
Node Ranking In Labeled Directed Graphs

Krishna P. Chitrapura
IBM India Research Lab

Block-I, Indian Institute of Technology
Hauz Khas, New Delhi, India

kchitrap@in.ibm.com

Srinivas R. Kashyap
∗

Department of Computer Science
University of Maryland, College Park,

MD, USA

raaghav@cs.umd.edu

ABSTRACT
Our work is motivated by the problem of ranking hyper-
linked documents for a given query. Given an arbitrary di-
rected graph with edge and node labels, we present a new
flow-based model and an efficient method to dynamically
rank the nodes of this graph with respect to any of the origi-
nal labels. Ranking documents for a given query in a hyper-
linked document set and ranking of authors/articles for a
given topic in a citation database are some typical applica-
tions of our method. We outline the structural conditions
that the graph must satisfy for our ranking to be different
from the traditional PageRank.

We have built a system using two indices that is capable
of dynamically ranking documents for any given query. We
validate our system and method using experiments on a few
datasets: a crawl of the IBM Intranet (12 million pages), a
crawl of the www (30 million pages) and the DBLP citation
dataset. We compare our method to existing schemes for
topic-biased ranking that require a classifier and the tradi-
tional PageRank. In these experiments, we demonstrate that
our method is well suited for fine-grained ranking and that
our method performs better than the existing schemes. We
also demonstrate that our system can obtain an improved
ranking with very little impact on query time.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage And Re-
trieval

General Terms
Algorithms, Experimentation, Theory

Keywords
Search, Context-Sensitive Ranking, Search in Context, Web

∗Work done when the author was visiting IBM India Re-
search Lab.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’04, November 8–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-874-1/04/0011 ...$5.00.

Graph, Intranet Search, Citation Graph, link structure, Flow-
based Model, Random Surfer Model, PageRank

1. INTRODUCTION
The problem of ranking hyper-linked documents based on

link information is very well studied [16, 10, 14, 18]. Any
such scheme naturally finds an application in www search.
The main ideas in the methods that have been proposed to
solve this problem are based on the observation that links
between documents often represent relevance [11] or con-
fer authority [14, 3, 16, 11]. Further, it is assumed that a
“reputed” document confers more relevance/authority to a
document by linking to it than a less “reputed” document
would if it were to link to the same document. These ideas
have been explored in depth in the context of social net-
works [9, 4, 13, 12], citation analysis [17] and more recently
in the context of web-scale information retrieval algorithms
[11].

Ranking algorithms can be broadly classified into query
independent ranking schemes and query dependent ranking
schemes. Query independent ranking schemes like the PageR-
ank assign a score to a document once and use this to order
results for all subsequent queries, while query dependent
ranking schemes assign a score that measures the quality
and relevance of a page with respect to the given query. In
this work, we are interested in query dependent ranking.

Traditionally, owing to their algorithmic simplicity, query
independent ranking schemes have been made to work and
scale successfully on the www. However, most existing query
dependent ranking schemes involve the construction of a
query-specific graph on which further analysis is then per-
formed. The need for the construction of a query-specific
graph during query-time tends to make these schemes infea-
sible for dynamic ranking on a web-scale.

We propose a new model and present an efficient method
that affords dynamic (i.e. at query-time) query dependent
ranking. We analytically prove the convergence proper-
ties of our method. Further, we validate our model and
method by conducting experiments on a system that em-
bodies our method and obtain improved performance over
existing schemes, with very little impact on query time.

In subsection 1.1 we provide an additional layer of detail
regarding our contributions and in subsection 1.2 we sum-
marize previous work.

1.1 Our Contributions
We propose a new flow-based model for ranking docu-

ments biased by edge and node labels; and an efficient method

for dynamically ranking for any given label. In our model,
there is a set of flow values at each node associated with each
label l. These flow values can be used to measure the impor-
tance of that node for the label l. We now consider one such
label l. At each time step, every node accepts flow from its
incoming edges and disperses its old value to its neighbors
through its outgoing edges. If a node does not contain label
l and has no incoming edges, the node never receives any
flow. If a node has no outgoing edges, its old value is lost
from the system (i.e., the node simply discards the old value
and accepts the new value). At each time step, for each edge
bearing the label l some value of flow (say f) is added to
the new value of the node to which this labeled edge points.
Similarly, at each time step, for each node bearing the label
l some value of flow (say f) is added to the new value of this
node. Typically, nodes are started off with zero values and
these labels introduce values into the network.

This flow network will evolve over time. The value of
the total flow in the network will increase with time and in
some cases (conditions mentioned later) the flow values at
all the nodes will saturate. In some other cases, when flow
is conserved, the flow value in the system increases without
bound. However in both cases, we can determine several
useful quantities by observing the flow values for a label l at
a node ni.

As formalized in section 2.1, our method can also be viewed
as a random surfer if we consider each node in G as a tran-
sient state.

For an arbitrary graph, depending on the structure of the
graph, our method will either converge to a label-biased
ranking that is different from PageRank or it will find the
traditional PageRank. We discuss these conditions in more
detail in section 2.2; but we simply note here that the web-
graph, as presently known [6], has a structure that induces
our algorithm to converge to a label-based ranking that is
different from traditional PageRank. Not only is our ranking
different from PageRank, but also through experiments we
show in section 5.2.1 we show that our method provides a
ranking that is orders of magnitude better than traditional
PageRank (see table 1 and section 5.2.1). We experimentally
show that our method is suited for fine-grained ranking by
comparing our ranking with the ranking produced by topic-
sensitive PageRank (see table 2 and section 5.2.2). Topic-
sensitive PageRank is a query-dependent ranking scheme pro-
posed in [10]. We also show through experiments (see section
5 and plots 9, 10 and 11) that these improved rankings can
be obtained dynamically (i.e. low querying-time).

