An ontological context model for representing a situation
and the design of an intelligent context-aware middleware

Preeti Bhargava* Shivsubramani Ashok Agrawala
Department of Computer Krishnamoorthy* Department of Computer
Science Department of Computer Science
University of Maryland, Science University of Maryland,
College Park University of Maryland, College Park
prbharga@cs.umd.edu College Park agrawala@cs.umd.edu

shiv@cs.umd.edu

ABSTRACT

A major challenge of context models is to balance simplic-
ity, generality, usability and extensibility. It is also impor-
tant that the model be practical and implementable. In pur-
suit of this goal, this paper proposes a context model, Rover
Context Model (RoCoM)), structured around four primitives
that can be used to represent and model any situation and
activity: entities, events, relationships, and activities. It in-
troduces the notion of templates of context for each primi-
tive and describes, albeit briefly, the RoCoM Ontology (Ro-
CoMO). It also describes the design and architecture of an
abstract, generic and intelligent context-aware middleware
called Rover II. We propose this framework as a solution to
address the context problem as a whole, and be usable in
many domains. We also illustrate its application with the aid
of a context-aware public safety application that is deployed
in the UMD campus.

Author Keywords
Context-Aware Computing, Context Modeling and Repre-
sentation, Context-Aware Middleware, Situation Modeling

ACM Classification Keywords
H.5 Information interfaces and presentation; 1.2.4 Knowl-
edge Representation Formalisms and Methods

General Terms
Design

INTRODUCTION

Many computer query outcomes are significantly improved
by the use of context information. Many effective decisions
and actions require that the context be explicitly considered.
When searching for a well-reviewed restaurant, a preference

*These authors contributed equally to the work.

Copyright is held by the author/owner(s).
UbiComp ’12, Sep 5-Sep 8, 2012, Pittsburgh, USA.
ACM 978-1-4503-1224-0/12/09.

for vegetarian food will influence the selections a user wants
displayed first. An excellent restaurant may have only lim-
ited vegetarian options; although this restaurant may be fa-
vorable to non-vegetarians, the context of the vegetarian user
is important. Clearly, making applications context-aware
will improve results.

Although context-aware applications can be developed piece-
meal, a common context-aware system enables easy inte-
gration and communication between applications. Such a
system can store, intelligently process, reason over, merge
and learn from contextual information available from het-
erogeneous sources without coordinating each pair of appli-
cations. It will also shift the burden of acquiring, storing,
reasoning and other processing of context away from mobile
devices with limited resources and computing power and on
to a central system which is resource rich and has ample
computing power. Moreover, these applications can com-
municate contextual information with one another through
such a system, which stores and handles context. Each ap-
plication need only communicate through a common inter-
face with the system to share context with other applications;
there is no need to coordinate each pair of applications to
share information.

To be effective and efficient aids to decision making, context-
aware systems should be universally applicable and support
a wide array of functionalities for using and passing around
contextual information. The context model, which forms
the underlying framework for representing context in the
context-aware system, should be simple, general, flexible
and expressible. We present such a context model in this
paper, which focuses on simple, extensible and general rep-
resentations of both context and its relationship to different
elements of the system. It is abstract enough to manage var-
ious dimensions of context such as location, time, and user
profile. It is general enough to allow additions of context
categories without redesign, while remaining usable across
many applications.

We also present the design of a context-aware middleware,
Rover II, based on this context model which will serve as an
integration platform for mobile and desktop applications. It
provides a means to store and retrieve contextual informa-
tion, and also facilitates providing relevant services to the

Location Streaming
Service J§l Service

Service Tier

Context Tier

Application Handler

Client Handler

Interface Tier

Weather,
External. Trafficelc....
: Service
L ;
Information Gateway Context
Engine

Context
Information

Figure 1. Rover II ecosystem architecture

applications so that the contextual information can be used
more effectively. It communicates with third party services
and external databases for gathering contextual information,
consolidating it and presenting it to client applications in a
pertinent way. It is also designed to have advanced con-
text usage functionalities such as learning from past con-
text(context history) and context reasoning.

