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Abstract

Given a training set of labeled points P ⊂ Rd, the Nearest Neighbor (NN) rule classifies a query
point with the label of its nearest neighbor in P. The problem of NN condensation deals with
selecting a subset of P, with the goal of reducing storage and query complexity of the NN rule,
while maintaining its original classification accuracy. Even though a significant number of NN
condensation algorithms have been proposed, surprisingly, no bounds are known for the amount of
reduction that most of these techniques achieve. Moreover, these techniques focus on preserving
the classification accuracy on exact NN queries, ignoring the effect this condensation might have
on approximate NN queries.

In this paper, we present theoretical guarantees for state-of-the-art NN condensation tech-
niques. We first consider the MSS algorithm, and show it selects O(k) points, where k is the
number of border points of P. These border points are those that define the boundaries between
sets of points of different classes, and provide a useful measure of their complexity. Addition-
ally, we propose RSS, a relaxed version of MSS that selects both border and internal points of
P. We prove RSS selects O(k log ∆) points, where ∆ is the spread of P. Furthermore, assuming
query points are distributed uniformly, we show the probability of correctly classifying such query
points using ANN queries on RSS, grows exponentially w.r.t. the size of RSS.
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1 Introduction

In the context of non-parametric classification, a training set P of n labeled points in Rd
is given. Each point p ∈ P belongs to a one of set of discrete classes, indicated by its label
l(p). Given an unlabeled query point q ∈ Rd, the goal of a classifier is to predict the label of
q (i.e., to classify q) using the training set P. The Nearest Neighbor (NN) rule is one such
classification technique: it classifies the query point q with the label of its nearest neighbor
in P, that is, l(NN(q)).

Despite its simplicity, the NN rule exhibits good classification accuracy. Theoretical
results [10, 4, 5] show that its probability of error is bounded by twice the Bayes probability
of error (the minimum of any decision rule). Nonetheless, the NN rule is often criticized on
the basis of its memory requirements, as P must be stored to answer queries. Furthermore,
the complexity of answering these queries clearly depends on the size and dimensionality of
P. Clearly, these drawbacks open an important research question: can P be reduced without
affecting the classification accuracy of the NN rule? This problem is called NN Condensation1.

1 The problem of NN Condensation is sometimes called Prototype Selection or Instance Selection
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1.1 Related work
A natural approach for condensing P would be to consider its Delaunay triangulation. In this
context, any point with at least one Delaunay neighbor of different class, is called a border
point, otherwise is called an internal point. Clearly, the border points of P are the ones that
completely characterize the boundaries between sets of points of different classes, which are
often referred as the decision boundaries of P. Therefore, one approach for NN condensation
is to select the set of all border points of P, such that its decision boundaries are preserved;
this is called Voronoi condensation [13]. Unfortunately, a straightforward algorithm would
be impractical in high-dimensional spaces. For the planar case, an output-sensitive algorithm
was proposed [3] running in O(n log k) time, where k is the number of border points of P.
Yet, it remains an open problem whether a similar result is possible in higher dimensions.

By relaxing the restriction of preserving the decision boundaries of P, other properties
can be exploited to condense P. We describe two such properties, called consistency and
selectivity, which have been widely used in the literature for NN condensation. First, let’s
introduce a useful concept: an enemy of a point p ∈ P is said to be any point in P of different
class as p. Then, denote the nearest enemy (or simply NE) of p as NE(p), and the NE distance
as dNE(p) = d(p,NE(p)). Finally, denote the NE ball of p as the ball B(p,dNE(p)).

I Definition 1 (Consistency and Selectivity). Let R ⊆ P we say that:
R is a consistent subset of P iff ∀ p ∈ P its NN in R is closer to p than its NE in R.
R is a selective subset of P iff ∀ p ∈ P its NN in R is closer to p than its NE in P.

Clearly, selectivity implies consistency, as the NE distance in R of any point is at least
its NE distance in P. Moreover, note that the set of all border points, which preserves the
decision boundaries of P, is both selective and consistent. Intuitively, a consistent subset R
implies that every point ‘removed’ from P (i.e., every point in the set P \ R) can be correctly
classified by NN queries over R. Therefore, while Voronoi condensation guarantees the same
classification of any query point, before and after condensation, a consistent subset can only
guarantee the correct classification of the points removed. In fact, NN condensation is defined
as the problem of finding consistent subsets; i.e., it’s defined using the weaker property out
of the three described.

