
A New Framework for Efficient

Password-Based Authenticated Key Exchange

Adam Groce∗ Jonathan Katz∗

Abstract

Protocols for password-based authenticated key exchange (PAKE) allow two users who share
only a short, low-entropy password to agree on a cryptographically strong session key. The
challenge in designing such protocols is that they must be immune to off-line dictionary attacks
in which an eavesdropping adversary exhaustively enumerates the dictionary of likely passwords
in an attempt to match a password to the set of observed transcripts.

To date, few general frameworks for constructing PAKE protocols in the standard model
are known. Here, we abstract and generalize a protocol by Jiang and Gong to give a new
methodology for realizing PAKE without random oracles, in the common reference string model.
In addition to giving a new approach to the problem, the resulting construction offers several
advantages over prior work. We also describe an extension of our protocol that is secure within
the universal composability (UC) framework and, when instantiated using El Gamal encryption,
is more efficient than a previous protocol of Canetti et al.

1 Introduction

Protocols for password-based authenticated key exchange (PAKE) enable two parties who share
a short, low-entropy password to agree on a cryptographically strong session key. The difficulty
in this setting is to design protocols preventing off-line dictionary attacks whereby an eavesdrop-
ping adversary exhaustively enumerates passwords, attempting to match the correct password to
observed protocol executions. Roughly, a PAKE protocol is “secure” if off-line attacks are of no
use and the best attack is an on-line dictionary attack whereby the adversary actively imperson-
ate the honest user with each possible password. This is the best that can be hoped for in the
password-only setting; more importantly, on-line attacks can be detected and defended against.

PAKE protocols are fascinating from a theoretical perspective, as they can be viewed as a means
of “bootstrapping” a common cryptographic key from the (essentially) minimal setup assumption of
a short, shared secret. PAKE protocols are also important in practice, since passwords are perhaps
the most common and widely-used means of authentication.

There is, by now, a substantial body of research focused on the design of PAKE protocols. Early
work [16] (see also [17]) considered a “hybrid” model where users share public keys in addition to
a password; we are concerned here with the more challenging “password-only” setting. Bellovin
and Merritt [7] initiated research in this direction, and presented a PAKE protocol with heuristic
arguments for its security. It was not until several years later that formal models for PAKE were

∗Dept. of Computer Science, University of Maryland. Email: {agroce, jkatz}@cs.umd.edu. Research supported
by NSF grant #0627306.

1

developed [4, 8, 15], and provably secure PAKE protocols were shown in the random oracle/ideal
cipher models [4, 8, 23].

To date, there are only a few general approaches for constructing PAKE protocols in the stan-
dard model (i.e., without random oracles). Goldreich and Lindell [15] constructed the first such
protocol in the “plain model” where there is no additional setup. Unfortunately, their protocol is
inefficient, and furthermore does not tolerate concurrent executions by the same party. Nguyen
and Vadhan [24] show some simplifications and efficiency improvements to the Goldreich-Lindell
protocol, but at the expense of achieving a qualitatively weaker notion of security. The results
of Barak et al. [3] also imply a protocol for password-based key exchange, albeit in the common
reference string model. Unfortunately, these protocols are all inefficient in terms of communication,
computation, and round complexity, and yield nothing close to a practical instantiation.

Katz, Ostrovsky, and Yung (KOY) [20] demonstrated the first efficient PAKE protocol with
a proof of security in the standard model. Their protocol was later abstracted by Gennaro and
Lindell (GL) [14], who gave a general framework that encompasses the original KOY protocol as
a special case. These protocols are secure even under concurrent executions by the same party,
but require a common reference string (CRS). While this may be less appealing than the “plain
model,” reliance on a CRS does not appear to be a serious drawback in practice for the deployment
of PAKE, where common parameters can be hard-coded into an implementation of the protocol.

Surprisingly, the KOY/GL framework remains the only general framework for constructing
efficient PAKE protocols in the standard model, and almost all subsequent work on efficient PAKE
in the standard model [14, 10, 19, 13, 2, 21] can be viewed as extending and building on the
KOY/GL framework. The one exception is a paper by Jiang and Gong [18] that shows an efficient
PAKE protocol in the standard model (assuming a common reference string) based on the decisional
Diffie-Hellman assumption. Our work is to theirs as the work of Gennaro-Lindell [14] is to that
of Katz-Ostrovsky-Yung [20]; namely, we present a (new) framework for PAKE that is obtained
by suitably abstracting and generalizing the Jiang-Gong protocol. In so doing, we gain the same
benefits as in the previous case: i.e., we get a simple-to-describe, generic protocol with a clean and
intuitive proof of security, and derive (as corollaries to our work) new variants of the Jiang-Gong
protocol based on different cryptographic assumptions.

Compared to PAKE protocols built using the KOY/GL framework we obtain several advantages:
Weaker assumptions. From a foundational point of view, our new framework relies on potentially
weaker assumptions than the KOY/GL framework. Specifically, we require (1) a CCA-secure
encryption scheme, and (2) a CPA-secure encryption scheme with an associated smooth projective
hash function [12]. In contrast, the KOY/GL framework requires1 a CCA-secure encryption scheme
with an associated smooth projective hash function, something not known to follow from the
previous assumptions.2

In particular, our results imply a more efficient — not to mention simpler — construction
of PAKE from lattice-based assumptions as compared to the recent work of Katz and Vaikun-
tanathan [21]. (Most of the complexity in [21] arises from the construction of a lattice-based
CCA-secure encryption scheme with an associated smooth projective hash function.)
Better efficiency. The above directly translates into better efficiency for protocols constructed

1Technically speaking, it requires a non-malleable, non-interactive commitment scheme with an associated smooth
projective hash function, but all known constructions of this primitive are in fact CCA-secure encryption schemes.

2Cramer and Shoup [12] show that a CPA-secure encryption scheme Π with a smooth projective hash function
implies a CCA-secure scheme Π′, but there is no guarantee that Π′ will itself admit a smooth projective hash function.

2

using the new framework, since the CCA-secure encryption scheme we use need not admit a smooth
projective hash function. (E.g., restricting our attention to the decisional Diffie-Hellman assump-
tion, our framework can use the Kurosawa-Desmedt [22] scheme instead of Cramer-Shoup encryp-
tion [12]. Significant efficiency improvements would also be obtained when basing the protocol on
lattice assumptions, as discussed above.) The new framework also avoids using digital signatures
(though Gennaro [13] shows how this can be avoided when using the KOY/GL framework as well).
Mutual authentication. The framework yields PAKE protocols achieving (explicit) mutual au-
thentication in three rounds. In contrast, the KOY protocol and its extensions require four rounds
in order to achieve mutual authentication. (This advantage was already noted in [18].)

We also show how our framework can be extended to yield a protocol that securely realizes
the PAKE functionality within the universal composability (UC) framework [9], with all the above
advantages carrying over to this setting. To the best of our knowledge, the only prior efficient
PAKE protocols in the UC framework are those of Canetti et al. [10] and Abdalla et al. [1] (in
the random oracle model); instantiating our framework using El Gamal encryption gives a protocol
more efficient than either of these. Of independent interest, we define for the first time a PAKE
functionality with (explicit) mutual authentication and show that our protocol realizes this stronger
functionality. See further discussion in Section 4.1.

1.1 Outline of the Paper

We review definitions for PAKE and smooth projective hashing in Sections 2.1 and 2.2, respectively;
these are fairly standard and can be skipped by readers already familiar with these notions. In
Section 3 we describe the new framework for PAKE and prove it secure with respect to the standard
definition. We discuss the extension of our protocol to the UC framework in Section 4, beginning
with a discussion of the PAKE functionality with explicit mutual authentication in Section 4.1. We
believe the latter to be of independent interest.