Thus, our objectives in this paper are to:

e Explain context, context models, context-aware systems
and middleware,

e Describe our context model - Rover Context Model (Ro-
CoM) and compare it with existing models,

e Briefly describe the RoCoM Ontology (RoCoMO),

e Present the design of Rover II ! the context-aware mid-
dleware and integration platform that we are developing.
This platform is being built on top of Rover 1.0 [2] which
relied on 8-tuple context entries store and represent con-
text, and

o Illustrate the practical aspects of RoCoM and Rover II
through M-Urgency [14], a context-aware public safety
application

Figure 1 shows a high-level design of the Rover II ecosystem
architecture. An ecosystem here is a logical view of how
different entities interact with the context-aware system. The
3 tiers in the architecture are:

"Note that the development of Rover II is an ongoing effort and we
present the current state of the system in this paper.

1. The interface tier enables client applications to communi-

cate with Rover. Client applications can run on desktops,
tablets, or mobile phones.

2. The core tier or context tier where storage, processing and

propagation of contextual information takes place.

3. The service tier which provides additional services such

as streaming services, location based services, third party
web services or external databases to supplement the con-
textual information.

CONTEXT, CONTEXT MODELS AND CONTEXT-AWARE
SYSTEMS : AN OVERVIEW

Context
The most quoted definition of context, amongst all the defi-
nitions available, is by Dey [7],

Context is any information that can be used to charac-
terize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the inter-
action between a user and an application, including the
user and applications themselves.

The general notion of context is vague, so it is useful to con-
sider concrete examples. Location and identity can both be
considered as properties of an entity and hence its context. A
motor disability is also part of the person’s context. This dis-
ability can play an important role in situations with tasks re-
quiring movement. In the real world, context is essentially a
property or an attribute of any of the elements of the context-
aware system. This includes an entity’s ability to carry out
an activity, or the role that the entity plays in an activity.

Context can have a type, a description and a value that can
be discrete or nominal. It can also have a hierarchical struc-
ture.

Context Models

The context of any entity may include a very large number
of items at any given time. But depending on the current sit-
uation and goals, only a few of these items may be pertinent.
This defines the relevant context. Thus, the relevant con-
text is a subset of the overall context, and is likely to change
as the situation changes and even as additional information
becomes available. To process relevant context in a context-
aware system, a framework for storing and representing con-
text is necessary. This framework is called a context model.
The context model must be general since, at design time, we
do not know what information will be relevant to all applica-
tions. New applications may require new types of contextual
information. Bolchini et al, in their survey of context models
[3], define the essence of the context design problem as one
in which “the modeling of elements, that affect the knowl-
edge/services/actions that have to be made available to the
user at run-time, when a context becomes active, is carried
out according to the application domain.”

To this end, they analyzed the existing context models and
developed a framework to evaluate and assess them. They
specified certain common features that characterize the ex-
isting context models. These features are categorized as:

e Context dimensions - This category includes the set of
context dimensions managed by the model. Examples are
location, time, context history, subject, and user profile

e Representation features - This category includes the gen-
eral characteristics of the model. Examples are flexibility,
context granularity, and context constraints.

e Context management and usage - This category focuses
on the context itself and its management, use and exploita-
tion. Examples are context construction, reasoning, con-
text information and quality monitoring, automatic learn-
ing features, multi context modeling, contextual ambigu-
ity and incompleteness management.

An ideal context model is one which incorporates the most
useful of these features and characteristics. As evident by
their survey, it will serve efficiently in any domain and will
be abstract enough to manage all the dimensions of context
such as location, time, and user profile. It will be versatile
enough to have a rich set of representation features such as
flexibility, context granularity and constraints. It will also be
advanced enough to incorporate a variety of context usage
functionalities such as context construction and reasoning,
context information and quality monitoring, automatic learn-
ing features, multi context modeling, contextual ambiguity
and incompleteness management. Representation of context
should be simple and expressible so that any complex piece
of contextual information can be easily represented; flexible
and extensible so that it can allow expansion and contraction
of context; and general so that it can represent contextual
information in any domain. We incorporate these require-

ments of context modeling in a simple, extensible, general
and expressible context model, RoCoM and its underlying
ontology - RoCoMO.