Unfortunately, it has been shown that the problems of finding minimum-size consistent and
selective subsets are both NP-complete [14, 15]. While these results are more recent, almost
all research on the problem concentrated in proposing heuristics for finding subsets with
these properties (for a comprehensive survey see [11, 12, 8]). Among them, CNN (Condensed
Nearest Neighbor) [7] was the first algorithm proposed for computing consistent subsets. Even
though it has been widely used in the literature, CNN suffers from several drawbacks: it’s
running time is cubic in the worst-case, and the resulting subset is order-dependent2. Recent
efforts resulted in FCNN (Fast CNN) [1] and MSS (Modified Selective Subset) [2], which
produce consistent and selective subsets respectively. Both algorithms run in O(n2) worst-
case time, and are order-independent. For these features, both algorithms are considered
the state-of-the-art for the NN condensation problem. Unfortunately, to the best of our
knowledge, no bounds are known for the size of the subsets generated by any of these
heuristics. More recently, an approximation algorithm called NET [6] was proposed, along
with “almost matching” hardness lower bounds. While this proves nearly optimal behavior in

2 Order-dependence means the resulting subset is determined by the order in which points are considered
by the algorithm.
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(a) Dataset P (104 points) (b) CNN (281 points) (c) FCNN (222 points)

(d) MSS (233 points) (e) RSS (627 points)

Figure 1 An illustrative example of the subsets selected by CNN, FCNN, MSS, and RSS, from an
initial dataset P of 104 points. While most algorithms focus on selecting border points, or points
near the decision boundaries of P, RSS also selects internal points with a selection density relative
to the distance to the decision boundaries of P.

the worst-case, the condensation using NET is too strict to be of any practical use. Basically,
NET produces an γ-net of P, with γ equal to the minimum NE distance in P. While this
subset is consistent, it allows very little room for condensing P (i.e., in general, not many
points of P can be covered with γ-balls, and therefore removed).

Algorithm 1: Modified Selective Subset
Input: Initial point set P
Output: Condensed point set MSS ⊆ P

1 Let {pi}ni=1 be the points of P sorted in increasing order of NE distance dNE(pi)
2 MSS← ∅
3 foreach pi ∈ P, where i = 1 . . . n do
4 if ¬∃ r ∈ MSS s.t. d(pi, r) < dNE(pi) then
5 MSS← MSS ∪ {pi}

6 return MSS

1.2 Drawbacks of NN Condensation
In general, NN condensation algorithms focus on selecting border points or points close to the
borders (see Figure 1). These points are the ones that characterize the decision boundaries
of P, and therefore, are key in maintaining the classification accuracy of the NN rule after
condensation. However, this is only true for exact NN queries; we argue that removing
internal points reduces actually the accuracy of the NN rule when performing approximate
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NN queries. If only border points are kept after condensation, a query point that is far from
the decision boundaries of P is likely to be misclassified. That is, the (1 + ε)-ball centered at
the query point could contain enemy points, and a (1 + ε)-ANN query can return such enemy
point as a valid answer. This notion is formalized in [9] as the chromatic density of a query
point, and it’s defined as δ(q) = dNE(q)−dNN(q)

dNN(q) . It’s easy to see how, if δ(q) > ε, q will always
be correctly classified by (1 + ε)-ANN queries. Therefore, by removing internal points, these
heuristics can significantly reduce the chromatic density of any given query point, and thus,
decrease the classification accuracy after condensation, when using ANN queries.

1.3 Contributions
In this paper, we present theoretical guarantees on new and existing heuristic algorithms for
the problem of NN condensation. The following is a summary of our results.