2 Definitions

2.1 Password-Based Authenticated Key Exchange

We present the definition of Bellare, Pointcheval, and Rogaway [4], based on prior work of [5, 6].
The treatment here is lifted almost verbatim from [20], except that here we also define mutual
authentication but otherwise keep the discussion brief. We denote the security parameter by n.

Participants, passwords, and initialization. Prior to any execution of the protocol there is an
initialization phase during which public parameters are established. We assume a fixed set User of
protocol participants (also called principals or users). For every distinct U,U ′ ∈ User, we assume
U and U ′ share a password πU,U ′ . We make the simplifying assumption that each πU,U ′ is chosen
independently and uniformly at random from the set {1, . . . , Dn} for some integer Dn that may
depend on n. (Our proof of security extends to more general cases.)

Execution of the protocol. In the real world, a protocol determines how principals behave in
response to input from their environment. In the formal model, these inputs are provided by the
adversary. Each principal can execute the protocol multiple times (possibly concurrently) with dif-
ferent partners; this is modeled by allowing each principal to have an unlimited number of instances

3

with which to execute the protocol. We denote instance i of user U as Πi
U . Each instance may

be used only once. The adversary is given oracle access to these different instances; furthermore,
each instance maintains (local) state which is updated during the course of the experiment. In
particular, each instance Πi

U maintains local state that includes the following variables:

• sidi
U , pidi

U , and ski
U denote the session id, partner id, and session key, respectively. The

session id is simply a way to keep track of different executions; we let sidi
U be the (ordered)

concatenation of all messages sent and received by Πi
U . The partner id denotes the user with

whom Πi
U believes it is interacting; we require pidi

U 6= U .

• acci
U and termi

U are flags denoting acceptance and termination, respectively.

The adversary’s interaction with various instances is modeled via access to the following oracles:

• Send(U, i, M) — This sends message M to instance Πi
U . This instance runs according to the

protocol specification, updating state as appropriate. The output of Πi
U (i.e., the message

sent by the instance) is given to the adversary.

• Execute(U, i, U ′, j) — If Πi
U and Πj

U ′ have not yet been used, this oracle executes the protocol
between these instances and gives the resulting transcript to the adversary. This models
passive eavesdropping of a protocol execution.

• Reveal(U, i) — This outputs the session key ski
U , modeling leakage of session keys due to, e.g.,

improper erasure of session keys after use, compromise of a host computer, or cryptanalysis.

• Test(U, i) — This oracle does not model any real-world capability of the adversary, but is
instead used to define security. A random bit b is chosen; if b = 1 the adversary is given ski

U ,
and if b = 0 the adversary is given a session key chosen uniformly from the appropriate space.

Partnering. Let U,U ′ ∈ User. Instances Πi
U and Πj

U ′ are partnered if: (1) sidi
U = sidj

U ′ 6= null;
and (2) pidi

U = U ′ and pidj
U ′ = U .

Correctness. To be viable, a key-exchange protocol must satisfy the following notion of correct-
ness: if Πi

U and Πj
U ′ are partnered then acci

U = accj
U ′ = true and ski

U = skj
U ′ , i.e., they both accept

and conclude with the same session key.

Advantage of the adversary. Informally, the adversary can succeed in two ways: (1) if it guesses
the bit b used by the Test oracle (this implies secrecy of session keys), or (2) if it causes an instance to
accept without there being a corresponding partner (this implies mutual authentication). Defining
this formally requires dealing with several technicalities.

We first define freshness. Instance Πi
U is fresh unless one of the following is true at the conclusion

of the experiment: (1) the adversary queried Reveal(U, i); or (2) the adversary queried Reveal(U ′, j),
where Πj

U ′ and Πi
U are partnered.

We also define a notion of semi-partnering. Instances Πi
U and Πj

U ′ are semi-partners if they
are partners, or if the following holds: (1) the (non-null) session ids sidi

U and sidj
U ′ agree except

possibly for the final message, and pidi
U = U ′ and pidj

U ′ = U . This relaxed definition is needed to
rule out the trivial attack where an adversary forwards all protocol messages except the final one.

An adversary A succeeds if either:

1. A makes a single query Test(U, i) to a fresh instance Πi
U , and outputs a bit b′ with b′ = b

(recall that b is the bit chosen by the Test oracle).

4

2. At the end of the experiment, there is an instance Πi
U that accepts but is not semi-partnered

with any other instance. (I.e., this is a violation of mutual authentication.)

We denote the event that the adversary succeeds by Succ. The advantage of A in attacking
protocol Π is AdvA,Π(k) def= 2 · Pr[Succ] − 1, where the probability is taken over the random coins
used by the adversary and during the course of the experiment (including the initialization phase).

It remains to define a secure protocol. A probabilistic polynomial-time (ppt) adversary can
always succeed with probability 1 by trying all passwords one-by-one; this is possible since the
size of the password dictionary is small. Informally, a protocol is secure if this is the best an
adversary can do. Formally, an instance Πi

U represents an on-line attack if, at some point, the
adversary queried Send(U, i, ∗). The number of on-line attacks represents a bound on the number
of passwords the adversary could have tested in an on-line fashion.

Definition 1 Protocol Π is a secure PAKE protocol with explicit mutual authentication if, for all
dictionary sizes {Dn} and for all ppt adversaries A making at most Q(n) on-line attacks, there
exists a negligible function negl(·) such that AdvA,Π(n) ≤ Q(n)/Dn + negl(n). ♦

2.2 Smooth Projective Hashing

Smooth projective hash functions were introduced by Cramer and Shoup [11]; we follow (and adapt)
the treatment of Gennaro and Lindell [14]. Rather than aiming for utmost generality, we tailor the
definitions to our eventual application.

Fix a CPA-secure public-key encryption scheme (Gen,Enc, Dec) and an efficiently recognizable
message space D (that will correspond to the dictionary of passwords in our application to PAKE).
We assume the encryption scheme defines a notion of ciphertext validity such that (1) validity of a
ciphertext (with respect to pk) can be determined efficiently using pk, and (2) honestly generated
ciphertexts are valid.

For the rest of the discussion, fix a key pair (pk, sk) as output by Gen(1n) and let C denote the
set of valid ciphertexts with respect to pk. Define sets X, {Lm}m∈D, and L as follows. First, set

X = {(C,m) | C ∈ C; m ∈ D} .

For m ∈ D let Lm = {(C,m) | Decsk(C) = m} ⊂ X; i.e., Lm is the set of ciphertext/message pairs.
Define L =

⋃
m∈D Lm. Note that for any C there is at most one m ∈ D for which (C,m) ∈ L.

Smooth projective hash (SPH) functions. A smooth projective hash (SPH) function is a col-
lection of keyed functions {Hk : X → {0, 1}n}k∈K , along with a projection function α : K × C → S,
satisfying notions of correctness and smoothness:

Correctness: If x = (C, m) ∈ L then the value of Hk(x) is determined by α(k, C) and x (in a
sense we will make precise below).

Smoothness: If x ∈ X \ L then the value of Hk(x) is statistically close to uniform given α(k,C)
and x (assuming k is chosen uniformly in K).