Context-aware Systems and Middleware

Dey et al [8] state, “A system is context-aware if it uses con-
text to provide relevant information and/or services to the
user, where relevancy depends on the user’s task.” They fo-
cus on adaptiveness of the application rather than change
in its behavior. They also specify certain features that a
context-aware application should support: presentation of
information and services to a user, automatic execution of
a service for a user and tagging of context to information to
support later retrieval.

Middleware is considered an indispensable component of
context-aware environments. Ranganathan et al [17] argue
that ubiquitous computing environments must provide sup-
port for middleware. This is because the middleware would
provide uniform abstractions and reliable services for com-

mon operations and would simplify the development of context-

aware applications. It would be agnostic to hardware, op-
erating system and programming language. It would also
allow us to compose complex systems based on the inter-
actions between a number of heterogeneous and distributed
context-aware applications. More importantly, it would pro-
vide support for complex tasks such as acquisition of con-
textual information, reasoning about context using mecha-
nisms like rule based or temporal or spatial reasoning as well
as learning from context using mechanisms like Bayesian
networks, neural networks, reinforcement, supervised and
unsupervised learning and modifying its behavior based on
the current context. It would also define a common model
of context which will ensure that different applications in
the ubiquitous environment have a common semantic under-
standing of contextual information. They also specify cer-
tain requirements for middleware for context-aware systems
in ubiquitous environments, which in today’s terms mean:

1. It should support collection of context information from
heterogeneous sensors and services and the delivery of ap-
propriate context information to different applications.

2. It should support inference of higher level contexts from
low level sensed contexts

3. It should provide tools for different kinds of reasoning and
learning mechanisms

4. Tt should allow applications to behave differently in dif-
ferent contexts easily

5. It should enable syntactic and semantic interoperability
between different applications and services (through the
use of ontologies)

Related Work in Context Modeling, Context-aware

Systems and Middleware

As part of their survey, Bolchini et al [3] also identify five
categories of models and context-aware systems based on
the main focus of the model, the representation of context

T
2
™
=
c
a
o
3 &
L] -
H =
a = =
T 2 = ” b
2 2 E E 5
B 3 §| ¢ F
g & 5 3w
2 o L] - g t £ o =
i = £ -] =] 2 = 2 x
] = - o 2 0 3]
9 5 e L £ # 7 b £ E
] % G o 5 o H il v g
£ = 3 = 5] H - o > o il
ooy 3 B o2 & £ g g B 2
2 o 3 3 8 - i T = 3 g £ =
s El g § & & s s & § & & 3
System " F 3 g @ = > > T [v] v} a 2
ACTIVITY + A + 1] F + + C + +
CASS + + + U D +
CoBrA + + A A E + D + +
ConceptualCM + + R + A R + C + + +
Context-ADDICT + + R/A A R + + + C
GraphicalCM + + R A F + C +
SOCAM + + R/A A F D +
Context Toolkit + + A A F + + C +
Hydrogen Project + + R 1 R + D
Rover + + R/A + u F/R + + C +
Rover-ll + + R/A + U F/R + + [+

Figure 2. Context Models, Context-aware Systems and Middleware - A Comparison

and the usage of context. A system which covers all these
categories will address the context problem as a whole and
be applicable in any domain. These categories are:

e Channel-device-presentation — This category of context-
aware systems are application-centric, with limited man-
agement of location and time. They have limited flexibil-
ity and are characterized by centrally defined context.

Location and environment — These models provide accu-
rate location and time management, high degree of flexi-
bility and centralized definition of context.

User activity — This category of models focuses on the
user and the user’s activity as the main subject.

Agreement and sharing of distributed context — These fo-
cus mainly on information and context sharing. Context
definition is distributed and context quality monitoring and
ambiguity are the key issues.

Selecting relevant data, functionalities and services — These
cater towards using context to determine which informa-
tion, functionalities and services are relevant to the user.
The application is the main subject of the model and con-
text dimensions such as time and location are accurately
provided.

A context-aware system, that captures all the features of these
aforementioned categories, will focus on the context prob-
lem as a whole, and will be abstract and generic enough to
be applicable in any domain or environment.

Some of the contemporary context models, context-aware
systems and middleware, which cover all the categories iden-

tified by Bolchini et al in [3], include ACTIVITY [12], an
Activity Theory based model which encapsulates context as
a set of elements that influence users’ intentions while doing
some activities. The model appears to be in its nascent stage
and the implementation details are not very lucid. In [20],
Yang et al, describe an ontology based context model called
U-Learn which is specific to learning environments.