We propose RSS (Relaxed Selective Subset), a new heuristic algorithm for NN condensation,
designed to select both border and internal points of P. This algorithm is comparable
with other state-of-the-art algorithms (e.g., MSS and FCNN) for the problem.
Additionally, we provide an upper-bound on the size of RSS. We show RSS selects at
most O(k log ∆) points, where k is the number of border points of P, and ∆ its spread.
Similarly, we provide an upper-bound for the size of MSS, showing it selects at most O(k)
points, where again, k is the number of border points of P.
Assuming query points are drawn uniformly at random from the minimum enclosing ball
of P, we show the probability of equally classifying such query points using both exact
and approximate NN queries on RSS, grows exponentially w.r.t. the size of RSS.

2 Relaxed Selective Subset

Let’s first consider one of the state-of-the-art heuristic algorithms for the problem, known
as MSS or Modified Selective Subset (see Algorithm 1). This algorithm is quite simple; the
points of P are examined in increasing order w.r.t. their NE distance, and any point that
doesn’t meet the selective condition is added to the resulting subset. That is, a point p ∈ P
is added to MSS iff no point in (the current) MSS is closer to p than its NE in P.

Algorithm 2: Relaxed Selective Subset
Input: Initial point set P
Output: Condensed point set RSS ⊆ P

1 Let {pi}ni=1 be the points of P sorted in increasing order of NE distance dNE(pi)
2 RSS← ∅
3 foreach pi ∈ P, where i = 1 . . . n do
4 if ¬∃ r ∈ RSS s.t. d(pi, r) < dNE(r) then
5 RSS← RSS ∪ {pi}

6 return RSS

We propose RSS, or Relaxed Modified Subset (see Algorithm 2), as a simple modification
on the MSS algorithm. This modification consists on a relaxation of the selective condition;
instead of using the NE distance of pi, we use the one of r. Thus, the idea behind RSS is
that every point pi selected by the algorithm “prunes away” any other point with higher NE
distance which is contained in the NE ball of pi (see Figure 2). Intuitively, this implies that
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Figure 2 Illustration of the selection process of RSS. The point highlighted is the one being
examined by the algorithm. As it isn’t contained in the NE balls of any of the previously selected
points (represented here as dashed circles), the point is added to RSS. Similarly, this means that
any other point 1. with higher NE distance, and 2. that is contained in the NE ball of this point,
won’t be added to RSS.

points close to the decision boundaries of P, and thus, with high NE distance, can prune
fewer points than those far from these boundaries. Therefore, the selection of RSS gets
sparser according to the distance to the decision boundaries of P.

Just as MSS, the RSS algorithm meets some basic but important properties, which
makes it comparable with other state-of-the-art algorithms for NN condensation. These are
described in the following theorem.

I Theorem 2. RSS is a selective (therefore consistent) subset of P, can be computed in
worst-case O(n2) time, and it’s order-independent.

Proof. Let’s first show why RSS is selective. Consider any point p ∈ P; if p ∈ RSS, it clearly
holds the selective property. Otherwise, if p 6∈ RSS, by construction of RSS there exists a
point r ∈ RSS s.t. d(p, r) < dNE(r). As point r was selected before checking p, we know
dNE(r) ≤ dNE(p). Finally, this means there exist a point r ∈ RSS s.t. d(p, r) < dNE(p),
implying that the selective property holds.

Now, we analyze the worst-case time complexity of the algorithm. First, the sorting step
requires O(n2) time for computing the NE distances of each point, plus O(n logn) time for
sorting the points. Additionally, the main loop requires to search the NN in RSS for each
point in P. Therefore, this requires an additional O(n2) time in the worst case. Finally, the
worst-case time complexity of the algorithm is O(n2). The order-independence follows from
always considering the points of P in the same order: increasing w.r.t. their NE distance. J

3 Upper-bounds on subset size

Needless to say, knowing the amount of reduction achieved by any NN condensation algorithm
is crucial. So far, only experimental results have provided insights into this metric, but
no theoretical guarantees were known for the state-of-the-art heuristic algorithms. In this
section, we analyze this metric, and provide useful upper-bounds for the size of the subsets
selected by both MSS and RSS.

As mean of comparison, we use the set of all border points of P, i.e., the subset selected
by Voronoi condensation. As mentioned before, these border points completely define the
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decision boundaries of P, and the number of such points, namely k, is a natural measure
for the complexity of these boundaries. Now, we begin our analysis by creating a natural
connection between any point in P and a border point.