Formally, an SPH function is defined by a sampling algorithm that, given pk, outputs (K,H =
{Hk : X → {0, 1}n}k∈K , S, α : K × C → S) such that:

1. There are efficient algorithms for (1) sampling a uniform k ∈ K, (2) computing Hk(x) for k ∈
K and x ∈ X, and (3) computing α(k,C) for all k ∈ K and C ∈ C.

5

CRS: pk, pk′

Πi
U Πj

U ′

r ← {0, 1}∗

C ′ := Enc′pk′(π; r) U ‖C ′
-

k ← K
s := α(k, C ′)
rj‖τj‖skj := Hk(C ′, π)
label := U‖C ′‖U ′‖s

ri‖τi‖ski := H ′(s, C ′, π, r) ¾
U ′ ‖s ‖C

C := Enclabel
pk (π; rj)

label := U‖C ′‖U ′‖s
Ĉ := Enclabel

pk (π; ri)
if C 6= Ĉ, abort

τi - if τi 6= τj , abort
output ski output skj

Figure 1: An honest execution of the protocol. The shared password πU,U ′ is denoted by π.

2. For x = (C,m) ∈ L, the value of Hk(x) is determined by α(k, C). Specifically, there is an
efficient algorithm H ′ that takes as input s = α(k,C) and x̄ = (C,m, r) (where r is such that
C = Encpk(m; r)) and satisfies H ′(s, x̄) = Hk(x).

3. For any x = (C,m) ∈ X \ L, the distributions
{
k ← K; s = α(k,C) :

(
s,Hk(x)

)}
and {k ← K; s = α(k, C); v ← {0, 1}n : (s, v)}

have statistical difference negligible in n.

3 A New Framework for PAKE

We now describe our new framework for PAKE, obtained as a generalization and abstraction of
the specific protocol by Jiang and Gong [18]. In our construction, we use the following primitives:

• A CPA-secure public-key encryption scheme Σ′ = (Gen′, Enc′, Dec′) with an associated smooth
projective hash function.

• A labeled [25] CCA-secure public-key encryption scheme Σ = (Gen, Enc, Dec).

Initialization. Our protocol relies on a common reference string (CRS) consisting of public
keys pk, pk′ for Σ and Σ′, respectively, and parameters (K, H = {Hk : X → {0, 1}n}k∈K , S,
α : K × C → S) for an SPH function associated with pk′. As in all other work in the CRS model,
no participants need to know the secret keys associated with the public keys in the CRS. Depending
on the exact public-key encryption schemes used it is possible that pk, pk′ can be generated from
a common random string.

6

Protocol execution. A high-level depiction of the protocol is given in Figure 1. When a client
instance Πi

U wants to authenticate to the server instance Πj
U ′ , the client first chooses a random

tape r and then computes an encryption C ′ := Enc′pk′(π; r) of the shared password π. The client
then sends U‖C ′ to the server.

Upon receiving the message U‖C ′, the server proceeds as follows. It chooses a random hash
key k ← K and computes the projection key s := α(k,C ′). It then computes the hash Hk(C ′, π)
using the ciphertext C ′ it received in the first message and the password π that it shares with U .
The result is parsed as a sequence of three bit-strings rj , τj , skj , where τj and skj have length at
least n, and rj is sufficiently long to be used as the random tape for an encryption using Enc. The
server then sets label := U‖C ′‖U ′‖s and generates an encryption C := Enclabel

pk (π; rj) of the shared
password π, using the label label and the randomness rj that it previously computed. Finally, Pj

sends the message U ′‖s‖C back to the client.
Upon receiving U ′‖s‖C, the client computes the hash using the projected key s and the ran-

domness it used to generate the ciphertext C ′ in the first round; that is, Pi computes ri‖τi‖ski :=
H ′(s, C ′, π, r). It sets label := U‖C ′‖U ′‖s and computes the ciphertext Ĉ := Enclabel

pk (π; ri). If
C = Ĉ the server has successfully authenticated to the client, and the client then accepts, sends τi

to the server, and outputs the session key ski. If C 6= Ĉ then the client aborts.
When the server receives the client’s final message τi, it checks that τi = τj and aborts if that

is not the case. Otherwise the client has successfully authenticated to the server, and the server
accepts and outputs the session key skj .

Correctness is easily verified. If both parties are honest and there is no adversarial interference,
then H ′(s, C ′, π, r) = Hk(C ′, π) and so it holds that ri = rj , τi = τj , and ski = skj . It follows that
both parties will accept and output the same session key.
A concrete instantiation. By letting Σ′ be the El Gamal encryption scheme (which is well-
known to admit an SPH function), and Σ be the Cramer-Shoup encryption scheme (though more
efficient alternatives are possible), we recover the Jiang-Gong protocol. Without any optimization,
this is about 25% faster than the KOY protocol, and roughly 33% more communication efficient.

3.1 Proof of Security

This section is devoted to a proof of the following theorem:

Theorem 1 If Σ′ is CPA-secure public-key encryption scheme with associated smooth projective
hash function, and Σ is a CCA-secure public-key encryption scheme, then the protocol in Figure 1
is a secure PAKE protocol with explicit mutual authentication.

Proof Fix a ppt adversary A attacking the protocol. We use a hybrid argument to bound
the advantage of A. Let Γ0 represent the initial experiment, in which A interacts with the real
protocol as defined in the previous section. We define a sequence of experiments Γ1, . . ., and denote
the advantage of adversary A in experiment Γi as:

Advi(n) def= 2 · Pr[A succeeds in Γi]− 1. (1)

We bound the difference between the adversary’s advantage in successive experiments, and then
bound the adversary’s advantage in the final experiment; this gives the desired bound on Adv0(n),
the adversary’s advantage when attacking the real protocol.

7

Experiment Γ1. In Γ1 we modify the way Execute queries are handled. Namely, in response to a
query Execute(U, i, U ′, j) we now compute C ′ ← Enc′pk′(π0), where π0 represents some password not
in the dictionary. The remainder of the transcript is computed the same way, and the (common)
session key for instances Πi

U and Πj
U ′ is set to be equal to the session key skj computed by the

server (cf. Figure 1).

Lemma 1 |Adv0(n)− Adv1(n)| ≤ negl(n).

Proof This follows in a straightforward way from the CPA-security of encryption scheme Σ′.
Construct a ppt adversary B attacking Σ′ as follows: given public key pk′, the adversary B simulates
the entire experiment for A including choosing random passwords for each pair of parties. In
response to Execute(U, i, U ′, j) queries, B queries its own “challenge” oracle using as its pair of
messages the real password πU,U ′ and the fake password π0; when it receives in return a ciphertext
C ′ it includes this in the transcript that it returns to A. Note that B can compute correct sessions
keys ski

U = skj
U ′ since the actions of instance Πj

U ′ are simulated exactly as in the real protocol (and
so, in particular, B can compute skj

U ′ exactly as an honest player in the real protocol would). At
the end of the experiment, B outputs 1 iff A succeeds. The distinguishing advantage of B is exactly
|Adv0(n)− Adv1(n)|, and CPA-security of Σ′ yields the lemma.

Experiment Γ2. Here we modify the response to a query Execute(U, i, U ′, j) as follows. The first
message of the transcript is U‖C ′, where C ′ is an encryption of π0 as in Γ1. Then k ← K and
s := α(k, C ′) are generated as before. Now, however, we simply choose rj‖τj‖skj as a random string
of the appropriate length. The ciphertext C is computed as in the real protocol, and the message
U ′‖s‖C is added to the transcript. The final message of the protocol is τi = τj , and the session
keys ski

U , skj
U ′ are set equal to skj (which, recall, was chosen at random).