Figure 2 presents a more detailed comparison of Rover and
Rover II with a few other context models, context-aware sys-
tems and middleware. It is an extension of the analysis done
by Bolchini et al [3]. Here, we have highlighted the systems
for which we found concrete implementation details in the
literature. CASS [9] is a centralized server-based context
management framework with distributed sensors. It consists
of a sensor listener and a rule engine. CoBrA [6] consists of
a Context Broker for sharing contextual information, a Con-
text Knowledge Base, and a Context Acquisition Module,
but is too specific to the domain of meeting management. In
Context-ADDICT [4], a tree based structure called Context
Dimension Tree is proposed, which can be used to represent
context at different levels of granularity. However, the model
lacks features like context history and reasoning. Graphi-
calCM [10], a theoretical context model, focuses on con-
text quality and its temporal aspects. Context Toolkit [18]
is a context-aware system for distributed setting with a peer
to peer architecture. It consists of distributed sensors and a
centralized discoverer. The Hydrogen project [11] follows a
completely decentralized architecture with two devices ex-
changing contextual information as soon as they discover
that they are in close proximity.

Most of the proposed models in the literature are user cen-
tric, and the context of a situation is defined only with re-
spect to the entities involved in it. RoCoM considers (in
addition to the entities), events, activities, their properties,
and the relationships between them. Moreover, most of the
systems and middleware proposed are too specific to a par-
ticular domain in their implementation, or are general but
only conceptual. To address these shortcomings, we have
developed RoCoM and Rover II. RoCoM is simple so that
it is easy for designers to translate real world concepts to
the modeling constructs, and it is general so that it can be
used in many domains. It represents various dimensions of
context such as location, identity, time, as well as the appli-
cation and user. It is an ontological model and the modeling
language being used for its implementation is the Web On-
tology Language (OWL) which lends its flexible, expressive
and extensible power to it. Rover II is being designed to
support all the requirements of middleware in ubiquitous en-
vironments as mentioned in [17] - It supports integration of
different mobile applications and collection and storage of
information from heterogeneous services, provides support
for inference, reasoning and learning and uses an ontolog-
ical context model (RoCoM) to allow a common semantic
framework for representing context.

Moreover, Ye et al [21] propose the following coarse-grained
criteria to assess ontologies in pervasive computing environ-
ments:

o Clarity and Coherence: Ontological concepts must be unique,

unambiguous and distinguishable through their properties
and constraints.

e Ontological commitment: Ontologies should make suf-
ficient claims about the domain to support the intended
knowledge sharing and reuse. If too many claims are
made on a domain, the extensibility of ontologies is lim-
ited; however, if too few are made, the range of applica-
tions that can actually use the ontology will be reduced.

e Encoding bias: Ontologies should be specified at the knowl-
edge level without depending on a particular symbol-level
encoding.

o Extensibility: It should be easy to add new terms to on-
tologies without causing ambiguity.

e Orthogonality: General concepts should be defined as in-
dependent and loosely coupled atomic concepts.

Based on their analysis, they conclude that most of the con-
text ontologies have several shortcomings and SOUPA [6]
and CoBrA-Ont [5] are the only ontologies that come close
to satisfying these requirements. However, for our purposes
of modeling every situation in terms of the four primitives
of RoCoM and setting a goal for the context-aware system
to address the shortcomings of other context models, nei-
ther of these ontologies is adequate. In addition, the prob-
lem with some of the general and exhaustive ontologies like
OpenCyc [15] is that they become too cumbersome to use
in a system designed for efficient and effective use in real
time. We believe that it is not possible for a finite number

of people to enumerate all the possible concepts, and the re-
lationships between them, that could be used in a practical
context-aware system. Hence, in our opinion, it is best to
develop a generic base ontology and make it extensible. Ro-
CoMO is currently being developed in OWL2 DL [1] that
is expressive, versatile and supports reasoning. It also sat-
isfies the assessment criteria mentioned above its concepts
are unique, unambiguous and clearly defined; it is extensible
and hence not restricted to a single domain; and it does not
have any encoding bias.