We have built a system (Section 4) using two indices that
is capable of dynamically ranking documents for any given
query. In Section 5, we validate our system and method
on three datasets: a crawl of the IBM Intranet (12 million
pages), a crawl of the www (30 million pages) and the DBLP
citation dataset.

Although the main focus of our method is ranking hyper-
linked documents in the www context, our method can be
applied to other domains like citation analysis. To support
this claim, we have performed experiments on the DBLP
dataset (see section 5.2.3) and we provide anecdotal evidence
that our method is suited for this domain as well.

1.2 Previous Work
There has been a tremendous amount of work related to

the structure of information networks in the context of the

www - PageRank [16], HITS [14] and the use of text to aug-
ment hyper-link information [15, 3, 8, 18, 10]. One cannot
do justice to the amount of work in this area in anything less
than a survey article and therefore we point the reader to
Henzinger’s survey article [11] for a review of existing tech-
niques in the context of the www or see Friedkin’s article [9]
for insight into related methods used in the context of social
networks and citation analysis.

Marchiori [15] proposed a structural approach of node-to-
node hyper-information propagation. The scheme however
does not consider cycles in the hyper-linked graph.

Many of the ranking schemes proposed are based on the
random surfer model, where a web surfer’s navigation is
modeled as a Markov Process - i.e. The web surfer’s decision
on which page to go to next is based solely on the current
page on which the surfer is located. In this model, each doc-
ument in the web represents a state and the links going out
the document represent possible transitions to other states.
We consider some of the applications of this model below.

Page et al. [16] proposed a ranking measure called PageR-
ank based on the random surfer model. In their model, the
random surfer also occasionally jumps to a document cho-
sen uniformly at random from the set of all documents (this
is called a random jump). The PageRank (or the impor-
tance) of a document is the stationary probability of finding
the surfer at that document. The algorithm is guaranteed
to converge to a unique stationary probability iff G (the
document graph) is strongly connected and the transition
matrix of the random surfer is aperiodic. Dead-end docu-
ments (outdegree zero nodes in G) are a threat to the first
requirement. Random jumps are introduced in PageRank
to circumvent problems caused by dead-end documents as
well as cycles. However, random jumps do not fully solve the
problem caused by dead-end documents since the transitions
out of dead-end nodes are still partially defined. There are,
however, some heuristics that make structural modifications
to G to try and overcome this problem.

The PageRank of a document is independent of label or
topic choice. The idea of using a basis set of bias vectors
to make PageRank query and user-sensitive was suggested
in [5, 10]. Our method is closely related to [10] and this
relationship is considered in detail later in this section.

The HITS algorithm proposed by Kleinberg [14] can be
used to refine query results. However, it requires access
to a search engine which will return a subset of the docu-
ments (deemed relevant to a query by the search engine).
Chakrabarti et. al. [7] and Bharath and Henzinger [3]
consider adjusting edge weights, using content analysis, for
HITS to retrieve documents related to a query topic.

Rafiei and Mendelzon [18] present a search process that
when given the URL of a document, returns a ranked list of
topics on which that document has a reputation. They pro-
pose two models; a one-level model that extends PageRank
and a two-level model that generalizes HITS. Their method
works both in the presence and absence of a crawled dataset.
However, their method (like HITS) requires access to search
engine results. Our method requires access to a crawled
dataset, but does not require access to a search engine.

Tomlin [19] introduced a new entropy maximization ap-
proach for measuring www traffic. The algorithm presented
in the paper obtains a “traffic” and a local “temperature”
which may be used for ranking pages. However, these mea-
sures are independent of the query terms or labels of interest.

Our method is closely related to the method of Haveli-
wala [10]. His method computes topic sensitive PageRank
(or biased PageRank) by biasing the PageRank computa-
tion with respect to 16 representative topics taken from the
Open Directory. It then classifies the query to these topics
to compute the final weighted PageRank. The method uses
a two-step ranking process. The first step is done offline and
the second is done during query processing. During the first
step, for each document the method precomputes a set of
importance scores with respect to a set of chosen topics. In
the second step, during query time, the method determines
the broad topic of the query and based on this classifica-
tion it combines the multiple precomputed scores to form a
composite PageRank score.

The success of the first step of the scheme relies on the
set of representative topics chosen initially and the quality
of the ODP data. To guarantee convergence of the first step,
the method has to make some structural modifications such
as adding a complete set of edges to all the outdegree zero
nodes in the document graph G. The second step involves
the use of a classifier and this must be very well tuned to
the queries the system handles in order for the scheme to
perform well. As we show later in Section 5 this method
performs well for broad-topic rankings. However, it is not
well suited for fine-grained topic rankings.

Our method is closely related the measure of sociometric
status proposed by Hubbell [12].

We will compare our results primarily with static PageR-
ank [16] and the topic-sensitive PageRank method proposed
in [10].

2. THE MODEL
In this section we formalize our flow-based model, relate

our model to a random surfer model, analyze the conver-
gence properties of our algorithm and provide structural
conditions that G must satisfy for the flow values computed
by our model to be different from traditional PageRank.

We are given a labeled directed graph G(V, E, LV , LE),
where V is the set of nodes, E is the set of edges, LV is a la-
bel function that maps nodes to labels (LV : V → {labels})
and LE is a label function that maps edges to labels (LE :
E → {labels}). In a typical www setting, V is a set of
hyper-text documents, E is the set of hyper-links connect-
ing the documents in V , the edge-label is the anchor-text
corresponding to a hyper-link and the node-label is the title
of the document. Our flow model (briefly outlined in 1.1)
can be realized by an iterative scheme. Define a vector vl

as:

vl [i] =
∑

j:(j,i)∈E

f(j,i,l) + f(i,l) (1)

where f(j,i,l) and f(i,l) are scalars corresponding to the amount
of flow introduced at the corresponding labeled edge and
labeled node respectively at each iteration. In equation 1
above, f(j,i,l) > 0 if LE (j, i) = l and (j, i) ∈ E. f(j,i,l) = 0
otherwise. Similarly, f(i,l) > 0 if LV (i) = l and i ∈ V .
f(i,l) = 0 otherwise.