Lemma 2 |Adv2(n)− Adv1(n)| ≤ negl(n).

Proof This follows from the properties of the smooth projective hash function for Σ′, since when
answering Execute queries in Γ1 the hash function Hk(·) is always applied to (C ′, π) 6∈ L, and so
the output is statistically close to uniform even conditioned on s. Furthermore, in both Γ1 and Γ2

the values ri, τi, ski used by the client are equal to the values rj , τj , skj computed by the server.

Experiment Γ3. In experiment Γ3 we again change how Execute queries are handled. Namely,
we compute the ciphertext C sent in the second round as C ← Enclabel

pk (π0). (We also remove the
check performed by the client, and always have the client accept and output the same session key
as the server.)

Lemma 3 |Adv3(n)− Adv2(n)| ≤ negl(n).

Proof The lemma holds based on the CCA-security of Σ. (In fact, all we rely on here is security
of Σ against chosen-plaintext attacks.) The key observation is that in experiment Γ2, the ciphertext
C is encrypted using truly random coins rj . Thus, we can construct a ppt adversary B attacking
Σ as follows: given public key pk, adversary B simulates the entire experiment for A. In response
to Execute(U, i, U ′, j) queries, B queries its own “challenge” oracle using as its pair of messages the
real password πU,U ′ and the fake password π0; when it receives in return a ciphertext C it includes
this in the second message of the transcript that it returns to A. Session keys are chosen at random.

8

At the end of the experiment, B outputs 1 iff A succeeds. It is immediate that the distinguishing
advantage of B is |Adv3(n)− Adv2(n)|. CPA-security of Σ′ yields the lemma.

Note that Execute queries in Γ3 generate random session keys and transcripts that are indepen-
dent of the actual passwords of any of the parties.

Experiment Γ4. In this experiment we will begin to modify the Send oracle. For notational
convenience, we let Send0(U, i, U ′) denote a “prompt” message that causes the client instance Πi

U

to initiate the protocol with server U ′; let Send1(U ′, j, U‖C ′) denote sending the first message of
the protocol to server instance Πj

U ′ ; let Send2(U, i, U ′‖s‖C) denote sending the second message of
the protocol to client instance Πi

U ; and let Send3(U ′, j, τ) denote sending the final message of the
protocol to server instance Πj

U ′ .
In Γ4 we now record the secret keys sk, sk′ when the public keys in the CRS are generated.

Furthermore, in response to the query Send2(U, i, U ′‖s‖C) we proceed as follows:

• If pidi
U 6= U ′ then Πi

U aborts as it would in Γ3. From here on, we assume this is not the case.

• Let U‖C ′ denote the initial message sent by Πi
U (i.e., U‖C ′ is the message that was output

in response to the query Send0(U, i, U ′)). Then:

– If U ′‖s‖C was output by a previous query Send1(U ′, ?, U‖C ′) then we say that the
message U ′‖s‖C is previously-used and the experiment continues as in Γ3.

– If U ′‖s‖C is not previously-used, then we set label := U‖C ′‖U ′‖s and compute π :=
Declabel

sk (C). If π = πU,U ′ the adversary is declared successful and the experiment ends.
Otherwise, Πi

U rejects (and outputs no session key, nor sends the final message of the
protocol).

Lemma 4 Adv3(n) ≤ Adv4(n).

Proof The only situation in which Γ4 proceeds differently from Γ3 occurs when U ′‖s‖C is not
previously-used but decrypts to the correct password; in this case the adversary is immediately
declared successful, so its advantage can only increase.

Experiment Γ5. In experiment Γ5 we modify the way Send0 and Send2 queries are handled. In
response to a query Send0(U, i, U ′) we now compute C ′ ← Enc′pk′(π0), where (as before) π0 denotes
a dummy password that is not in the dictionary. When responding to a query Send2(U, i, U ′‖s‖C),
we proceed as follows:

• If pidi
U 6= U ′ we reject as always. From here on, we simply assume this does not occur.

• If U ′‖s‖C is previously-used (as defined in experiment Γ4), then it was output in response
to some previous query Send1(U ′, j, U‖C ′); let rj , τj , skj be the internal variables used by the
server instance Πj

U ′ . Then to respond to the current Send2 query we set τi := τj (and send τi

as the final message of the protocol), and set the session key for instance Πi
U to ski

U := skj .

• If U ′‖s‖C is not previously-used, we respond as in Γ4: namely, we set label := U‖C ′‖U ′‖s
and compute π := Declabel

sk (C). If π = πU,U ′ , the adversary is declared successful and the
experiment ends. Otherwise, Πi

U rejects (and outputs no session key, nor sends the final
protocol message).

9

Lemma 5 |Adv5(n)− Adv4(n)| ≤ negl(n).

Proof First consider an intermediate experiment Γ′4, where the Send2 oracle is modified as
described above, but Send0 still computes C ′ exactly as in Γ4. This is simply a syntactic rewriting
of Γ4, and so the adversary’s advantage remains unchanged.

We next show that the adversary’s advantage can change by only a negligible amount in moving
from Γ′4 to Γ5. This follows from the CPA-security of Σ′. Namely, we construct an adversary B
who, given public key pk, simulates the entire experiment for A. This includes generation of the
CRS, which B does by generating (pk, sk) ← Gen(1n) on its own and letting the CRS be (pk, pk′).
In response to Send0 queries, B queries its own “challenge” oracle using as its pair of messages
the real password πU,U ′ and the dummy password π0; when it receives in return a ciphertext C ′ it
outputs the message U‖C ′ to A. Note that B can still respond to Send2 queries since knowledge
of the randomness used to generate C ′ is no longer used (in either Γ′4 or Γ5). At the end of the
experiment, B determines whether A succeeds and outputs 1 iff this is the case. The distinguishing
advantage of B is exactly |Adv5(n)− Adv′4(n)|. CPA-security of Σ′ yields the lemma.

Experiment Γ6. In experiment Γ6 we introduce a simple modification to the way Send1 oracle
calls are handled. When the adversary queries Send1(U ′, j, U‖C ′), we now compute π := Dec′sk′(C

′)
(using the secret key sk′ that was stored at the time the CRS was generated) and check if π = πU,U ′ .
If so, we declare the adversary successful and end the experiment. Otherwise, the experiment
continues as before. All this does is introduce a new way for the adversary to succeed, and so
Adv5(n) ≤ Adv6(n).

It may at first appear odd that we allow the adversary to succeed in this way, since Σ′ may
be completely malleable. Recall, however, that in Γ5/Γ6 all ciphertexts C ′ output in response to
Send0 queries are encryptions of dummy passwords; thus, the condition introduced here will not
occur “trivially”.

Experiment Γ7. In experiment Γ7 we again modify the behavior of the Send1 oracle. In response
to a query Send1(U ′, j, U‖C ′) we check whether Dec′sk′(C

′) is equal to πU,U ′ as in experiment Γ6.
If so, the adversary is declared to succeed as before. If not, however, we now choose rj , τj , and skj

uniformly at random (rather than computing these values as the output of Hk(C ′, π)), and then
continue as before. In particular, if there is a subsequent Send3 query using the correct value of τj

then the server instance Πj
U ′ accepts and outputs the session key skj

U ′ := skj .

Lemma 6 |Adv7(n)− Adv6(n)| ≤ negl(n).