ROCOM AND ROVER Il ARCHITECTURE

Primitives

RoCoM is an ontological model built around four primi-
tives that can used to describe a situation and its associated
context. These primitives are the building blocks of every
context-aware system built on RoCoM. Each piece of con-
textual information is associated with at least one of these
primitives. The primitives are:

1. Entity - An individual element of the context-aware sys-
tem, such as a person, a place, an organization, or a com-
puting device. The properties or attributes of an entity
constitute its context. An entity can be classified as phys-
ical or virtual; permanent or transient; single or group.
Typically, entities would be specific to a situation. For in-
stance, in the case of an accident, an entity involved can
be a person, place, car, building, etc.

2. Activity - An activity occurs for a fixed time and causes

a change in context. Every activity is driven by a desired
outcome or an implicit goal that can be long term or short
term. The goal ceases to exist once the activity to achieve
it has been performed. There can be interaction or coordi-
nation between different activities to achieve the common
goal. Every activity is performed by one or more enti-
ties and derives a part of its context from those entities.
It should also have some executable or action associated
with it, which is required to carry out the operations nec-
essary for the activity to achieve the goal. An instance of
an activity can be calling Emergency Response Service to
dispatch help to an accident victim.

3. Event - An event has one or more entities involved in it

and can consist of one or more activities. Every event will
have a start time and/or end time, along with a duration,
associated with it. An event catalyzes the context-aware
system and sets the implicit goal for it. This goal can then
be further broken down into its subgoals for each of the
activities. An event has its own properties or context, and
inherits the context of entities and activities involved in
it. For example, a road accident can be considered as an
event that catalyzes the context-aware system to launch an
emergency response.

4. Relationship - A relationship describes how two primi-

tives relate to each other. A relationship can also have
context. Relationships can be derivative or transitive i.e.
if primitive A has a relationship with primitive B, which
in turn has a relationship with primitive C, then A may
also have a relationship with C.

communicate

externalactivit
¥ [—

internalactivit

)

i aclivity

]

murgencyassignm

2| e
B
&
2
:

building

virtualentity i=—{ environment P E A

1
5|2
I E I

4 openspace
‘ . ! 5 - elevator
S 4 i — =

roadveticle =

) physicalentity

N : " | watervehicle

g o

i rganization - e governmentargan - _
— ization
N e

il

oo
T
3
]
5
&

Figure 3. Partial description of the RoCoM Ontology

Templates

An important element of our model design, which makes it
practical and implementable, is the concept of a Template.
A template is a predefined default structure for any primi-
tive. It can take the form of an information model in case of
an entity, describing what contextual information the entity
can possibly have. It can also take the form of a sequence
of actions and executables for an activity or an event. For a
relationship, it can simply describe what primitives are part
of the relationship. The template for a primitive contains el-
ements of its complete context. The information for some
of the elements may not be available, in which case the tem-
plate can have placeholders that will be replaced when the
information becomes available.

RoCoMO is being implemented in OWL using the Protege-
OWL editor [16]. The templates for primitives are essen-
tially formalized descriptions of the top level classes and de-
rived sub-classes in RoCoMO. An individual instance of a
primitive can be obtained by instantiating a template. The
attributes of an individual represent its contextual informa-
tion. The RoCoM Ontology includes the following top level
classes:

e entity - This class can have several sub-classes to repre-
sent individual entities in a domain. For instance,“ per-
son” is a subclass of “physicalentity” which is a subclass
of entity. The following shows a fragment of the “person”
template including the object property ‘daughter’ and two
data properties - ‘likesfood’ and ‘likespets’, an individual
named “xyz” of that class with those properties specified.

