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Abstract

The ability to recognize the actions of our conspecifics constitutes one of our fundamental
cognitive abilities. The ability to understand, and to react to, human actions is thus cru-
cial for cognitive systems of the future. Actions are complex entities, possessing several
representations - linguistic, visual, cognitive, and motor. The key to understanding actions
is to understand the relationship between these different spaces. In this paper, we study
the visual representation of actions and find parallels to natural language processing by
representing actions as Probabilistic Context Free Grammars. We also provide a review of
previous work done in the field of human action recognition.

1



1 Introduction

Vision and Action. The visual space is baffling in its complexity, yet biological systems
seem to almost effortlessly sieve through extensive optical sensory input to make sense of
the geometry and affordance of their surroundings and of themselves. The perceived ef-
fortlessness of human vision conceals the fact that over half of the human brain is engaged
in visual processing, and yet the computational principles behind visual perception remain
amongst nature’s greatest enigmas.

If we wish to build artificial systems that can mimic our visual behavior, these systems
need to mimic our representations of the visual world. Evidence from the neuroscience
literature[9] increasingly suggests that these representations are dependent in a very fun-
damental way upon the way we represent our actions. Intuitively, an agent’s actions have
a direct effect on its perceptual input, and hence, it is plausible that the resulting percep-
tual input is organized according to the structure present in the agent’s actions - structure
already known to the agent. Within this view, perceptual processing will be “grounded” in
the space of the agent’s actions. The possibility of grounding even higher level knowledge
by exploiting the relationship between perception and action[5] motivates our study into
the nature of human actions and its possible representations.

The different representations of actions. Actions have several representations. We can
understand a piece of text describing an action, such as “John entered the room, placed his
bag on the table, and sat down on the chair”. We can even imagine a simulation of the events
described in the statement. This is the cognitive/linguistic representation of actions. We also
have the cognitive/visual representation of actions - when we see a video of the above action
taking place, we can form a mental model of the action and recognize it. Finally, we have the
ability to physically imitate the actions of others by transferring their motions/events with
respect to other objects to our motor space. Thus we have a cognitive/motor representation.
The holy grail of research into actions is to find the relationship between these spaces, and it
is our belief that the different spaces are interfaces for a shared cognitive representation. In a
completely general setting, we might term actions as a sequence of events undergone by ob-
jects in the world. Although a broad definition, it allows us to sketch some of the properties
that an action representation system should have. Consider a video of a ball bouncing on a
floor. At some level, the representation derived from viewing this video and understanding
the sentence “the ball bounced on the floor” must be equal. Linguistics informs us of the
semantic structure present in this statement: the subject is the ball, the object is floor and the
event or predicate is bounce. Vision provides an opportunity to ground these notions into
sensory input. The verb bounce stands for the causal visual event structure in the action,
and its representation needs to be independent of the precise form of the subject and object,
i.e., the representation needs the ability to abstract away details. The sequence of events
themselves specifies a verb, but the precise way in which we move through the sequence,
or the dynamics, specifies the action more precisely and determines the adverb. The repre-
sentation also needs to be compositional - we need the ability to put together several actions
to form a complex action. Finally, the existence of mirror neurons[8], hints to a relationship
between the ability to visually recognize actions and the ability to imitate the same action.

2



2 Previous Work

The previous section sketched a general notion of actions and the similarity between their
different representations. In this paper, however, we are concerned specifically with the vi-
sual representation of human actions and to present one such representation by drawing
parallels with natural language processing. The problem of human action recognition is
complicated by the complexity and variability of shape and movement of the human body,
which can be modeled as an articulated rigid body. Moreover, two actions can occur si-
multaneously, e.g., walk and and wave. Most work on action recognition involving the full
human body is concerned with actions completely described by motion of the human body,
i.e., without considering interactions with objects. We review a few representative methods
from related work in action representation and recognition.

Feng and Perona[4] represent an action using a series of codewords (called movelets). Each
codeword is a vector consisting of the parameters of the 10 main body parts (each repre-
sented by a rectangle with 5 degrees of freedom) in two successive frames. During the train-
ing phase, the set of all observed codewords is clustered using K-means. Each action is thus
represented by a series of codewords. Using this data, an HMM is trained for each action.
The input video, after background subtraction consists of the silhouette of a single person
performing a single action. A probability model for observing two successive silhouettes
given the codeword is specified and used for the output probabilities of the HMMs. Given
an input video, each HMM calculates its likelihood of generating the video. The input is
classified as that action whose HMM yields the maximum of these likelihoods.