Proof This follows from the properties of the smooth projective hash function for Σ′. Consider a
query Send1(U ′, j, U‖C ′) where Dec′sk′(C

′) 6= πU,U ′ . In Γ6, we compute rj‖τj‖skj := Hk(C ′, πU,U ′),
whereas in Γ7 we choose rj , τj , and skj uniformly at random. Since (C ′, πU,U ′) 6∈ L, however, these
are statistically close since the adversary only sees the projected key s := α(k,C ′).

The key observation about experiment Γ7 is that every oracle-generated second-round message
contains a ciphertext C that is an encryption of the correct password using truly random coins.

Experiment Γ8. For the final experiment, we again modify the response to Send1 queries; specif-
ically, the ciphertext C is now computed as C ← Enclabel

pk (π0).

Lemma 7 |Adv8(n)− Adv7(n)| ≤ negl(n).

10

Proof The proof relies on the CCA-security of Σ. Construct a ppt adversary B attacking Σ
as follows: given public key pk, adversary B simulates the entire experiment for A. In response
to Send1 queries, B queries its own “challenge” oracle using as its pair of messages πU,U ′ and π0;
when it receives in return a ciphertext C, it includes this ciphertext in the message that it outputs
to A. To fully simulate the experiment, B also has to check whether A succeeds in the course of
making a Send1 or Send2 query. The former case is easy to handle, since B knows the secret key sk′

corresponding to the public key pk′ and can therefore decrypt the necessary ciphertexts on its own.
In the latter case B will have to use its decryption oracle to determine whether A succeeds or not.
It can be verified, however, that B never has to request decryption of a label/ciphertext pair that
it received from its own challenge oracle (this follows from the way we defined “previously-used”).
At the end of the experiment, B outputs 1 iff A succeeds. The distinguishing advantage of B is
exactly |Adv8(n)− Adv7(n)|. CCA-security of Σ yields the lemma.

Bounding the advantage in Γ8. Consider the different ways for the adversary to succeed in Γ8:

1. Send1(U ′, j, U |C ′) is queried, where Decsk′(C ′) = πU,U ′ .

2. Send2(U, i, U ′‖s‖C) is queried, where U ′‖s‖C is not previously-used and Declabel
sk (C) = πU,U ′

for label computed as discussed in experiment Γ4.

3. The adversary successfully guesses the bit used by the Test oracle.

4. Send3(U ′, j, τ) is queried, where τ = τj but τ was not output by any instance partnered
with Πj

U ′ .

Case 4 occurs with only negligible probability, since τj is a uniform n-bit string that is independent of
the adversary’s view if τj was not output by any instance partnered with Πj

U ′ . Let PwdGuess be the
event that case 1 or 2 occurs. Since the adversary’s view is independent of all passwords until one of
these cases occurs, we have Pr[PwdGuess] ≤ Q(n)/Dn. Conditioned on PwdGuess not occurring, the
adversary can succeed only in case 3. But then all session keys defined throughout the experiment
are chosen uniformly and independently at random (except for the fact that partnered instances are
given identical session keys), and so the probability of success in this case is exactly 1/2. Ignoring
case 4 (which we have already argued occurs with only negligible probability), then, we have

Pr[Success] = Pr[Success ∧ PwdGuess] + Pr[Success ∧ PwdGuess]
≤ Pr[PwdGuess] + Pr[Success | PwdGuess] · (1− Pr[PwdGuess])

=
1
2

+
1
2
· Pr[PwdGuess]

≤ 1
2

+
Q(n)
2 ·Dn

,

and so Adv8(n) ≤ Q(n)/Dn. Lemmas 1–7 imply that Adv0(n) ≤ Q(n)/Dn + negl(n) as desired.

4 PAKE in the UC Framework

In the UC framework [9], a cryptographic task is specified via an appropriate ideal-world function-
ality; a secure protocol is defined as one that adequately “mimics” this ideal functionality. More

11

formally, protocol Π realizes a functionality F if for any adversary A attacking Π in the real world
there exists an adversary (or simulator) S attacking an execution in the ideal world where the
parties interact only with F , such that no environment Z can distinguish between the real-world
and ideal-world executions. (We refer to [9] for extensive background, or to [10, Section 5.1] for a
condensed discussion specific to the context of PAKE.)

Working in the UC framework offers several advantages. Key-exchange protocols proven secure
in the UC framework satisfy strong composability properties: in particular, (1) they are guaranteed
to remain secure even when run concurrently with any other set of protocols in the network;
and (2) session keys generated by any such key-exchange protocol may be securely used by any
application calling the protocol as a sub-routine. In addition to the above, Canetti et al. [10] observe
several advantages of working in the UC framework that are specific to PAKE. For one, a definition
of PAKE in the UC framework automatically handles arbitrary password distributions including
dependencies between passwords chosen by different parties. The definition also guarantees security
in case two honest parties run the protocol with different passwords (e.g., due to mistyping); prior
definitions say nothing in that event. Note also that, as proved in [10], the definition of PAKE in
the UC framework is at least as strong as what is ensured by Definition 1. We refer the reader
to [10] for further discussion.

Canetti et al. [10] observe that PAKE protocols proven secure with respect to Definition 1 do
not necessarily realize PAKE in the UC framework. A key issue that arises is that when proving
security of a protocol according to Definition 1, the “experiment” may end if the adversary makes
a correct password guess. (Indeed, this is exactly what occurs in our proof in the preceding section,
cf. Experiment Γ4 and others.) On the other hand, security in the UC framework requires that the
simulation continue even in the event a correct password guess occurs.

Organization of this section. We describe our formalization of the PAKE functionality FpwKE

in Section 4.1. While we use the definition given in [10] as our starting point, we strengthen the
functionality so that it also guarantees mutual authentication. (Although mutual authentication
is discussed briefly in [10], the suggestion given there for handling the issue does not suffice.) We
believe our treatment of mutual authentication is of independent interest.

In Section 4.2 we modify the protocol from Section 3 so as to obtain a protocol that securely
realizes (the multi-session extension of) FpwKE in the Fcrs-hybrid model. (The Fcrs-hybrid model
provides a way of using a CRS in the UC framework. As shown in [10], PAKE is impossible to
realize in the UC framework without some setup assumption.) We prove security of the protocol
in Section 4.3.

4.1 Defining the Functionality

Functionality FpwKE is given in Figure 2. (Our proof will actually show that our protocol securely
realizes the multi-session extension F̂pwKE of FpwKE; roughly, this means that multiple executions
of the protocol can rely on the same CRS, as would obviously be the case in the real world. We
refer to [10] for further details.)

The high-level structure of functionality FpwKE follows the approach used in [10], and we briefly
describe it here. (Once again, we refer to [10] for more details.) A key feature is that the passwords
are provided to the parties by the environment Z. (This, in particular, is what allows the definition
to capture arbitrary distributions on passwords.) The parties send their respective passwords
to FpwKE to initialize a new session; upon initialization, a session is declared “fresh”. The ideal-

12

Functionality FpwKE

Upon receiving a query (NewSession, sid, Pi, Pj , π, role) from party Pi:
Send (NewSession, sid, Pi, Pj , role) to S. If this is the first NewSession query, or if this is
the second NewSession query and there is a stored session (Pj , Pi, π

′, role′) with role′ 6= role,
then store (Pi, Pj , π, role) and label this session fresh.

Upon receiving a query (TestPwd, sid, Pi, π
′) from the adversary S:

If there is a stored session of the form (Pi, Pj , π, role) that is fresh, then do: If π = π′, label
the session compromised and reply to S with “correct guess”. If π 6= π′, label the session
interrupted and reply to S with “wrong guess”.

Upon receiving a query (GetReady, sid, Pi) from S:
If there is a stored session of the form (Pi, Pj , π, client) that is fresh, then relabel it ready.