The vector yt+1 of flow values at the nodes at time t + 1
is computed by iterating the following equation:

y [i]t+1 = vl [i] +
∑

j,(j,i)∈E
1

outdegree(j)
y [j]t

y0 = 0n×1

Definition 1. Define:

WG =

 w11 . . . w1n

...
...

...
wn1 . . . wnn


as the n×n matrix for G. Set wij = α/n+(1− α) (1/outdegree (j))
if (j, i) ∈ E and α/n otherwise. Here α ∈ [0, 1] is a scalar
value.

The iteration above can be succinctly expressed as follows:

yt+1 = vl + WGyt (2)

= vl + WGvl + . . . + Wt+1
G vl (3)

where all nodes are started off with zero values, WG is an
appropriately defined n× n matrix (set α = 0 in Definition
1) and vector yt+1 corresponds to the flow values at the
nodes after t + 1 iterations.

Note: In general, we can define WG to be any matrix
such that the column-sums corresponding to out-degree zero
nodes in G are less than 1. The column-sums corresponding
to all other nodes are equal to 1. That is, for all columns j:

•
∑

i wij = 1 if outdegree(j) ≥ 1.

• 0 ≤
∑

i wij < 1 if outdegree(j) = 0.

2.1 Relationship to Random Walker Models
There is an interesting relationship between our model

and Markov Processes. Consider a Markov Process whose
transition matrix is given by:

Definition 2.

Ŵ =

[
WG 0
R 1

]
(n+1)×(n+1)

The WG submatrix of Ŵ is the same as the n × n WG

matrix in Definition 1. R is a 1× n matrix suitably chosen
so that Ŵ is column-stochastic. The last column of Ŵ has
zeros in rows 1 through n and a one in row n + 1.

Consider each node in G to be a state in a Markov Process.
We have essentially added an absorbing state to the system
(i.e. a state which once entered cannot be exited). Note that
if WG were column stochastic to begin with, the system will
never enter the newly added absorbing state. However, if
WG had some states such that transitions out of these states
were partially defined, then all such partially defined states
can reach the newly added absorbing state. Moreover, if all
the nodes in WG could reach one or more of these partially
defined states, then the system will eventually end up in the
newly added absorbing state. In case all the nodes in WG

can reach the newly added absorbing state, the following
facts are well known from Markov theory:

• The nodes of WG represent transient states (Any state
that is not absorbing is called transient).

• The (i, j) entry of the quantity (I−WG)−1 (also called
the fundamental matrix) is the expected number of
time periods spent in node i before reaching an ab-
sorbing state given that the process was started off in
node j.

• limp→∞ Ŵp =

[
0n×(n+1)

11×(n+1)

]
(n+1)×(n+1)

(where, as usual, Ŵp is the pth power of the Ŵ matrix
in Definition 2).

2.2 Structure and Convergence
The following theorem establishes a sufficient condition

for the flow values at the nodes in the network to saturate.

Theorem 1. If every node in G can reach an out-degree
zero node in G using transitions defined in WG, then the
flow values in network G will saturate.

Proof. Define matrix Ŵ as in Definition 2. The ma-
trices R and WG have the same definition as in Definition
2. Now, if all the nodes in G can reach an out-degree zero
node in G using transitions in WG, then all states (nodes)
in WG are transient and can reach the newly added absorb-
ing state in Ŵ. If all the transient states (nodes) in WG

can reach the newly added absorbing state, we know from
Markov theory that:

lim
p→∞

Ŵp =

[
0n×(n+1)

11×(n+1)

]
(n+1)×(n+1)

It can also easily be verified that:

Ŵp =

[
Wp

G 0
Q 1

]
where Q is some 1 × n matrix. So limp→∞Wp

G is the zero
matrix. Therefore, from Eqn. (3) we know that
limp→∞ (yp+1 − yp) = 0. That is the amount of flow at any
node will remain constant from one iteration to the next.

Setting α > 0 is like adding random jumps to G. Ran-
dom jumps essentially enable the algorithm to provide label-
biased rankings on a larger class of graphs.

We will now consider the case when the flow values in G
do not saturate. We know from Markov theory that if the
transition matrix WG for a Markov process is regular (i.e.,
some power of WG has only positive entries), then there ex-
ists a unique steady state distribution for the process. For
regular WG, we also know that the Markov process reaches
this unique steady state distribution irrespective of the ini-
tial probability distribution. PageRank essentially relies on
these properties of regular Markov systems to obtain the
steady state distribution for the nodes in G. When the tran-
sition matrix WG is regular, this steady state distribution
also corresponds to the principal eigenvector of WG. The
definition below codifies these facts:

Definition 3. G is PageRankable, i.e., PageRank is well
defined for G, if for the corresponding WG:

limp→∞Wp
G =

 c1 . . . c1

...
...

...
cn . . . cn


n×n

The vector c =

 c1

...
cn

 is a principal eigenvector of WG

with an associated eigenvalue of 1, where ‖ c ‖1= 1.

The lemma below shows that the total flow value in the
system will increase without bound if G is PageRankable.

Lemma 1. If G is PageRankable, then the flow values
in network G will not saturate.

Proof. From Definition 3 we know that if G is PageR-
ankable, then limp→∞Wp

G 6= 0n×n. Therefore the vector of
flow values will continue to increase from one iteration to the
next and the flow values in network G will not saturate.

The change in flow at node i from iteration t to iteration
t + 1 is y [i]t+1 − y [i]t, where yt and yt+1 are the vectors
of flow values at the nodes after t and t + 1 iterations re-
spectively. The lemma below shows that when G is PageR-
ankable, the change in flow at any node can be used to find
PageRank.