Sminchiescu et al.[11] use a conditional random field (CRF) to model human motion. A CRF
does not provide a generative model of the motion, but rather learns the conditional proba-
bility of motion labels given the data. Their CRF consists of a state node and an output node
for each frame in the input sequence. Edges are placed between neighboring state nodes,
and between a state node and neighboring output nodes. Each output node is represented
by a feature vector (histograms of shape context and edge features) and each state node rep-
resents the label for a particular action. The parameters to be learnt consist of parameters
of the clique potentials, and is achieved by maximizing the likelihood of the training data.
The maximum likelihood estimate of the motion labels is obtained from the input feature
vectors using a viterbi style algorithm.

Bregler[2] proposed a hierarchical framework for recognizing actions, invoking the similar-
ity to speech processing. Input pixels in each video frame are grouped into regions (called
blobs) using cues of coherent motion, color, spatial proximity, and groupings in previous
frames. The states of the blobs in successive frames are grouped together using second or-
der linear dynamical systems (SLDS). The final level consists of HMMs, one for each action,
whose nodes output the SLDS currently in action. Given the number of dynamical models
and the topology of the HMMs, all of the remaining parameters are learnt automatically.
Furthermore, no background subtraction is required. Given an input video, hypothesis at
each level are propagated upwards, enabling the calculation of the likelihoods of the HMM
models, which are used to infer the actions being performed.
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Bobick and Ivanov[1] divide the problem of action recognition into two levels. At the first
level, a bank of HMMs is trained, one for each action. These HMMs are then run over the in-
put to be recognized, each HMM generating a series of discrete events indicated by the time
intervals at which the HMM (the particular low-level motion) is substantially active. This
low level input stream is parsed using a user specified stochastic context free grammars,
with the output of HMMs forming the terminal symbols. Usage of the grammar provides
the ability to enforce long range causality between lower level motions. This extra structure
helps disambiguate low-level motions.The system is tested on hand movements tracked by
stereo system.

Schuldt et al.[10] compute local features, i.e., spatio-temporal interest points at multiple
scales to recognize human action. The interest points are based on a criterion dependent
on the local spatio-temporal image gradient. Each interest point is represented by a vector
of higher order spatio-temporal image derivatives around the interest point. During the
training phase, all such descriptors are collected and clustered using K-means. Each cluster
represents a primitive event. An action is represented using a histogram of primitive events.
Since each action is represented by a vector (global features, or causality of primitive events
is ignored), the actions can be classified using support vector machines.

Kojima et al.[7] use a hierarchy of case frames to represent the semantics associated with an
action and to generate its natural language descriptions. From the input video, the location
of orientation of head and hands are extracted by modeling skin color and segmenting out
skin colored regions. Objects are identified by comparing their edge images against those
present in a database. A case frame is simply the specification of a predicate (e.g. walk),
an agent (e.g. human), a goal (e.g. walk by the door), and location (e.g. in front of the ta-
ble). Predicates such as move, move slow, move fast, high, low, loadable, etc., are defined in
terms of geometry extracted from the vision preprocess. A hierarchy of frames derives from
observations such as move slow is a specialization of move, stand or sit are specializations of
a pose, etc. Additionally, edges corresponding to verb case frames are added between pose
case frames (e.g., ’standup’ between sit and stand). For each frame in the video, the case
frame hierarchy is evaluated starting from the root and moving down the specializations. If
the case frame changes between two frames, any case frame corresponding to the transition
is activated. These case frames are defined for each body part. Additional rules are built
in for merging case frames from separate body parts. The case frames thus obtained are
subsequently translated into natural language expressions.