(Class rdf:about="&person:person”)
(rdfs:label xml:lang="en") person {/rdfs:label)
{rdfs:subClassOf rdf:resource="http://www.semanticweb.org/pt ies/rover/rdf

dl P
(/Class)
(ObjectProperty rdf:about="person;daughter”)
(rdf:type rdf: »&owl;FunctionalProperty™/)
(rdf:type rdf:resource="&owl;InverseFunctionalProperty™/)

(rdfs:label xml:lang="en” (daughter {/rdfs:label)
(rdfs:subPropertyOf rdf:resource="&person;contact™/)
(inverseOf rdf:resource="&person:father”/)
(inverseOf rdf:resource="&person;mother”/)
(/ObjectProperty)
(DatatypeProperty rdf:about="&person:likesfood™)
(rdfs:label xml:lang="en") likesfood (/rdfs:label)
{rdfs:subPropertyOf rdf:resource="&person;likes"/)
(/DatatypeProperty)
(DatatypeProperty rdf:about="&person:likespets™)
(rdfs:label xml:lang="en") likespets (/rdfs:label)
(rdfs:subPropertyOf rdf:resource="&person:likes™/)
(/DatatypeProperty)
(NamedIndividual rdf:about="&person:xyz”)
(rdf:type rdf:resource="&person;person”/)
(rdfs:label xml:lang="en") xyz (/rdfs:label)
(person:likespets rdf:datatype="&xsd:string”) dogs (/person:likespets)
{person:likesfood rdf:datatype="“&xsd;string”) indian {/person:likesfood)
(/Namedindividual)

e event - Several subclasses can be derived from this top
level class to represent specific events such as “accident”,
“wedding” etc.

e activity - This top level class can be used to derive several
subclasses like “call”, “assign” etc.

e relationship - A relationship can be between two classes
(subclass/superclass), a class and an individual (member)
or a specific relationship between two individuals (object
properties).

Figure 3 shows a partial description of the RoCoM Ontol-
ogy. The encircled concepts show the application specific
(application being M-Urgency in this case) concepts that can
be derived from the top level core concepts. The complete

details of RoCoMO are beyond the scope of this paper. For
a detailed explanation of how a situation can be visualized,
please refer to [13].

Rules

Context reasoning involves using the contextual information
in an intelligent manner. It is used in checking the consis-
tency of context and also in deriving high level (implicit)
context from low level (explicit) context [19]. One of the
simplest techniques of reasoning that will be carried out in
Rover II is rule based inference. A rule describes a change
in context for any of the primitives and can be used to infer
new contextual information from already existing contextual
information. Rules can be system specific or application spe-
cific. For instance, when an emergency call is made on M-
Urgency, the change in context of the caller can be described
in terms of the following rule:

currState(dispatcher,available) A onCall (dispatcher,true) — currState(
dispatcher,busy)

More complex techniques for reasoning can also be adopted
such as probabilistic reasoning or first order logic etc. While
the system specific rules will be built into the reasoning mod-
ule at the time of implementation, the application specific
rules will have to be provided by application developers.

Rover Il architecture

Rover [2] is a context-aware middleware and integration plat-
form that caters to the development of context-aware mobile
applications. Our framework uses a paradigm for handling
context information that includes user specific context com-
bined with common context. The next version — Rover II
[13]is in its early stages of development. The context model
mentioned in the previous section forms the crux of Rover
II.

We have designed the architecture of Rover II keeping three
essential features of context-aware systems in mind, namely
customization, adaptability and interactivity[2] as well as
the requirements of middleware in ubiquitous environments
[17]. The system is meant to be used as an auxiliary deci-
sion making support aid to a human entity. Thus, the final
decision of taking any action, based on the contextual infor-
mation provided by Rover II, rests with the human decision
maker.

Figure 4 depicts the detailed design of the Rover II Context
Tier. The three layers are:

1. Service Interface - This layer interfaces with third party
services that could be Web Services, REST based services
etc. It will also provide CRUD operations for external
databases.

2. Client Interface - This layer interfaces with the client ap-
plications. The interaction can be through TCP sockets or
through Remote Procedure Calls.

3. The Rover Core - This layer forms the core layer of Rover.
It consists of several modules that handle and propagate
the context:

(a) The Controller is the main kernel, which schedules
different processes running inside the Rover Core and
passes around the context from one module to an-
other.

(b) The Relevant Context module determines the rele-
vant context for each primitive, based on predefined
primitive templates stored in the Template Store.

(c) Primitives Templates module is used to fetch the tem-
plates for any of the primitives from the Template
Store.

(d) The Reasoning Engine module will perform infer-
ence and reasoning about complex situations using
rule based reasoning, probabilistic reasoning and first
order/predicate/temporal/spatial logic.