Lemma 2. For PageRankable G, the quantity
y[i]t+1−y[i]t

||vl||1
will equal PageRank(i), for sufficiently large t.

Proof. The change in flow values at the nodes is given
by yt+1 − yt = Wt+1

G vl. For PageRankable G, from Defini-

tion 3 we know that limt→∞Wp
G =

 c1 . . . c1

...
...

...
cn . . . cn


n×n

.

So for sufficiently large t, the quantity limt→∞Wt+1
G vl =

limt→∞Wt
Gvl = ||vl||1c. Where c =

 c1

...
cn

 is the princi-

pal eigenvector of WG. Therefore, y [i]t+1 − y [i]t =(
Wt+1

G vl

)
[i] = ||vl||1· ci. Where ci is the PageRank of i i.e.

the ith entry of the principal eigenvector of WG.

2.3 Implications and Remarks

• When G is PageRankable, our model can only find
PageRank. However, experiments have shown that the
Web graph has a bow-tie structure (see [6]). A graph
with such a structure is not PageRankable due to the
presence of a large number of out-degree zero nodes.
The web graph as currently known [6] satisfies the suf-
ficient condition for convergence outlined in Theorem
1. As a result, our method can be applied to the Web
graph per se.

• Our method can be applied any arbitrary graph (pro-
vided we add random jumps) and our method is guar-
anteed to converge - it will either give us a label-biased
ranking of the nodes or it will simply compute the
label-independent ranking of the nodes (i.e. PageR-
ank). Although our method is shown to converge in
the limit of the number of iterations, in practice we
have found that our algorithm converges in a few steps.

• When G satisfies the sufficient condition in Theorem 1,
different choices of l will lead to different results. Our
method can then be used for a variety of purposes;
Searching, Classification of sites and focused advertis-
ing to name a few. However, in this paper we focus
mainly only on ranking documents for a given label.
Through experiments on the DBLP citation dataset,
we demonstrate that our method can be applied to
other domains as well.

3. THE METHOD

3.1 An iterative scheme for a fixed label
To find the flow values at all the nodes for a fixed label,

we can use the following iterative scheme: Define a vector
vl as defined in equation 1.

The vector y of node ranks biased by edge-labels is then
computed iteratively by the following equation:

yt+1 = vl + βWGyt (4)

where β ∈ [0, 1] and WG is a suitably defined n × n ma-
trix as in Definition 1. The β premultiplier is not required
to ensure convergence if WG satisfies the convergence cri-
terion of Theorem 1. However, choosing a β > 0 speeds up
convergence.

The algorithm seeks to find the steady state vector ys for
the iteration above.

ys = vl + βWGys

= (I − βWG)−1vl

=
(
I + βWG + (βWG)2 + (βWG)3 + . . .

)
vl (5)

In practice, the iterative algorithm declares a solution once
||yt+1 − yt||2 ≤ ε, or when the ranks of the top few nodes
remain unchanged from one iteration to the next.

The condition for the expected values at each node to
stabilize is that the quantity (I − βWG)−1 must exist. The
quantity (I − βWG)−1 is guaranteed to exist and our it-
erative algorithm is guaranteed to converge if ||βWG|| <
1, where ||βWG|| = β maxj

∑
i |wij |. Since β < 1 and∑

i |wij | ≤ 1 for all i, ||βWG|| < 1, our algorithm will con-
verge. The β term acts like a damping factor and its value
can be set as close to 1 as required so that || (1− β)WG|| ≤ ε
(for instance choose β ≥ 1− ε

n
for the Frobenius norm).

We do not use the iterative scheme for a fixed label
presented here since we want to perform dynamic ranking.
However, we do use the structure of the iteration in this
scheme to compute a matrix that can be used to perform
dynamic ranking. The scheme is presented in the next sub-
section.

3.2 Dynamic Ranking
The previous section provided a method for computing the

steady state flows at all nodes for a fixed label. In practice,
we need to compute the flows across all nodes over a large
number of labels and it would be infeasible to follow the
approach in the previous subsection. Therefore, it is prefer-
able to compute a matrix which we call B, that stores the
reachability information through all possible paths between
any pair of nodes in the graph.

The (i, j) entry in the reachability matrix encodes the to-
tal flow that node i observes given that a unit of flow is
inserted at node j. This entry is a measure of the effect
that the node j has on node i. This effect can be through
paths of various lengths. If we fix the maximum length of in-
fluence paths (call it tmax) that we wish to consider, a good
approximation to the reachability matrix can be found ef-
ficiently, provided tmax is small. Since n is very large and
tmax is a small fixed number, we can ignore the effect of
random jumps (i.e. transitions from node j to node i when
(j, i) /∈ G). Once we precompute such an approximate reach-
ability matrix, given any label l we can quickly find a suit-
able vector vl (see Sec 3.1) and compute node ranks for the

given label. The main challenge in computing the B matrix
is one of scale.

Let B to be a reachability measure where Bij represents
the total influence that node j exerts on node i. We can
then define:

B = I + βWG + (βWG)2 + (βWG)3 + . . . + (βWG)tmax (6)

Note that I represents influences through paths of length
zero, WG represents influences through paths of length one,
and so on.

In practice, B is calculated using an iterative algorithm.
The number of iterations of this algorithm corresponds to
the maximum length of influence paths we wish to consider.
Iteratively, we can write:

B (0) = βWG

B (t + 1)ij = β
(
Wij +

∑
(k,j)∈E,(i,k)∈B B (t)ikWkj

)
After the final iteration we add I to B. To compute B (t + 1),
we need to store B (t) and WG.

The following lemma establishes the equivalence of the
matrix B in (6) and the matrix B computed by the iterative
algorithm above.

Lemma 3. At the end of iteration t, any Bij entry will
correspond to the total influence of node j on node i through
all paths of length 1 through t from node j to node i.