I Lemma 3. The nearest enemy of p ∈ P is a border point of P.

Proof. Consider a ball B of maximum radius, holding the following properties: 1. point
NE(p) is on its surface, 2. its center is in the line segment between p and NE(p), and 3. has
no point of P in its interior (it’s empty). Being maximal, B has another point p′ ∈ P on its
boundary (see Figure 3). Ball B can be obtained by a pivot operation as described in [3].

Figure 3 Construction for the proof of Lemma 3.

By construction, B is completely contained inside the NE ball of p. This implies that p
and p′ belong to the same class, making p′ and NE(p) enemies. Additionally, by the empty
ball property on B, we know that p′ and NE(p) are neighbors in the Delaunay triangulation
of P. Therefore, NE(p) is a border point of P. J

This lemma enables the analysis of the sizes of both MSS and RSS. Now, consider the
following upper-bound for the size of MSS.

I Theorem 4 (Size of MSS). Let k be the number of border points of P. Then, |MSS| = O(k).

Proof. Appealing to Lemma 3, the proof follows by a charging argument on each border
point. We show that MSS selects a constant number of points for each border point of P.

Consider any border point p ∈ P, and let MSSp be the set of points selected by MSS s.t.
p is their NE. Let x, y ∈ MSSp be two such points. w.l.o.g. say that dNE(x) ≤ dNE(y), and by
construction of MSS, d(x, y) ≥ dNE(y). Thus, consider the triangle4pxy. Clearly, the side xy
is the larger of such triangle, and thus, the angle ∠xpy ≥ π/3. By a standard packing argument
we can upper-bound |MSSp| = O((3/π)d−1). Therefore, |MSS| =

∑
p |MSSp| = O((3/π)d−1k).

Finally, when d is a constant, |MSS| = O(k). J

We can now consider a similar analysis for RSS. In order to prove an upper-bound for
the size of RSS, we first need to make the following simple observation.

I Observation 5. Take any two points p, p′ ∈ RSS, both with NE distance ≥ α. Then, the
balls B(p, α/2) and B(p′, α/2) are disjoint.

Proof. w.l.o.g. say that dNE(p) ≤ dNE(p′). By construction of RSS, p′ was selected (i.e.,
added to RSS) after p, thus we know d(p, p′) > dNE(p) must hold. Therefore, d(p, p′) > α,
and the balls B(p, α/2) and B(p′, α/2) are disjoint. J

I Theorem 6 (Size of RSS). Let k be the number of border points of P, and ∆ the spread of
P. Then, |RSS| ≤ O(k log ∆).
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Proof. From Lemma 3, we proceed by a charging argument on each border point. The proof
follows by showing that RSS selects at most O(log ∆) points for each border point of P.

(a) Partitioning of RSS into subsets RSSp,δ.
(b) The balls of radii δ/2 on any point in RSSp,δ
are disjoint, and contained in the ball B(p, 5δ/2)

Figure 4 Proof ideas for bounding the size of RSS.

Consider any border point p ∈ P, and let RSSp,δ be the points selected by RSS s.t. their
NE is p and their NE distance is in the range [δ, 2δ), for a given δ ∈ [1,∆]. From Observation 5,
we know the set of balls of radii δ/2 with centers in RSSp,δ must be disjoint. Moreover, the
ball of radius 5δ/2 centered at p contains all such balls (see Figure 4b). Now, it follows from
a standard packing argument with the volumes of these balls that |RSSp,δ| ≤ 5d.

