to

those of table 2 we can observe that solving

quarters and then mirroring the results for other 3

quadrants can save time by about ×10 times.

Running times of the MIP approach are

much slower than the polynomial time algorithm

discussed in section 2. The algorithm in section 2

can compute the 80 × 80 grid size in 1.5 seconds,

while MIP approach solves the same problem is

10 minutes. However, the advantage of the MIP

approach is the optimality of the solution

regarding the minimum length, while algorithm

in section (2) cannot guarantee the minimum

overall length of the solution. The results of the

MIP approach, therefore, confirm the correctness

of the minimum capacity determined via the

algorithm discussed in section (2), while adding

optimality to the minimum length to the solution.

Figure 10, demonstrates the routing

results after performing a geometrical separation

on the flow solution. As it can be seen all devices

have been wired and all boundary nodes (except

corner ones) are at their full capacity.

Furthermore, no design rule was found to be

violated.

Fig. 10. A routing solution of minimum capacity

for 30×30 grid size.

13

4 Escape routing of differential pairs using

mixed integer programming

Escape routing of differential pairs is an

NP-hard problem [7]. So far, the proposed

methods involve 2 steps: 1) Finding the shortest

path between each pair using various algorithms

such as congestion routings [8] or linear

programming [6, 7]. 2) Then solving the flow

network from boundaries to any point on the

shortest paths. Although all these methods

produce solutions, their optimality is in question.

For instance when solving for shortest paths

between pairs, currently available models

consider shared paths illegal [7], to simplify

computation and achieve faster running times.

Yet, considering such paths, can provide denser

solutions, and utilize the available space to lower

the minimum capacity of the channels. In this

section, a mixed integer programming model for

solving differential pairs escape routing problem

in a single step is provided, which produces an

optimal solution.

4.1 Problem formulation

Assuming a layout consisting of an array

of m × n devices in a grid geometry, with

designated devices as pairs, the goal is to find the

escape routed pattern for all device pairs to the

grid boundary (or designated exit nodes), with

design rules that maximum capacity of each

channel is given by CO, wires cannot cross each

other (avoid forming shorts), and the routing is

limited to a single layer (i.e. no via allowed).

4.2 Algorithm

This problem can be solved using a

multi-commodity flow model. Similar to single

commodity flow model (used in section 3), a flow

starts from a source (in this case a device), travels

through the channels, and ends up in a sink (in

this case a channel on the border). Each

commodity represents the flow for a given pair.

In multi-commodity flow problem, each path is

distinct and hence unlike single commodity

problem, crossings of two different commodities

cannot be resolved at junctions. Hence it is

necessary to mark solutions with crossings

illegal. The algorithm to solve this problem

consists of constructing the routing network, G =

(V, E), as shown in Fig. 8a. Then routing

formulation is applied to a mixed integer

programming. Gurobi optimizer [9] is used to

solve the mixed integer programming. The flow

results represent the final flow pattern.

It must be noted that the results presented

in this section are preliminary and hence

geometrical separation on the wires was not

applied.

4.3 Definitions

4.3.1. Commodities:

Commodities (c) represent the type of

flow for each pair. Therefore, the number of

commodities is equal to the number of pairs in the

problem.

4.3.2. Nodes:

For this model, a simple grid node

geometry is used (as shown in Fig. 8a). Therefore,

each junction is represented by a node (ni), and

each device is represented by a source node (nsi).

A sink node (ns) is a union of all the boundary exit

nodes.

4.3.3. Edges:

Edges represent the flow direction

between two adjacent nodes. In addition to

direction property, each edge can support only a

single commodity. Therefore, edges represented

as e(c, ni, nj), which represents the flow of type c

commodity between nodes ni and nj. Edges

between junction nodes are bidirectional, while

edges between source nodes and junction nodes,

and junction nodes and sink node are

unidirectional.

All edges have a length of unity and a

capacity of CO (fixed). It must be noted to

simplify the problem and enhance the running

time, the diagonal capacity is ignored for this

study.

14

4.4 Mixed integer programming model

This section presents a mixed integer

programming model formulated to solve the

escape routing of differential pair problem in a

single step. Following are a few definitions used

in this formulation.

𝑋(𝑒𝑐,𝑖,𝑗) ∀𝑒𝑐,𝑖,𝑗 ∈ 𝐸 represents the flow variable

for an edge ec,i,j.

𝑌(𝑒𝑐,𝑖,𝑗) ∀𝑒𝑐,𝑖,𝑗 ∈ 𝐸 a binary variable which

represents whether an edge ec,i,j is selected for

flow (1 represents selected and 0 not selected).