This scheme can be realized by storing B and WG as
sparse indices, where for each node j we can query and ob-
tain a list of nodes reachable/pointed to by that node. The
underlying mechanism responsible for storing such a forward
index might also prune some out-edges from time to time to
meet storage constraints as the B matrix can be fairly dense.

Since our goal is to search for the top k nodes that best
satisfy a query, we may not need the complete B matrix.
We can store the top m reachable nodes for every node i at
every iteration. Further, we show in the next few sections,
that such an approximation helps improve the performance
without a significant impact on the accuracy of the retrieved
result.

3.3 Multiple term queries
To find the top k nodes for a single label l, we construct

the biasing vector vl for the label l, and then multiply the
sparse matrix B with the vector vl. We pick the top k high-
est entries from the resulting vector and return the nodes
corresponding to these entries as the k best search results
for the label l. We handle multiple queries by constructing
an appropriate biasing vector vq using “fuzzy AND” and
“fuzzy OR”. The details are provided in the Section 4.

3.4 Query independent ranking
One can use our method to compute a query indepen-

dent ranking, similar to PageRank, which we call non-biased
ranking (NBR). Non-biased-Rank is obtained by uniform
bias with each entry i of vl set to some constant value, say
1/n. This can be best visualized as a constant unit of flow
being introduced at every node, and we observing the steady
state flow at every node to be the rank of that node.

3.5 Comparison with existing methods
As outlined in Section 2, our method is closely related to

other methods that are based on Markov chain model. Two
such methods we discuss here are those proposed in [16, 10].

The PageRank method [16] solves an equation that is very
similar to that of NBR incarnation of our method (see (4)),
when vl is set to uniform bias, i.e. labels are found uniformly
at random on the graph, [1

n
]1×n. Al-though, the methods

used to solve the equations are different, the solutions will
be similar. We empirically compare this ranking found by
our method using non-biased ranking and compare it with
traditional PageRank in section 5.

The topic-sensitive PageRank method [10] uses a different
biasing vector for each topic. The biasing vector pj for topic
Tj is defined by

pji =

{ 1
|Tj |

when i ∈ Tj

0 otherwise
. (7)

The bias vector pj in very similar to vl in our case, except
for the fact that in our case |vl| 6= 1 and vl is biased towards
the documents that have more of label l in the anchor text
of their inlinks. Further, we do not need a classified set of
documents to set up our bias vector and can easily rank
fine grained topics. Our method also eliminates the need
to classify/disambiguate the queries before using the biased
ranks. The most important difference is that our method
provides dynamic ranking given a query belonging to any
topic.

4. THE SYSTEM
Our system is implemented using two indices. The first

is a reverse index which maps each label to a set of pages
i, if the anchor text on the in-links of these pages contain
that label. The mapping also stores the of value vl[i] and
the values of the unmapped entries are assumed to be zero.
The second index stores the sparse matrix representation
of the B matrix which can look up all the pages j that
are influenced by a particular page i, along with the value
of Bij . Non-existent j entries in the index mean that the
corresponding nodes are not reachable by page i and such
pages are assumed to have a reachable score of zero.

Figure 1: Indices in the Search Engine

We stem the labels using the standard Porter’s stemmer.

We remove stop-words, but do not used any synonyms or
thesauri. The indices are implemented as flat file indices
on a standard Linux box (Red hat 7.1) with the Reiser file
system. The machine is an IBM IntelliStation ZPro with
dual Intel Pentium III CPU running at 1 GHz, Dual SCSI
hard disks and a GB of RAM.

Given a Boolean query q which has labels and Boolean
operands, as a first step, we look up the label index for the
vector vl for each of the labels in q and further form a vector
vq based on the following rules:

• if q = l1 AND l2 , then vq=vl1⊥vl2 , which we have
implemented as ‘fuzzy AND’, vq[i]=min(vl1 [i], vl2 [i]).

• if q = l1 OR l2 , then vq=vl1>vl2 , which is ‘fuzzy OR’,
vq[i]=max(vl1 [i], vl2 [i]).

The second step is a sparse matrix multiplication of the
vector vq and the matrix B. We use a straight-forward
implementation in which each entry vq[i] is multiplied with
the ith row of the B matrix and the results are added in
memory to form the vector y that contains the ranking of
the documents for the query q. For the sake of performance,
we keep the entries in B sorted on their magnitude, so that
the top k results can be computed quickly. In theory, a
sparse matrix-vector multiplication is O(n2). However, in
practice, given the fact that we are interested in computing
only the top k ranks, we can limit the number of entries in B
to the top m to compute the ranks online. In section 5, we
discuss this heuristic in detail and show that it is practical
and scalable.

5. EXPERIMENTAL SETUP

5.1 Datasets
We have conducted experiments on two web based corpora

and a citation database to demonstrate the utility as well as
the scalability of our method.

5.1.1 Intranet Data
The first corpus contains a crawl of the IBM Intranet of

about 12 million pages. We removed the references to pages
that were not in the crawl but were linked by pages in the
crawl. We used the anchortexts as the edge-labels. We did
not have any node labels. We had about 150,000 unique
labels in the system that occurred at least thrice after stem-
ming. We also had access to 240 common queries and a pri-
mary result for each of the queries as judged by “experts”
[19]. Some of the queries were repetitive with the only dif-
ference being the case (upper or lower), number (singular or
plural), etc. We also cleaned up the answer URLs to handle
duplicates, moved URLs, and auto-redirections. We also
removed 39 query-answer pairs as the answer URLs were
outdated and not present in the current crawl. After re-
moving all such duplicate queries and non-existent answer
URLs, we had 165 unique query-answer pairs. These queries
were a mixture of navigational and informational type [1].
Since we do not have a full text index and are indexing
the anchor-text, we classified the queries based on number
of documents whose in-link’s anchor-text contains the labels
in the queries. The majority of the queries were navigational
with 132 of them occurring in more than 10,000 anchors.