The problem of identifying people and their body parts, while not explicitly addressing
the action recognition issue, can serve as preprocesses to some of the above approaches es-
pecially when they do not require manual initialization. Felzenszwalb and Huttenlocher[3]
use a tree graphical model to represent the body, using one node for each body part. Ap-
pearance parameters and constraints between body parts are learnt from training data, and
a dynamic programming algorithm is described to infer the state of the graphical model
(and hence location of the body parts) from a single image. Since a tree based model does
not explicitly take into account phenomenon such as occlusions, Ioffe and Forsyth[6] use a
mixture of trees - one for each subset of parts to model different views of the body.
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3 Action Recognition using Grammars

In this section we describe a framework for recognizing actions in a controlled environment
from a database of actions. Our motivation is to formalize the notion of compositionality of
actions - i.e., we can form a new action by stringing several known sub-actions together -
just like we can form a new sentence by stringing together several known words. Invoking
such a parallel allows us to analyze actions in terms of concepts developed in natural lan-
guage processing (NLP). Higher level actions (which are similar to phrases) are composed of
several simpler actions (which are similar to words or morphemes). Each of the simpler ac-
tions is in turn composed of several low-level image based representations called keyframes
(which are similar to speech phonemes). Borrowing terminology from NLP, the problem of
recognizing actions is thus three fold (Fig. 1):

Phonemes

Morphemes

Syntax

/a/,/i/ ,/o/

walk

open the door
and enter the room
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Figure 1: The Language of Actions: Drawing a parallel between NLP and Actions

• Phonology. Just as phonemes are the low-level structure present in the audio sig-
nal, action phonemes are low-level visual descriptors present in the visual signal. We
choose a particularly simple form for our action phonemes which is described in the
next section. The study of such phonemes is termed phonology.

• Morphology. Next in the hierarchy come words or morphemes which are formed by
stringing together several phonemes. Similarly, action morphemes (or visual verbs) -
the lowest level of actions - are formed by a composition of action phonemes, and the
study of such morphemes is called morphology.

• Syntax. Meaningful sentences arise only when words or morphemes are combined
in certain specific ways. Similarly, meaningful actions occur only when action mor-
phemes are combined in specific ways. The problem of syntax is to find precisely what
these specific ways are. The model for action syntax is a direction of future work and
not described in this paper.

It is plausible that these stages are not separate but have intricate feedback connections -
e.g, the morphemes being recognized might influence the choice of phonemes to search for.
However, for our present purposes, we consider them as separate modules. This allows
us to analyze and formulate techniques for each of the modules independently and then
consider interactions between them at a later stage.
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3.1 Action Phonemes

The first issue we face is the choice of low-level visual descriptors for actions. In other words,
what low level information should we extract from a given video that sufficiently encodes
all actions occurring within it? Several models can be used as phonemes - e.g. the optical
flow at each frame, or contiguous frames that fit a simple dynamical model, or location and
direction of motion of individual body parts from a segmentation process. Using the op-
tical flow at each frame leads to too much information - we want to compress information
coming from lower levels in order to efficiently test their combinations as candidate mor-
phemes. The third suggestion, finding location and motion of body parts, provides possibly
maximal compression, but at the cost of more processing at the lower level. Segmenting the
frames based on a dynamic model lies midway between the two. For our current imple-
mentation, we are not interested in the intra-class variability of actions, i.e., we do not want
to differentiate between two different types of walks. Staying with the example of a walk,
we observe that what is common to different types of walks is the sequence of the extremal
positions of the joint angles (legs separated, legs together, legs separated). A simple and
useful phoneme representation is thus the human silhouette in those frames where the joint
angles hit an extrema (We assume the existence of a segmentation procedure which finds the
silhouette). However, the problem of finding the joint angles in a given video is known to be
a hard problem. We can avoid this problem by observing that the joint extrema are strongly
correlated with the extrema of the average optical flow (Fig. 2). Intuitively, at their extremal
positions, the joint angles are either stationary or moving very fast, hence the correlation
with optical flow. Given an input video, our phoneme representation is thus the silhouette

Figure 2: The extrema of optical flow strongly correlate with the extrema of joint angles.
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of the human body in those frames where the average optical flow hits an extrema (maxi-
mum, minimum, or inflection). Undoubtedly, this is a very shallow phoneme representation
as we neglect a lot of spatio-temporal information, and furthermore, as mentioned before, it
is possible that the choice of phonemes is affected by through feedback by the higher level
modules performing action recognition. We discuss such issues in the final section. We have
found that this simple representation suffices for the kind of actions under considerations
and allows us to build higher level modules on top of it. In addition to the phoneme repre-
sentation, we also need a distance function to evaluate the similarity of two phonemes. In
our current implementation, we employ a similarity metric based on phase correlation of
the silhouette images (to maximally register the two images) and similarity of optical flow
within the two registered images.