Upon receiving a query (NewKey, sid, Pi, sk) from S, do:
If there is a stored session (Pi, Pj , π, role) that is not marked completed, then do:
• If the session is compromised, or either Pi or Pj are corrupted, send sk to Pi.
• If the session is interrupted, send ⊥ to Pi.

If role = client (and neither of the above rules were applied) then:
• If there is a stored session (Pj , Pi, π

′, server, sk′) with π′ = π, then send sk′ to Pi.
If role = server (and none of the above rules were applied) then:
• If there is a stored session (Pj , Pi, π, client) labeled ready, then choose sk′ ← {0, 1}n,

send sk′ to Pi, and store (Pi, Pj , π, server, sk′).
If none of the above rules apply, send ⊥ to Pi. In any case, mark the session (Pi, Pj , π, role)
as completed.

Figure 2: The PAKE functionality FpwKE (with mutual authentication).

world adversary S can make a TestPwd query to any fresh instance; this models the adversary’s
ability to carry out on-line password guessing attacks. If the adversary makes a TestPwd query and
is correct, the relevant session is marked “compromised” and the adversary can freely choose the
session key for that session. (This models the fact that, in this case, the session key is completely
known to the adversary.) If the guess is incorrect, the session is marked “interrupted”. If the
adversary does not make any TestPwd query, then random (but identical) session keys are sent to
the two parties involved in the session, assuming the parties use the same password.

Mutual authentication was not required in [10]. As a consequence, in their formulation of FpwKE

random and independent session keys are sent to the two parties involved in some session if the
parties use different passwords, as well as for sessions marked interrupted. Here, in contrast, we
capture (explicit) mutual authentication by introducing a “ready” state for the client, and then
ensuring that (1) a server outputs ⊥ unless there is a (partnered) client in the ready state, and
(2) a client outputs ⊥ unless there is a (partnered) server that has already output a session key
(in which case the client outputs the same key). Moreover, once a client is in the ready state, the
adversary can no longer make a TestPwd query to that instance of the client.

13

CRS: pk1, pk2, pk′, γ
Server(Πsid

i) Client(Πsid
j)

r∗ ← {0, 1}∗
¾ C∗

C∗ := Encsid
pk1

(πc; r∗)
r ← {0, 1}∗

C ′ := Encpk′(πs; r) C ′
-

k ← K
s := α(k,C ′)
rj‖τj‖skj := Hk(C ′, πc)
label := sid‖C ′‖s

¾
s ‖C

C := Encpk2(πc; rj)

if ZKP fails, abort ¾
SS-ZKPlabel(C∗ ≈ C)

ri‖τi‖ski := H ′(s, C ′, πs, r)
label := sid‖C ′‖s

Ĉ := Encpk2(πs; ri)
if C 6= Ĉ, output ⊥ and abort

τi - if τi 6= τj , output ⊥ and abort
output ski else, output skj

Figure 3: An honest execution of the protocol.

4.2 The Protocol

We modify the protocol from Section 3 in a way analogous to what was done in [10]. Specifically,
we add an initial flow that contains an encryption of the password, and also add a simulation-
sound zero-knowledge proof (SS-ZKP), depending on parameters γ included in the CRS, that the
password encrypted in the third round is identical to the password that was encrypted in the first
round (this is denoted as “C∗ ≈ C” in Figure 3). More formally, the SS-ZKP using label label
proves that (C, C∗) is well-formed in that there exist r∗, rj , π such that

C∗ = Encpk1(π; r∗) and C = Encpk2(π; rj).

(Simulation-soundness guarantees that an adversary cannot give a false proof for any new la-
bel/statement pair if the statement is invalid.) This change not only allows us to prove security
in the UC framework, but allows us to do so without the need for Σ to be CCA-secure. For this
reason, we now dispense with the use of labeled encryption, and use the same encryption scheme
throughout the protocol. We also make some smaller changes due to the specifics of the UC frame-
work; in particular, we rely on the fact that the parties begin with matching, unique session ids and
are aware of each others’ identities before starting the protocol. Although not written explicitly,
we also assume that if a party ever receives an ill-formed message then it immediately aborts with
output ⊥.

14

4.3 Proof of Security

4.3.1 Description of the Simulator

To prove that the protocol securely realizes FpwKE we must show how to transform any real-world
adversary A to an ideal-world adversary (simulator) S such that no polynomial-time environment Z
can distinguish between the real- and ideal-world executions. We describe the behavior of S here,
and prove that S provides a good simulation in the next section.

S begins by running the key-generation algorithms for Σ, and the simulator for the zero-
knowledge proof system, to obtain pk1, pk2, pk′, and γ along with their respective secret keys.
S uses these as the CRS for A, which it runs as a subroutine. It also chooses a value π0 that is in
the domain of Enc but is assumed for simplicity to be outside the space of possible passwords that
Z can provide to the parties. (A more cumbersome option is to choose π0 at random.)

When S receives (NewSession, sid, Pi, Pj , role) from F , then S begins simulating the protocol
on behalf of any uncorrupted parties involved. To do so, S begins running the protocol as specified
except that it uses π0 for the password, and uses the zero-knowledge simulator to generate proofs
on behalf of an uncorrupted client. Execution of S then proceeds as follows.

Simulating a client instance. S simulates an uncorrupted client instance as discussed above
until one of the following events occurs:

• If the client instance Πsid
j receives a message C ′ in the second round of the protocol that

was not output by S’s simulation of the matching server instance, then S decrypts C ′ to
obtain the underlying password π and sends (TestPwd, sid, Pj , π) to F . (If C ′ is not a valid
ciphertext, S uses π = ⊥ which we assume is treated as an incorrect password guess by F .)
There are then two sub-cases:

– If the password guess is correct, S continues to simulate Πsid
j but now uses the true

password π. If the client instance later concludes by computing a session key skj (pos-
sibly skj =⊥), then S sends (NewKey, sid, Pj , skj) to F .

– If the password guess is incorrect, S chooses rj‖τj‖skj at random and continues to
use π0 as before. If the client instance later concludes by computing a session key skj

(possibly3 skj =⊥), then S sends (NewKey, sid, Pj ,⊥) to F . (Note that in this case the
given instance is labeled interrupted, anyway.)

• If the above did not occur, then after completing the (simulation of the) zero-knowledge
proof on behalf of the client S sends (ready, sid, Pj) to F . If the client instance concludes by
computing a session key skj (possibly skj =⊥), then S sends (NewKey, sid, Pj ,⊥) to F .

Simulating a server instance. S simulates an uncorrupted server instance as discussed above
until one of the following events occurs:

• If the server instance Πsid
i ever receives a message C∗ that was not output by S’s simulation

of the matching client instance, then S decrypts C∗ to obtain the underlying password π and
sends (TestPwd, sid, Pi, π) to F . (If C∗ is not a valid ciphertext, S uses π = ⊥ which we
assume is treated as an incorrect password guess by F .) There are then two sub-cases:

3In fact, with overwhelming probability skj =⊥.

15

– If the password guess is correct, S continues to simulate Πsid
i as before, but now using

the true password π. If the server instance concludes by computing a session key ski

(possibly ski =⊥), then S sends (NewKey, sid, Pi, ski) to F .

– If the password guess is incorrect, S continues to use π0 but aborts the simulation auto-
matically after the zero-knowledge proof from the client. S then sends (NewKey, sid, Pi,⊥)
to F .