Si represents the initial flow on node i for

commodity c. Therefore:

𝑆𝑐,𝑖 =

{

 1 ∀𝑐, 𝑖 ∈ [𝑠𝑜𝑢𝑟𝑐𝑒 𝑝𝑎𝑖𝑟𝑠]

−∑𝑆𝑗
𝑗

 ∀𝑐, 𝑖 ∈ [𝑠𝑖𝑛𝑘], ∀𝑗 ∈ [𝑠𝑜𝑢𝑟𝑐𝑒𝑠]

0 ∀𝑖 ∈ [𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒]

4.4.1. Objective function:

The objective of this model is to

minimize the length cost, l(ec,i,j). Length cost only

depends on the number of edges used. Therefore,

if an edge carries a flow more than unity, the

length cost will still be the same as if the flow

value was unity. This ensures that the model

would find the shortest path to join the flow from

the same commodity to lower the cost.

𝑀𝑖𝑛 { ∑ 𝑋(𝑒𝑐,𝑖,𝑗) + 𝑌(𝑒𝑐,𝑖,𝑗)𝑙(𝑒𝑐,𝑖,𝑗)

𝑒𝑐,𝑖,𝑗∈𝐸

}

In order to solve a mixed differential

pair and single signal escape routing

problem, length cost for single signals

commodity (all single signals are assumed to

have the same commodity) edge from an exit

node to sink node can be set to 0, which

ensures that single signals do not have to

travel together when they are far.

4.4.2. Constraints:

I) Conservation of flow: considering the initial

flow Sc,i, the sum of incoming flow should be

equal to the sum of outgoing flow for a given

node ni.

∑𝑋(𝑒𝑐,𝑖,𝑗) −∑𝑋(𝑒𝑐,𝑘,𝑖)

𝑐,𝑘

𝑐,𝑗

= 𝑆𝑐,𝑖

II) The amount of flow for each edge is capped

by channel capacity.

∑𝑋(𝑒𝑐,𝑖,𝑗)

𝑐

≤ 𝐶𝑂

III) The maximum flow for each edge is zero if

the edge is not selected.

𝑋(𝑒𝑐,𝑖,𝑗) ≤ 𝐶𝑂 𝑌(𝑒𝑐,𝑖,𝑗)

IV) Real and binary constrain for variables.

𝑋(𝑒𝑐,𝑖,𝑗) ≥ 0 ∀𝑒𝑐,𝑖,𝑗 ∈ 𝐸

𝑌(𝑒𝑐,𝑖,𝑗) ∈ {0, 1} ∀𝑒𝑐,𝑖,𝑗 ∈ 𝐸

V) Crossing prevention: In order to prevent

crossing, lazy constraints were used. Due to a

large number of configurations that can define

various types of crossings, it is impractical to

implement all crossing constraints at runtime.

Instead, lazy constraints are used, where at each

iteration, the solution is scanned for possible

crossing violations and only the constraint

regarding the detected violation will be added to

the model. Two types of crossings can be

considered, which are termed as X-crossing, and

L-crossing, and are illustrated in Fig. 11. In a

nutshell, X-crossing would look like an X shape,

where two flows cross at a given node, and L-

crossing involves crossing while sharing a path.

X-Crossing: This type of crossing occurs

at a given node when flows of 2 or more

commodities arrive into a node and leave by

crossing over each other. The algorithm to detect

X-crossings is as the following:

15

Fig. 11. Schematic of X-Crossing and L-Crossing

scenarios.

Fig. 12. Numeric labeling of edges for detecting

X-crossings.

It must be noted that in the given

algorithm, it is assumed that no two edges would

occupy the same position, as occupying the same

position requires checking for L-crossing, as

discussed next.

L-crossing: This type of crossing occurs

along a path. Thus, it cannot be detected only by

analyzing a given node. Since in L-Crossing a

part of the path is shared, only nodes exhibiting

paths that are shared between two different

commodities are being analyzed. The algorithm

to detect L-crossing is as following:

In case any crossing is detected following

lazy constraint will be added to the model:

∑ 𝑌(𝑒𝑐,𝑖,𝑗)

𝑒𝑐,𝑖,𝑗∈ 𝐸𝐶

≤ 3

Where EC is the collection of edges in X-

crossing or non-sharing edges in L-crossing, for

given commodities. Since 4 edges are involved in

each crossing type, removing any edge would fix

the problem, and hence the sum of 3 or fewer

guarantees no such crossing would happen.

Fig. 13. Resulting differential pair escape routing

patterns with and without crossing detection. Exit

nodes located only at the bottom of the grid and

channel capacities were capped by 2.

16

4.5 Results and discussion

Figure 13 shows the evolution of the

pattern as crossing constraints is added. As it can

be seen, without any crossing checks, all 3 pairs

are crossing each other multiple time (all having

X-type). Including X-crossing detection, removes

all X-type crossing options, while the shortest

paths now involve L-type crossings. Turning on

both X- and L-type detections yields to a non-

crossing pattern.