3.2 Action Morphemes

An action morpheme is represented as a sequence of action phonemes. Action morphemes
thus form the first level of actions - those which cannot be divided into smaller actions. For
example, the action morpheme for walk is defined by the five phonemes shown in Fig. 2. We
currently do not use any information of the dynamics between two phonemes. Such infor-
mation could be stored as attributes in the grammar symbols and used to specify intra-class
variability, e.g. slow or fast walk. Now, given an input video, if we run our phoneme detec-
tor, we obtain a stream of phonemes. These phonemes need to be grouped into their respec-
tive morphemes. This simultaneous task of segmentation and recognition is performed us-
ing a Probabilistic Context Free Grammar (PCFG). We formulate a PCFG which extracts the
most likely sequence of morphemes which generated the observed sequence of phonemes.
The detailed PCFG is described subsequently, but at a higher level, the grammar is struc-
tured as follows:

• Video → Action | Action Action | . . .

• Action → Action1 | Action2 | . . .

• Actioni → ModelPhoneme1 ModelPhoneme2 . . .

• ModelPhonemei → ObservedPhonemej

In words, each video generates a sequence of actions. Each action generates a sequence of
model phonemes. And finally, each model phoneme generates an observed phoneme with
a certain probability which depends on the distance function between two phonemes. The
grammar thus specifies a generative model for the set of actions it models. The probabil-
ities associated with each production encodes a probability distribution over the set of all
possible strings generated by this grammar. Since the grammar is unambiguous, there is a
one-to-one correspondence between strings in the generated language and their respective
parse trees. Thus, the grammar encodes a probability distribution of parse trees given a par-
ticular input (stream of observed phonemes). The most likely parse tree will segment the set
of observed phonemes into the set of morphemes that most likely generated them.
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3.3 Implementation and Results

Data collection. We collected training data consisting of 11 actions (jump, walk, kick, kneel,
squat, pickup, sitstand, punch, wave, handshake, turn) performed by 10 actors, each action
being observed through 8 synchronized cameras (Fig. 3). All videos were captured against
a white background to enable trivial background subtraction.
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Figure 3: Experimental setup: 11 actions were performed by 10 actors (top right) and captured by
eight synchronized cameras a in surround configuration (top left). The two bottom images show eight
views of a single frame for two actions.

Phoneme Extraction. Our first task is to represent each action in the database by a short
sequence of keyframes (action phonemes). For each action in the database, we run our
phoneme detector on the video stream from each view. This yields a set of keyframes for
each view. The union of the set of keyframes from all views represents the set of keyframes
for the action. Thus, each action ai consists of a sequence of phonemes (p1, p2, . . . , pn), where
each phoneme consists of eight views of the corresponding body pose pi = (p1

i , p
2
i , . . . , p

8
i ).

At the end of this process, each action is represented by short sequence of phonemes. How-
ever, several actions may share the same phoneme, and the same action can have multiple
instances of the same phoneme. Therefore, we have to reduce the set of phonemes obtained
from all actions independently into a joint phoneme set. Two phonemes are considered
equal if the distance function (described in the previous section) between each of the corre-
sponding views lies below a threshold. Using this criterion, each set of equivalent phonemes
is replaced by a single representative phoneme and the set of phonemes is compressed into
a smaller, unique set. The phoneme set found from the training data is shown in Fig. 4
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p20 Start Sit Up

p19 Half Sit Front

p18 Full Sit

p17 Half Sit Back

p16 Start Sit Down

p15 Half Bend Up

p14 Full Bend

p13 Half Bend Down

p12 Half Squat Up

p11 Squat

p10 Half Squat Down

p9 Kneel

p8 Kick Legs Together

p7 Kick Leg Front

p6 Kick Leg Behind

p5 Legs Apart(2)

p4 Legs Together

p3 Legs Apart(1)

p2 Bent Knees

p1 Stand

p20 Start Sit Up

p19 Half Sit Front

p18 Full Sit

p17 Half Sit Back

p16 Start Sit Down

p15 Half Bend Up

p14 Full Bend

p13 Half Bend Down

p12 Half Squat Up

p11 Squat

p10 Half Squat Down

p9 Kneel

p8 Kick Legs Together

p7 Kick Leg Front

p6 Kick Leg Behind

p5 Legs Apart(2)

p4 Legs Together

p3 Legs Apart(1)