(e) The Learning Engine will be capable of learning about
application and user behavior from context history
using learning and data mining techniques like super-
vised or unsupervised learning, reinforcement learn-
ing, Naive Bayes Classifiers, Hidden Markov Models
to model causal relationships etc.

(f) The Activity Manager is responsible for the execu-
tion of all the activity(s) that form an event, until the
Goal of the event or activity has been achieved.

(g) The UI Console is the user interface for a human en-
tity, for making decisions based on the contextual in-
formation provided by the Controller.

(h) The Context Store contains the aggregation of con-
text for every instance of primitive whether an entity
or relationship etc.

(1) The Template Store contains the predefined template
for each primitive.

When a client application or device initiates a session with
the Rover Core; an Event or Activity primitive is instan-
tiated, from its corresponding template, for that client de-
pending on the application signature. The Event template
will contain the Goal for that event. The Controller obtains
the template for the primitive (activity or event) from the
Template store through the Primitives Templates module,
and instantiates it. The template may require other primi-
tives such as sub-activities, entities and relationships, which
form a part of the event or activity, to be instantiated as well.
Once the instances have been created, the Activity Manager
module is triggered. The Activity Module starts managing
the activities and the entities involved in those activities to
complete the designated goal as defined by the Event. The
Activity Manager invokes the Relevant Context module and
obtains the Relevant Context for each of the primitives in the
activity from the Context Store.

ILLUSTRATIVE APPLICATION - M-URGENCY

M-Urgency is a public safety system that significantly ad-
vances how emergency calls are handled. M-Urgency en-
ables a person to connect with an emergency dispatcher and
establish an audio and video stream, that can be forwarded
to police squad car(s) or other first responders nearest to the
location of emergency. The M-Urgency system comprises
three applications: the caller application from the emergency

’ Service Interface (to the Service Tier) ‘

Relevant
Context

Primitives
Templates

Template

Rover Core

Activity
Manager

Activity

’ Client Interface (to the Interface Tier)

Figure 4. Rover II Context Tier

site, the emergency dispatcher application and the emergency
responder application.

M-Urgency presents information that facilitates time-critical
decisions by the dispatcher and responder. The dispatcher
and the responder are provided with contextual information
such as:

e Relevant information about the user, e.g. disability or spe-
cial needs, gender, etc. so that they can dispatch aid ac-
cordingly.

e The users’ real time location that is reflected on a map
interface even when he or she is mobile.

e Additional information, such as weather and traffic, to
gather the context of the incident scene.

The basic functionalities of the application have been devel-
oped. We are in the process of deploying a pilot system at
the University of Maryland Police Department.

Figure 5 illustrates the involved entities, their associated con-
text, and their relationships in a car accident situation. This
situation can be represented in terms of the primitives of Ro-
CoM as the following:

Event

A road accident is a good example of a trigger event. An M-
Urgency caller contacts the police dispatcher and starts the
flow of video, audio, and location context into the system.
This catalyzes the context-aware system and sets the goal as
informing and seeking help of the emergency personnel.

Entities
A few of the entities involved in the aforementioned event,
along with some of their relevant contextual information are:

e Caller - age, location, medical history(of the victim) etc.

e Dispatcher - availability, serving jurisdiction etc.

e Police or Medical responder - availability, experience or
expertise, location etc.

e Vehicle involved in the accident - make and model, color
etc.

o Place of accident - location, whether a highway or a local
road etc.

Activities

An event template may include numerous activities aiming
at achieving the goal that is implicitly by the event. Each
activity brings in some change in the context of the entities
involved in it. For a traffic accident, the goal is to ensure
safety and well being for the involved parties. A few of the
activities and the subsequent contextual changes are:

e Call the police dispatcher: the status of the dispatcher be-
comes busy or unavailable for another call and the con-
text of the caller changes from victim or witness to an
“informer”

e Dispatcher assigns police responder to the accident: the
status of the police responder changes to busy or assigned
and dispatcher becomes available for the next call

o Vehicle is towed away: the context of the place changes
from traffic block to slowly moving traffic and the context
of the medical personnel changes to “attending a patient”

Relationships
The relationships between the primitives involved in the ac-
cident are:

e caller-event: caller is a witness of the event. (It could be
the victim also.)