Figure 14, shows the escape routing

pattern for a 30 × 30 grid and 14 pairs, with

channel capacity of 2. Solving this problem takes

16 seconds, which is much slower than

comparable problems reported in [6, 8]. Slower

running time is mainly due to the implementation

of lazy constraints and search for possible

crossings which require a considerable amount of

time at each iteration. However, the benefit of this

approach is that the solution is produced in a

single step (unlike other similar works [6-8]),

where optimality of the solution is guaranteed.

Furthermore, this approach utilizes the maximum

capacity available for the routing and does not

disregard shared legal routes between different

pairs.

Fig. 14. Escape routing pattern for 14 differential

pairs in a 30 × 30 grid, with a maximum capacity

of 2.

5 Conclusion and future insights

In this work, two types of escape routing

problems were solved. The first was the single

signal minimum capacity escape routing of a full

array of devices using a fast polynomial

algorithm, and minimum length optimality

guaranteed mixed integer programming

approach. It was observed that the minimum

capacity determined via both methods are in good

agreement.

A future work can involve uniting the

two methods together. This can be achieved by

solving the problem via the polynomial time

algorithm first, and then use the answer as an

initial input for mixed integer programming

model to further reduce the total length of the

solution (if possible).

The second problem focused on the

differential pairs escape routing and mixed single

signal and differential pairs escape routing. It was

shown that a mixed integer programming can be

used to solve this type of problem in a single step

to guarantee an optimal solution. Although it was

found that the lazy constraints implementation

hinders the running time, yet the model allows

optimal usage of the resources available for

routing.

Enhancements that can be considered for

the differential pairs escape routing model

include:

1) As mentioned earlier, to simplify the model

and enhance the running time, a simple grid

geometry of nodes was considered, which does

not take into account the diagonal capacity.

Therefore, future work can build upon this, and

utilize the network graph presented in Fig. 8b, for

multi-commodity flow. This would allow for

consideration of diagonal capacity. However, due

to the increase in the number of variables, the

running time will be hindered even more.

2) Removing variable Y, and instead adding more

constraints to simulate the effect of this variable.

This change would lower the number of variables

by half, which leads to the speed increase.

3) Faster algorithms for crossing detection, or

even better removing them completely and

17

finding linear constraints that would disallow

crossings.

4) Design of linear constraints that would allow

transforming a multi-commodity flow problem

into a single-commodity flow problem, reducing

the number of variables greatly, and improving

the running time significantly.

References

[1] S. J. Smith, J. S. Adams, S. R. Bandler, G.

Betancourt-Martinez, J. A. Chervenak, M. E.

Eckart, F. M. Finkbeiner, R. L. Kelley, C. A.

Kilbourne, S. Lee, F. S. Porter, J. E. Sadleir, and

E J. Wassell, “Uniformity of Kilo-Pixel Arrays of

Transition-Edge Sensors for X-ray Astronomy,”

IEEE Transactions on Applied

Superconductivity, 25 (2015) 2100505

[2] H Akamatsu, L. Gottardi, J. van der Kuur, C.

P. de Vries, K. Ravensberg, J. S. Adams, S. R.

Bandler, M. P. Bruijn, J. A. Chervenak, C. A

Kilbourne, M. Kiviranta, A.J. van der Linden, B.

D. Jackson, and S. J. Smith, “Development of

frequency domain multiplexing for the X-ray

Integral Field Unit (X-IFU) on the Athena,” Proc.

Of SPIE, 9905 (2016) 99055S-1

[3] T. Yan, M. D. F. Wong, “A correct network

flow model for escape routing,” Proceedings of

the 46th Annual Design Automation Conference

(2009), 332-335

[4] Y. K. Ho, H. C. Lee, and Y. W. Chang,

“Escape Routing for Staggered-Pin-Array

PCBs,” IEEE/ACM International Conference on

Computer-Aided Design (ICCAD) (2011), 306-

309

[5] T. Yan and M. D. F. Wong, “Recent research

development in PCB layout,” Proceedings of

IEEE/ACM International Conference on

Computer-Aided Design, (2010) 398–403

[6] T.-H. Li, W.-C. Chen, X.-T. Cai, and T.-C.

Chen, “Escape Routing of Differential Pairs

Considering Length Matching,” IEEE 17th Asia

and South Pacific Design Automation

Conference (ASP-DAC), (2012) 139 – 144

[7] K. Wang, H. Wang, S. Dong, “Escape

Routing of Mixed-Pattern Signals Based on

Staggered-Pin-Array PCBs,” ISPD '13

Proceedings of the 2013 ACM International

symposium on Physical Design, (2013) 93 – 100

[8] T. Yan, P. C. Wu, Q. Ma, M. D F Wong, “On

the escape routing of differential Pairs,” 2010

IEEE/ACM International Conference on

Computer-Aided Design, ICCAD (2010), 614 -

620

[9] Gurobi Optimizer 7.5, available at

http://www.gurobi.com/