p2 Bent Knees

p1 Stand

p39 Wave Mid to Left

p38 Wave Left

p37 Wave Mid to Right

p36 Wave Right

p35 Half Turn Right Left

p34 Turn Right

p33 Half Turn Right

p32 Turn Left Right

p31 Half Turn Left Right

p30 Half Turn Left

p29 Turn Left

p28 Hand Lower

p27 Handshake Down

p26 Handshake Up

p25 Handshake Mid

p24 Hand Raise

p23 Punch End

p22 Punch Out

p21 Punch Begin

p39 Wave Mid to Left

p38 Wave Left

p37 Wave Mid to Right

p36 Wave Right

p35 Half Turn Right Left

p34 Turn Right

p33 Half Turn Right

p32 Turn Left Right

p31 Half Turn Left Right

p30 Half Turn Left

p29 Turn Left

p28 Hand Lower

p27 Handshake Down

p26 Handshake Up

p25 Handshake Mid

p24 Hand Raise

p23 Punch End

p22 Punch Out

p21 Punch Begin
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Figure 4: Set of unique phonemes obtained from the training data

Grammar Construction. We use these phonemes to specify an action grammar as show
below. The first rule specifies that each video V is composed of a sequence of upto f actions.
All of the actions A1, A2, . . . , Ag are equiprobable. The third rule states that each action is
composed of a sequence of an ordered pair of phonemes. Each phoneme in the phoneme
stream for an action is duplicated, except the first and the last, and successive phonemes
in this new stream are grouped together to form the ordered pair of phonemes. This is
necessary to allow sharing of border phonemes between actions. The fourth rule specifies
that each ordered pair generates a particular view from each of the constituent phonemes.
Only those productions are considered where the view of the two phonemes either remains
the same or changes to an adjacent camera, with higher probability assigned to staying in
the same view. The final production states that each view in a model phoneme generates an
observed phoneme with a probability derived from the distance function between the two.
Since the observed phonemes change for each input video, these productions are formed at
runtime.

fAAAAV |...||→ fVApi i /1)|(, =∀

gAAAA |....|| 21→ gAApi i /1)|(, =∀

...cdbcabi qqqA → 1)|...( =icdbcab Aqqqp

v
d

u
ccd ppq → 1)|(

,

=∑
vu

allowed
cd

v
d

u
c qppp

k
v
i sp → runtimeatobtainedpsp v

ik )|(
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Sample Parses. We used the Viterbi PCFG parser provided in the Natural Language Toolkit
(NLTK, http://nltk.sourceforge.net) for implementing the grammar. The test data consisted
of single camera video of a sequence of actions. Two sample parses are shown in Fig. 5.
The first example consists of a video of a person performing a succession of four actions -
walk, turn, kick, and kneel, seen from a single camera. The grammar correctly separates the
extracted phonemes into the corresponding morphemes. The second video shows a person
walking along a circle followed by a pickup action. This shows the ability of the system to
exploit the viewer/camera duality (a moving viewer with stationary camera is equivalent
to a stationary camera with moving viewer) to find the correct orientation of the body. The
viewpoint changes in accordance with direction of movement and the sequence is correctly
parsed into its constituent actions.
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Figure 5: Sample parses obtained by the system. Left: A sequence comprising of walk, turn, kick, and
kneel. The terminal symbols are the observed phonemes, the black silhouettes are the identified model
phonemes. As can be seen, the video is correctly segmented into its constituent actions. Right: Iden-
tified pose sequence for a walk and turn sequence. The left column displays the observed phonemes.
Corresponding to each observed phoneme is the inferred model phoneme, with the particular inferred
view highlighted.
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4 Conclusions and Future Work

In this paper, we have presented a framework for representing human actions by dividing
the problem into three stages. We have proposed simple techniques for realizing the first two
stages - representing action phonemes by silhouettes with extremal average optical flow, and
morphemes as a sequence of phonemes with constraints placed using a probabilistic context
free grammar. Furthermore, the phonemes and morphemes are generalized to handle mul-
tiple views. Given the goals outlined in Section 1, the approach described is very basic
and several improvements can be made within the framework. The action phonemes and
morphemes do not take into account the dynamics between keyframes. The phonemes are
composed of full-body silhouettes which is too restrictive. Moreover, we only consider ac-
tions involving a single person with no object interaction, the level of syntax is unspecified.
Future work will lie along incorporating these issues into the framework, which will pos-
sibly involve relaxing the rigid grammar structure into a more loosely organized hierarchi-
cal/compositional structure with the capability of representing both schema-like structures
and low-level geometric entities.
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