5.1.2 Internet Data
The second dataset is a 30 million page crawl of the In-

ternet, starting from many popular media sites and music-
relates sites. We indexed 167,000 unique stemmed labels
from the anchor-text that occurred at least 10 times.

One of our goal is to compare our results with that of
topic sensitive PageRank [10]. We resorted to the dmoz1 to
obtain a source of human-rated pages on topics. Consider-
ing, only the “Top/Arts” topic of dmoz, since it is one of
the most populous and related to the crawl, we crafted an
experiment to compare these two methods. We first spotted
the pages in our crawl that belonged to the topic in question
and then retained half of the spotted pages (ground truth)
for “training”. We use the training data to set the on-topic
bias in case of the [10] and to build the vector vq in our
method. We used the remaining half as the test set where
we observe their average rank as ranked by the method in
[10] and our method.

To establish the ground truth (or golden data) for the
URLs in our crawl, we had to map the URLs to the closest
site/subsite in the dmoz directory. This was accomplished
by sorting both our list of URLs and the URLs in the < link
r:resource> tags of the dmoz RDF distribution and then per-
forming a pair wise merging, by mapping URLs in our list
to the closest URL in dmoz. The closeness is a simple lexi-
cographical closeness of URLs based on whether they share
a common domain name and a common directory structure.
For example, http://www.yahoo.com/index.html is close to
http://www.yahoo.com than to http://mail.yahoo.com. This
exercise was necessary as the dmoz is directory of the Inter-
net sites (not pages) and also could contain many sub-sites
of a same physical site site (http://www.geocities.com) under
different categories. We have used 2001 RDF distribution
of dmoz and the crawl we have used was completed in early
2002. The number of pages spotted at each level are shown
in the Table 2, where level 1 consists of all pages that fall
under the topic “Top/Arts” and all its subtopics, level 2
consists of all pages that fall under the subtopics of topic
“Top/Arts” (but not directly the topic itself), and so on.

5.1.3 DBLP Data
Digital Bibliography and Library Project (DBLP) dataset

has details of publications in the CS domain in the recent
years. We have used dblp XML distribution dated 9th of De-
cember 2003 2, which has 457,261 articles, 171,133 citations
and more than 300,000 unique authors. We constructed a
graph with articles and authors as the nodes and citations
as the edges. We also added directed edges from the article
nodes to their author nodes (Figure 2). The articles were
labeled with the text in the <title> tag and the edges were
labeled with text in the label attribute of the <cite> tags.
We also employed the standard Porter’s stemmer to reduce
the words in the labels to their base form. The dictionary
we built on all these labels had close to 20,000 unique words,
which occurred at least 10 times.

We obtained a few human edited list of researchers in com-
puter science from
http://dmoz.org/Computers/Computer Science/Theoretical/People/

http://dmoz.org/Computers/Algorithms/People/

http://theory.lcs.mit.edu/r̃ajiyer/theory folks.html .

1http://dmoz.org
2http://dblp.uni-trier.de/xml/

Figure 2: The structure of the DBLP graph

These contains a list of people working in theoretical com-
puter science along with a line of description of their area.
Our goal was to construct queries from the description line
and observe the corresponding rank of the person as re-
turned by our system. As these are human edited lists,
we can assume that these are popular researchers in this
particular area and should be ranked high. After merg-
ing these lists we had 92 unique people but some had more
than one description of their area. So, in total we had 278
query(description) people pairs. We cleaned up the descrip-
tion not to include names of the university, department etc.

5.2 Results
Armed with the three datasets, their respective sets of

queries and golden answers, we devised some experiments to
compare our method with existing methods for ranking. We
also conducted some experiments to measure the sensitivity
of our system in terms of querying time and quality of result
to the different types of query loads. Our experiment goal
was to observe at which rank (1 through n) our system and
the traditional ranking methods placed the golden answer
for a particular query. We consider the average rank of the
golden answer for all the queries as a measure of performance
in all our experiments. If the query contains no terms in
our label index, then we assume the ranking to be same as
that given by the uniform bias, i.e., the NBR. If the golden
answer does not appear in the ranked list, we assign it the
max rank in the system (n).

Through out these experiments, we have used β = 1, no
random jumps and the value of f(j,i,l) (defined in Sec. 2)
to be 1/outdegree(j) corresponding to the probability of a
random surfer going from node j to node i. Where ever we
have not mentioned explicitly, the max number of entries in
the B matrix is 100 and number of terms used to compute
B matrix is 10.

5.2.1 Traditional PageRank
We used a standard iterative implementation of PageR-

ank with random jumps [19] with the probability of a ran-
dom jump being set to 0.1. In the results shown in this
section, non-biased-Rank was obtained by computing static
rank with vl as uniform bias with each entry i set to 1/n.
The Edge-label biased ranking is obtained by our algorithm
with vl set to vq for each of the queries given by the experts.

The results summarized in Table 1 show that edge-label

Table 1: Average rank of intranet test URLs on 165
queries

PageRank Non-biased Edge-label
Rank biased rank

0.73× 106 0.31× 106 510

biased ranking has a very low average rank for the answers
to the experts’ queries in the intranet data. In fact, 62 of
the 165 queries returned the most preferable answer within
the top 10 ranks. 107 of the queries had the most prefer-
able answer within the top 20 ranks. All the answers were
present in the ranked lists, i.e., we never had to assume the
max rank for any of the answers. However, eight of the
queries had no matching labels, and we obtained the ranks
for the corresponding answers by their position in the non-
biased rank. The problem of non-matching labels is not very
acute, and can be circumvented by using a full-text index
and a classifier or a dictionary that finds the closest labels
to the query. If we remove these 8 queries, the average rank
further drops down to 28.43. Similar observations, where
label biased ranking outperforms PageRank can be made
with respect to the Internet data (as summarized in table
2).