• If the above did not occur, then if the server instance ever concludes by outputting a session
key ski (possibly ski =⊥), the simulator S sends (NewKey, sid, Pi, ski) to F .

4.3.2 Proof of Indistinguishability

We now prove that the actions of S in the ideal world are indistinguishable from a real-world
execution with adversary A. To do so, we consider a sequence of experiments beginning with an
experiment Γ0 that corresponds to the real-world execution with A and concluding with an exper-
iment that corresponds to the ideal-world execution with S. Each pair of neighboring experiments
is shown to be indistinguishable from the point of view of any polynomial-time environment Z; by
transitivity, this proves that the real and ideal worlds are indistinguishable.

We describe our intermediate experiments with reference to an entity S ′ that just provides us
with a convenient way to encapsulate certain parts of the experiment. S ′ will also (internally) assign
labels to various instances — always initially assigning instances a fresh label — for “book-keeping”
purposes. In the final experiment (that, recall, is supposed to correspond to an execution in the
ideal world), the role of S ′ will be taken on by the simulator S that we defined previously, and the
internal book-keeping will be done by the ideal functionality itself.

In the following descriptions, we use the term “honestly forwarded” to refer to messages received
by an uncorrupted instance that were output by an uncorrupted partnered instance (namely, the
instance with matching sid and the opposite role) and then forwarded unchanged by the adversary.

Experiment Γ0. This corresponds exactly to a real-world execution of the protocol in the presence
of A. In a bit more detail, S ′ generates the CRS honestly and then interacts with the environ-
ment Z while running A as a sub-routine. Messages from Z to A are forwarded, and vice versa.
Furthermore, S ′ also receives inputs from Z on behalf of any uncorrupted parties, and runs the
protocol honestly on their behalf. As mentioned above, S ′ (internally) assigns the label fresh to
any uncorrupted instance when it is first initialized. It also labels a client instance ready after that
instance’s zero-knowledge proof is completed. S ′ labels an instance completed once it terminates
the protocol (whether with output a legitimate session key or the failure symbol ⊥).

Experiment Γ1. In this experiment, S ′ generates the string γ in the CRS using the simulator algo-
rithm for the SS-ZKP. Furthermore, when executing an honest client instance S ′ always simulates
the zero-knowledge proof. The following is immediate.

Lemma 8 Experiments Γ0 and Γ1 are computationally indistinguishable.

Experiment Γ2. The only change introduced here is that now, whenever S ′ executes an honest
client instance, it computes the ciphertext C∗ sent in the initial message as an encryption of π0

(with respect to public key pk1), rather than as an encryption of the password provided to this
instance by Z.

16

Lemma 9 Experiments Γ1 and Γ2 are computationally indistinguishable.

Proof The only part of the protocol that depends on C∗ is the zero-knowledge proof, which
is now simulated by S ′. We note also that S ′ never uses the secret key sk1 associated with pk1

throughout either experiment. The lemma thus follows readily from the CPA-security of Σ.

Experiment Γ3. We modify the previous experiment as follows. If an uncorrupted server instance
receives an initial message C∗ that is not honestly forwarded, S ′ decrypts C∗ (using the secret
key sk1) to obtain a password π∗. It then tests this password against the password π being used
by this server instance (i.e., as given to S ′ by Z). If π∗ = π then S ′ labels the server instance
compromised, while if π∗ 6= π then S ′ labels the server instance interrupted. For any server instance
labeled compromised, S ′ aborts execution of this instance at the conclusion of the zero-knowledge
proof given to it. (I.e., S ′ aborts automatically even if the zero-knowledge proof succeeds.)

Lemma 10 Experiments Γ2 and Γ3 are computationally indistinguishable.

Proof The changes in the internal labeling are not observable by Z. The only observable change
occurs in case S ′ aborts a server instance labeled compromised in Γ3 when this instance would not
have aborted in Γ2. But this occurs with only negligible probability. To see this, let s‖C be the
value sent to some server instance in the third message and consider two sub-cases:

• Case 1: C is an encryption of π. Since C∗ was not an encryption of π, and was not forwarded
from the relevant partner instance, simulation soundness of the zero-knowledge proof system
implies that (in either Γ2 or Γ3) the adversary gives a convincing proof that C∗ and C encrypt
the same value with only negligible probability. Thus, an abort would have occurred with
overwhelming probability in Γ2.

• Case 2: C is not an encryption of π. In this case an abort would always occur in Γ2 (assuming
Σ has perfect correctness).

This concludes the proof.

Experiment Γ4. We modify the preceding experiment in the following way. If an uncorrupted
server instance receives an initial message C∗ that is not honestly forwarded, S ′ decrypts C∗ (as
in Γ3) to obtain the underlying password π∗. If π∗ 6= π (where π is the password being used by
the instance in question) then S ′ labels the server instance interrupted (as in Γ3) and computes C ′

as an encryption of π0 with respect to the public key pk′. (If π∗ = π, then S ′ computes C ′ as an
encryption of π exactly as in Γ3.)

Note that, because any session marked interrupted aborts after completing verification of the
zero-knowledge proof, the randomness used to generate the ciphertext C ′ in any such session is
never subsequently used. Moreover, the secret key sk′ corresponding to pk′ is not used in either Γ3

or Γ4. As such, a proof of the following is immediate:

Lemma 11 Experiments Γ3 and Γ4 are computationally indistinguishable.

Experiment Γ5. We introduce the following modifications to the previous experiment. Consider
an uncorrupted server instance ΠS and the corresponding (uncorrupted) client instance ΠC . (If
no corresponding uncorrupted client instance exists, the following discussion is moot.) If ΠS ever

17

receives an honestly forwarded C∗ (i.e., C∗ was sent by ΠC), but either the second message C ′

received by ΠC was not honestly forwarded, or the third message s‖C received by ΠS was not
honestly forwarded, then S ′ aborts ΠS following the zero-knowledge proof.

Lemma 12 Experiments Γ4 and Γ5 are computationally indistinguishable.

Proof We claim that in any case where an abort is introduced in Γ5, an abort would have
occurred in Γ4 except with negligible probability. This follows from the observation that C∗ in the
case considered here is an encryption of π0 (since it was output by an uncorrupted client instance),
and then a similar argument as in the proof of Lemma 10.

Experiment Γ6. We modify the previous experiment as follows. In an uncorrupted server instance
where C∗, C ′, and s‖C are all honestly forwarded, but the passwords being used by the server
instance and the partnered client instance do not match, then S ′ aborts the server instance at
the conclusion of the zero-knowledge proof. If the passwords do match, then S ′ sets the values of
ri‖τi‖ski equal to the values already computed by the partnered client instance. This is a syntactic
change only, and has no effect on the output of Z.

Experiment Γ7. We modify the experiment as follows. When an uncorrupted server instance
receives an honestly forwarded initial message C∗, the second message C ′ is not computed as an
encryption of π0 (with respect to the public key pk′), rather than an encryption of π as before.
Since the randomness used to compute C ′ is not used subsequently by S ′ (given the modifications
made in Γ5 and Γ6), nor is the secret key sk′, it follows from the CPA-security of Σ that:

Lemma 13 Experiments Γ6 and Γ7 are computationally indistinguishable.

Experiment Γ8. We now begin modifying the treatment of client instances. Now, when executing
an uncorrupted client instance where both C∗ and C ′ are honestly forwarded, S ′ chooses rj‖τj‖skj

uniformly at random (and then runs the rest of the protocol as before). The following is imme-
diate from the properties of the smooth projective hash function and the fact that an honestly
forwarded C ′ is an encryption of (an invalid password) π0:

Lemma 14 Experiments Γ7 and Γ8 are statistically indistinguishable.