By considering values of δ = 2i for i ∈ {0, 1, . . . , dlog ∆e}, we cover all points of P that
can be charged to the border point p (see Figure 4a). Altogether, we get:

|RSS| =
∑
p

dlog ∆e∑
i=0

|RSSp,2i | = O(5dk log ∆)

Finally, when d is a constant, |RSS| = O(k log ∆). J

4 The importance of internal points

While RSS can select more points than MSS, we argue that these extra points are beneficial
during classification. The goal of RSS is to select internal points as well, in order to increase the
probability of correctly classifying query points using ANN queries. By correct classification,
we mean obtaining the same classification when using both exact and approximate NN
queries; i.e., using the classification on exact NN queries as the baseline for comparison. This
intuition is formalized as follows:

I Theorem 7. Let point q ∈ Rd be drawn uniformly at random from the minimum enclosing
ball of P, where P has k border points and spread ∆. Then, the probability of equally
classifying q with RSS, using both exact and (1 + ε)-approximate NN queries, for ε ≤ 2, is
lower-bounded by:

Pr
[
l(NNRSS(q)) = l(ANNRSS(q, ε))

]
≥
k
(
2d
⌊
|RSS|
5dk

⌋
− 1
)

∆d
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Proof. This proof follows by bounding the amount of points (i.e., the d-dimensional volume)
which are equally classified using exact and ε-approximate NN queries on RSS.

Consider a point p ∈ RSS. We argue the following are sufficient conditions for q to be
equally classified using both exact and approximate NN queries on RSS: p is the NN of q in RSS,
and d(p, q) ≤ dNE(p)

2+ε . This inequality implies that (1+ε)·d(p, q) ≤ dNE(p)−d(p, q). By a simple
application of the triangle inequality, we know that d(p,NE(q)) − d(p, q) ≤ d(q,NE(q)) =
dNE(q). Additionally, we can say that dNE(p) ≤ d(p,NE(q)), as we know NE(q) is also an
enemy of p. Combining these inequalities together, we have that (1 + ε) · d(p, q) ≤ dNE(q),
meaning that q is correctly classified by (1 + ε)-ANN queries on RSS.

Remember that p is the NN of q in RSS iff q ∈ Vor(p,RSS), i.e., the Voronoi cell of p in
RSS. To lower-bound the volume of Vor(p,RSS), observe that for any other point p′ ∈ RSS,
d(p, p′) ≥ dNE(p)/2. Therefore, B(p,dNE(p)/4) ⊆ Vor(q,RSS).

These results imply that, for any point p ∈ RSS, the following points have p as their NN
in RSS, and are correctly classified when using (1 + ε)-ANN queries on RSS:

Vor(p,RSS) ∩ B
(
p,

dNE(p)
2 + ε

)
⊇ B

(
p,min

(dNE(p)
4 ,

dNE(p)
2 + ε

))
= B

(
p,
dNE(p)

4

)
(1)

Now, we bound the NE distance of the points in RSS. Let pi be the i-th point in RSS
sorted by their NE distance w.r.t. P. Using the bounds obtained for the proof of Theorem 6,
we have that dNE(pi) ≥ 2b

i−1
5dk
c. By plugging this into equation 1, we can bound the amount

of points, in terms of d-dimensional volume, that are equally classified by exact NN and
(1 + ε)-ANN queries, as follows:

Vol(RSS) ≥
|RSS|∑
i=1

Vd

(
dNE(pi)

)
≥
|RSS|∑
i=1

Vd

(
2b

i−1
5dk
c/4
)

≥ 5dk

⌊
|RSS|
5dk

⌋
−1∑

j=0
Vd

(
2j/4

)
= πd/2 5dk

Γ(d2 + 1) 4d

⌊
|RSS|
5dk

⌋
−1∑

j=0
2jd

=
πd/2 5dk

(
2d
⌊
|RSS|
5dk

⌋
− 1
)

Γ(d2 + 1) 4d(2d − 1)
≥
πd/2 k

(
2d
⌊
|RSS|
5dk

⌋
− 1
)

Γ(d2 + 1) 2d

Finally, the ratio between Vol(RSS) (i.e., the volume of correctly classified points), and
the volume of the entire space out of which the query points are drawn (i.e., the volume of a
d-dimensional ball of radius ∆/2), gives a lower-bound for the probability in hand.

Pr
[
l(NNRSS(q)) = l(ANNRSS(q, ε))

]
≥ Vol(RSS)

Vd(∆/2)

≥
πd/2

Γ( d
2 +1) 2d k

(
2d
⌊
|RSS|
5dk

⌋
− 1
)

πd/2

Γ( d
2 +1) 2d ∆d

=
k
(
2d
⌊
|RSS|
5dk

⌋
− 1
)

∆d

J
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