5.2.2 Topic sensitive PageRanking
The next task was to perform ranking using topic sensitive

PageRank and our method. Topic sensitive PageRank needs
a classified set of pages on the topics in question. As we
do not have any classification on the intranet data, we com-
pared our method to this method on the Internet data. In
the case of topic sensitive ranking, we created a bias vector
v as given in (7) where topic set is the training set T .

In the case of ranking biased by edge-label we inspect all
the inlinks of the documents in T and collate all their anchor
text to formulate vq; where q is OR of all labels L(j, i) such
that page i ∈ T

We computed the ranks of the test URLs for each subtopic
by using both these methods and collated the average rank
level-wise. For example, we computed the ranks of the
test URLs under “Top/Arts/Music” by biasing the rank-
ing with the training URLs under the same topic, but col-
lated the average rank over all the topics in level 2, i.e.
“Top/Arts/Movies”, “Top/Arts/Television”, etc. The num-
ber of spotted pages cited in Table 2 is the total number of
pages that fall under the topic at the cited level. The to-
tal number of pages under level 1 and level 2 are the same,
since level 1 has only one topic and does not have any URL
directly assigned to it. However, there is a difference in av-
erage rank because the ranking is computed topic-wise and
averaged level-wise.

The results in table 2 shows that pages lower in the dmoz
tree have lower PageRank and further that biasing the rank
based on the topic helps. Rank biased by edge-label does
especially well for fine-grained ranking, which is exactly the
primary requirement of a search engine. Topic sensitive
PageRank performs well at broad topics (all document un-
der “Top/Arts”) but performs significantly worse than edge-
label biased ranking at deeper levels of dmoz. We believe
that the somewhat higher ranking by edge-label biased rank-
ing at the broad topic level is due to the presence of a large
number of anchors in the query.

Table 2: Average rank of WWW test URLs(×106)

level No. of PageRank topic-sensitive edge-label
page spots PageRank biased rank

1 132,428 4.128 0.11 0.32
2 132,428 4.128 0.18 0.208
3 102,568 3.94 0.18 0.141
4 87,202 3.91 0.24 0.126
5 73,812 3.78 0.41 0.112
6 33,067 3.55 0.71 0.08

5.2.3 DBLP: Anecdotes
There has been work [2] which provided keyword based

search on the dblp data, with ranking schemes to rank ar-
ticles and authors for a given query. Other commonly ap-
plied techniques is to rank authors by the number of publi-
cation in a particular area and/or the number of citations to
their work (http://citeseer.org/). We start with some anec-
dotal results to argue against ranking the authors/articles
by solely the number of publications/number of citations.
We argue that the quality of the articles that cited this ar-
ticle are also important, analogous to the PageRank on the
Web. As ranking has to be fined grained (very few authors
write in articles in varied number of areas and very few arti-
cles are referred from outside its area) this dataset is suited
for labeled biased ranking.

For the query “database”, Michael Stonebraker is ranked
9th when considering just the number of his publications in
the database area and number of citations to his publica-
tions, but moves up 2nd position after applying label biased
ranking. Similarly, Jeffery Ullman moves to the 1st posi-
tion from 6th. We observed similar movement of the rank
in the case of queries such as “approximation algorithms”
where David P. Williamson moves to the top of the list, “ge-
ometric algorithms” where Ketan Mulmuley moves into the
top 3. In the case of the query “transaction recovery” C.
Mohan’s original work on Aries is ranked on the top along
with Mohan himself; “query optimization” had the entry of
Surajit Chaudhari into the top 10 (though was not in the
top 10 of the generic “database” query).

5.2.4 Validation of Performance and Scalability
We now discuss some of the experiments that we per-

formed to obtain insights into our algorithm and to validate
the system that we built based on the algorithm.

In all these experiments, we consider the average rank of
the answers to the experts’ queries as a measure of accu-
racy of the system. One experiment was to determine the
effect of the number of terms computed in (6) on the av-
erage ranks of these golden answers. The number of terms
used to approximate B is in fact the number of iterations
in our algorithm. Figures 3, 4 and 5 plots the average rank
versus the number of terms used to compute the B for the
different datasets. Here, the number of terms = 0 stands for
the identity matrix and so on.

We find that the average rank starts to decrease with it-
erations and stabilizes after 6 or 7 iterations in the case of
Intranet. The DBLP data is quite shallow and has a lot of
dead-end nodes (mainly author nodes), hence we see that
average rank stabilizes after 4 to 5 iterations. The Web

Figure 3: Intranet: Average rank
plotted across number of terms
used to compute the B.

Figure 4: WWW: Average rank
plotted across number of terms
used to compute the B.

Figure 5: DBLP: Average rank
plotted across number of terms
used to compute the B.

data is quite dense and well connected (Average density of
the B matrix is 90) and takes 10 to 11 iterations to stabi-
lize. Another observation of this plot further strengthens
the premise that anchor text helps in searching [1]. The av-
erage rank when number of terms = 0 (i.e, when the identity
matrix is used) is just a ranking based on the document’s
in-link label distribution and this by itself does surprisingly
well.

Figures 3, 4 and 5 also plots the total flow of the system
versus the number of terms used to compute B. We can see
that the average rank saturates much before the total flow
saturates. This indicates that the rank of important pages
stabilizes fairly early and does not change.

The next obvious question that arises is the performance
of the system. As previously mentioned in Section 3, we
had a few heuristics to speed up the computations. One of
them is to consider only the top m reachable nodes in B
for every node i while computing the sparse matrix multi-
plication with vq. An experiment that helped us decide on
an optimal m was to measure the average rank of the same
golden answers across various values of m. This is plotted
in Figures 6, 7 and 8 where, m = 0 is the ranking based on
just in-link distribution of labels.

We also plot the average time taken to answer these queries
across various values of m in the figures 9, 10 and 11. The
time is total time taken (Java’s System.currentTimeMillis())
to compute the ranks given a query.