Experiment Γ9. We introduce the following modifications. In an uncorrupted client instance
where the second message C ′ is not honestly forwarded, decrypt C ′ to obtain a password π′. If π′

is equal to the password π being used by the client instance in question, then S ′ labels this client
instance compromised; if π′ 6= π then S ′ labels it interrupted. Moreover, in the latter case S ′ chooses
rj‖τj‖skj uniformly at random (and then runs the rest of the protocol as before). Once again, the
following lemma is immediate from the properties of the smooth projective hash function:

Lemma 15 Experiments Γ8 and Γ9 are statistically indistinguishable.

Experiment Γ10. Now, in an uncorrupted client instance where C∗ is honestly forwarded (to
the partnered server instance) but the received message C ′ is not honestly forwarded (from the
partnered server instance), S ′ decrypts C ′ to obtain a password π′ and labels the client instance
as in Γ9. As in the previous experiment, if π′ 6= π then S ′ chooses rj‖τj‖skj uniformly at random

18

(and then runs the rest of the protocol as before). Exactly as previously, we have that Γ9 and Γ10

are statistically close.

Experiment Γ11. We modify the preceding experiment as follows. In an uncorrupted client
instance that is not labeled compromised when sending the third message of the protocol, the
ciphertext C is computed as an encryption of π0 (with respect to the public key pk2) rather than
an encryption of the given password. Note that, for any such instance in Γ10, it is the case that
the randomness used to generate C is chosen uniformly at random, and is not used subsequently.
Moreover, S ′ never uses the secret key sk2 in either experiment. These observations, along with
the CPA-security of Σ, immediately imply the following lemma.

Lemma 16 Experiments Γ10 and Γ11 are computationally indistinguishable.

Experiment Γ12. In this experiment, we modify the execution of a client instance as follows. If a
client instance is not labeled compromised, and the final message τi is not honestly forwarded, then
the client instance aborts (with output ⊥).

Lemma 17 Experiments Γ11 and Γ12 are statistically indistinguishable.

Proof If the client instance in question is interrupted, or is fresh but the partnered server instance
has not yet output the final message τi, then the value τj local to the client instance is uniformly
distributed from the point of view of A and so the client instance would accept only with negligible
probability. On the other hand, if the client instance is fresh and the partnered server instance has
already output τi = τj , then adversarial modification of this value will certainly lead to abort.

One can now (tediously) verify that the actions of S ′ in Γ12 are simulated perfectly by our simula-
tor S (described in the previous section) in its interaction with the ideal functionality F . Specifi-
cally, although S will not be given the passwords used by the various instances, S only ever needs to
perform tests of equality on these passwords which it can do using TestPwd queries to F . The labels
maintained in S ′ will correspond correctly with the labels maintained by the ideal functionality, and
all tests of equality by S ′ are done when the label of an instance is one for which a TestPwd query is
allowed by F . In any situation where one of the parties is compromised or its partner is corrupted,
S will simply use the NewKey command to ensure that the relevant party will output the key that
was computed in that session. If a session is interrupted then S uses the NewKey command to force
output of ⊥ just as would be the case in Γ12. In the case of successful completion of the protocol,
S will also use the NewKey command; this will give a different output than that computed by S ′,
but since both are uniform random values the difference is purely syntactic. This concludes the
proof of security for our protocol.

References

[1] M. Abdalla, D. Catalano, C. Chevalier, and D. Pointcheval. Efficient two-party password-
based key exchange protocols in the UC framework. In T. Malkin, editor, Cryptographers’
Track — RSA 2008, LNCS, pages 335–351. Springer, Apr. 2008.

[2] M. Abdalla, C. Chevalier, and D. Pointcheval. Smooth projective hashing for conditionally
extractable commitments. In Advances in Cryptology — Crypto 2009, volume 5677 of LNCS,
pages 671–689. Springer, 2009.

19

[3] B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure computation without authen-
tication. In Advances in Cryptology — Crypto 2005, volume 3621 of LNCS, pages 361–377.
Springer, 2005.

[4] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against
dictionary attacks. In Advances in Cryptology — Eurocrypt 2000, volume 1807 of LNCS,
pages 139–155. Springer, 2000.

[5] M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in
Cryptology — Crypto ’93, volume 773 of LNCS, pages 232–249. Springer, 1994.

[6] M. Bellare and P. Rogaway. Provably secure session key distribution: The three party case.
In 27th Annual ACM Symposium on Theory of Computing (STOC), pages 57–66. ACM Press,
1995.

[7] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In IEEE Symposium on Security & Privacy, pages 72–84. IEEE,
1992.

[8] V. Boyko, P. D. MacKenzie, and S. Patel. Provably secure password-authenticated key ex-
change using Diffie-Hellman. In Advances in Cryptology — Eurocrypt 2000, volume 1807 of
LNCS, pages 156–171. Springer, 2000.

[9] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science (FOCS), pages 136–145. IEEE,
2001.

[10] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally composable
password-based key exchange. In Advances in Cryptology — Eurocrypt 2005, volume 3494 of
LNCS, pages 404–421. Springer, 2005.

[11] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In Advances in Cryptology — Eurocrypt 2002, volume 2332 of
LNCS, pages 45–64. Springer, 2002.

[12] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.

[13] R. Gennaro. Faster and shorter password-authenticated key exchange. In 5th Theory of
Cryptography Conference — TCC 2008, volume 4948 of LNCS, pages 589–606. Springer, 2008.

[14] R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange.
ACM Trans. Information and System Security, 9(2):181–234, 2006.

[15] O. Goldreich and Y. Lindell. Session-key generation using human passwords only. Journal of
Cryptology, 19(3):241–340, 2006.

[16] L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly chosen secrets
from guessing attacks. IEEE J. Selected Areas in Communications, 11(5):648–656, 1993.

20

[17] S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. ACM Trans.
Information and System Security, 2(3):230–268, 1999.

[18] S. Jiang and G. Gong. Password based key exchange with mutual authentication. In 11th
Annual International Workshop on Selected Areas in Cryptography (SAC), volume 3357 of
LNCS, pages 267–279. Springer, 2004.

[19] J. Katz, P. D. MacKenzie, G. Taban, and V. D. Gligor. Two-server password-only authenti-
cated key exchange. In 3rd International Conference on Applied Cryptography and Network
Security (ACNS), volume 3531 of LNCS, pages 1–16. Springer, 2005.

[20] J. Katz, R. Ostrovsky, and M. Yung. Efficient and secure authenticated key exchange using
weak passwords. Journal of the ACM, 57(1):78–116, 2009.

[21] J. Katz and V. Vaikuntanathan. Password-based authenticated key exchange based on lattices.
In Advances in Cryptology — Asiacrypt 2009, volume 5912 of LNCS, pages 636–652. Springer,
2009.

[22] K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In Advances in
Cryptology — Crypto 2004, volume 3152 of LNCS, pages 426–442. Springer, 2004.

[23] P. D. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key exchange based
on RSA. In Advances in Cryptology — Asiacrypt 2000, volume 1976 of LNCS, pages 599–613.
Springer, 2000.

[24] M.-H. Nguyen and S. Vadhan. Simpler session-key generation from short random passwords.
Journal of Cryptology, 21(1):52–96, 2008.

[25] V. Shoup. A proposal for an ISO standard for public key encryption. Cryptology ePrint
Archive, Report 2001/112, 2001. http://eprint.iacr.org/.

21