Figures 9, 10 and 11 shows that for m = 10, the average
time taken to answer queries is hardly 0.8 seconds for in-
tranet, negligible for the dblp dataset and around 2 seconds
for the Internet data, using a Java implementation. The
time taken to answer the query increases with m, the num-
ber reachable nodes. This is because the sparse vector and
sparse matrix multiplication tends towards O(n2) as number
of elements in the matrix increases. But, the saving grace
is that, figures 6, 7 and 8 show that for low values of m the
average rank is low, making this system viable. A notable
change in trend is in the dblp data set (time taken to answer
a query becomes constant after m = 100). This is due to
the fact that it is a sparse data-set with few links and low
reachability.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a flow-based model and an

efficient method to dynamically compute a ranking of docu-

ments for any given label in the anchor text. We established
a relationship between our method and traditional random
surfer models. We analyzed the convergence behavior of our
algorithm on arbitrary graphs, and provided the structural
conditions that G must satisfy for our algorithm to pro-
duce a label-biased ranking that is different from traditional
PageRank. Our method can be applied to the Web-graph to
obtain a ranking of hyperlinked documents biased by labels
in the anchor text. Our model is particularly well suited for
fine-grained ranking and does not use a classifier at any step
of the ranking process.

We built a system based on our method and conducted
experiments on three datasets. Our method gave average
rank lower that the average rank given by static PageR-
ank by more than an order of 1,000. Our method also gave
significantly better results than context-sensitive (or topic-
sensitive) PageRank at fine-grained topic levels. These re-
sults were obtained while keeping the average time to answer
a query quite low.

As future work, one can use thesauri to improve the per-
formance of our method at broad-topic levels. It will be
interesting to apply our model and extend our method to
classify pages, do focused advertising and detect “buzz”/hot
topics on the Web.

7. ACKNOWLEDGMENTS
We would like to express our gratitude to Raghu Krishna-

puram, Sridhar Rajagopalan and Andrew Tomkins for their
time and valuable discussions. We are also indebted to Srid-
har, Marcus Fontoura and their team-mates for giving us
access to the Intranet data of IBM.

8. REFERENCES
[1] E. Amitay, D. Carmel, A. Darlow, M. Herscovici,

A. S. L. Lempel, R. Kraft, and J. Zien. Juru at trec
2003 - topic distillation using query-sensitive tuning
and cohesiveness filtering. In Proceedings of The
Twelfth Text Retrieval Conference (TREC 2003),
Gaithersburg, Maryland, USA, 2003.

[2] G. Bhalotia, C. Nakhe, A. Hulgeri, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE, 2002.

[3] K. Bharat and M. R. Henzinger. Improved algorithms
for topic distillation in a hyperlinked environment. In
Proceedings of SIGIR-98, 21st ACM International

Figure 6: Intranet: Average
rank plotted across top m highest
reachable nodes from each row of
B matrix .

Figure 7: WWW: Average rank
plotted across top m highest
reachable nodes from each row of
B matrix .

Figure 8: DBLP: Average rank
plotted across top m highest
reachable nodes from each row of
B matrix .

Figure 9: Intranet: Average time
taken (ms) to answer a query con-
sidering m reachable nodes .

Figure 10: WWW: Average time
taken (ms) to answer a query con-
sidering m reachable nodes .

Figure 11: DBLP: Average time
taken (ms) to answer a query con-
sidering m reachable nodes .

Conference on Research and Development in
Information Retrieval, pages 104–111, Melbourne, AU,
1998.

[4] P. Bonacich. Power and centrality: A family of
measures. American Journal of Sociology, 92, 1987.

[5] S. Brin, R. Motwani, L. Page, and T. Winograd.
What can you do with a web in your pocket? Data
Engineering Bulletin, 21(2):37–47, 1998.

[6] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, and
R. Stata. Graph structure in the web. In In
Proceedings of the 9th International World Wide Web
Conference, pages 247–256, 2000.

[7] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg,
P. Raghavan, and S. Rajagopalan. Automatic resource
list compilation by analyzing hyperlink structure and
associated text. In Proceedings of the 7th International
World Wide Web Conference, 1998.

[8] S. Chakrabarti, B. E. Dom, S. R. Kumar,
P. Raghavan, S. Rajagopalan, A. Tomkins, D. Gibson,
and J. Kleinberg. Mining the Web’s link structure.
Computer, 32(8):60–67, 1999.

[9] N. E. Friedkin. Theoretical foundations for centrality
measures. American Journal of Sociology,
96(6):1478–1504, 1991.

[10] T. Haveliwala. Topic-sensitive pagerank: A
context-sensitive ranking algorithm for web search.
IEEE Transactions on Knowledge and Data
Engineering, July/Aug 2003.

[11] M. R. Henzinger. Hyperlink analysis for the web.
IEEE Internet Computing, pages 45–50, 2001.

[12] C. Hubbell. An input-output approach to clique
identification. Sociometry, 28, 1965.

[13] L. Katz. A new status index derived from sociometric
analysis. Psychometrika, 18, 1953.

[14] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46(5):604–632, 1999.

[15] M. Marchiori. The quest for correct information on
the web: Hyper search engines. In Proceedings of the
6th International World Wide Web Conference, Santa
Clara, April 1997.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford Digital Library
Technologies Project, 1998.

[17] G. Pinski and F. Narin. Citation influence for journal
aggregates of scientific publications: Theory, with
application to the literature of physics. Information
Processing and Management, 12:297–312, 1976.

[18] D. Rafiei and A. O. Mendelzon. What is this page
known for? computing web page reputations. In In
Proceedings of the Ninth International World Wide
Web Conference, 2000.

[19] J. A. Tomlin. A new paradigm for ranking pages on
the world wide web. In Proceedings of The Twelfth
International World Wide Web Conference, 2003.