e vehicle-passenger: the passenger is the owner of the car
(thus, some information about the passenger could be ob-
tained understanding this relationship).

age
location

informs

@patcher

assigns

availability
location

Police

Activities

Ensure safety and well being
Call EMS
Assign First Responders
Traffic safety and direction
Medical care

make, model
license plate

transports

@. medical history

injuries

medical city intersection
lat, long

availability
location

_—
Relationship

Figure 5. Representing a car accident situation using RoCoM

o dispatcher-officer/medical responder: the responders ac-
cept the dispatcher’s requests and are available for service

e car-place: car will have a relationship with the place as a
hindrance to the traffic flow

e medical responder-passenger: has the ability to access or
even update his/her medical records

M-Urgency and Rover Il

In this section we explain how the M-Urgency applications
make use of Rover II as an emergency call is made. > Here,
we provide only an instance of what happens in Rover when
a connection is made from an M-Urgency caller.

Consider the event of a road accident, the caller application
establishes a connection with the Rover system. The Rover
Core maintains an Event Template for the different appli-
cations designed to work with Rover. Once it recognizes
a connection coming in from an M-Urgency caller applica-
tion, it conveys to the Controller, the set of activities that
are to be executed immediately. The activities could be: in-
form the dispatcher application about the caller, establish a

*M-Urgency is only one of the many applications that can inter-
act with Rover II and exchange contextual information with other
applications. Rover II can also coalesce information from other
applications and third party services and reason and learn from it.
The only criterion is that the applications provide the contextual
information to Rover using RoCoMO templates

connection between the caller application and the stream-
ing server (service tier) to begin the audio/video transmis-
sion, fetch the user’s information from the context storage
etc. The Controller instantiates these activities. The Activity
Manager manages each activity by informing the change of
context of each primitive involved, to the Controller. For ex-
ample, once a call is forwarded to a dispatcher application,
the context of the dispatcher changes to *busy’. Any further
immediate call is to be forwarded to another connected dis-
patcher. The Activity Manager invokes the Relevant Context
module to filter the relevant contextual information about the
user. When an M-Urgency call is made, the user’s medical
history would be a piece of relevant information but not his
choice of food or hobbies etc. Also, contextual information
like the location of the caller is obtained from the applica-
tion. The relevant information is provided to the Dispatcher
application along with the audio/video stream through the
streaming server, thus establishing a full connection from
the caller to the police department.

CONCLUSION AND FUTURE WORK

We presented in the paper, a context model RoCoM that we
have adopted in the context-aware middleware and integra-
tion platform called Rover II, both being developed by us.
RoCoM represents both context and its relationship to prim-
itives in a simple, extensible and generic context ontology.
It is general enough to allow additions of context categories
without redesign, while remaining usable across many appli-
cations. The RoCoM Ontology that was described briefly in

the paper is currently being designed and developed. We are
also in the process of developing a GUI based extension or
plugin to allow other users to use the ontology and extend it.
Our context-aware middleware, Rover I1, is also in its initial
stages of development. It is abstract and generic, and can be
adapted to any domain. It maintains a predefined structure
for each of the primitives, termed as a template, which helps
determine the contextual information for each primitive. It
also incorporates a wide variety of functionalities and is us-
able in multiple ways. In addition, we illustrated the model
and the system with the aid of a context-aware public safety
application developed by us.

In the future, we plan to integrate several applications with
Rover, allowing it to reason over information from differ-
ent sources as well as learn from context history using sev-
eral reasoning, inference and learning mechanisms. Also,
contextual information from applications and sensors can al-
ways have a certain amount of uncertainty associated with it
and thus Rover II should be able to handle that. Other as-
pects to consider in the design of Rover II are: security and
authentication, logging and data distribution.

REFERENCES
1. Owl 2 web ontology language document overview
http://www.w3.org/tr/ow]2-overview/.

2. C. B. Almazan. ROVER: Architectural Support for
Exposing and Using Context. PhD thesis, University of
Maryland, College Park, 2010.

3. C. Bolchini, C. Curino, E. Quintarelli, F. Schreiber, and
L. Tanca. A data-oriented survey of context models.
ACM SIGMOD Record, 36(4):19-26, 2007.

4. C. Bolchini, C. Curino, E. Quintarelli, F. A. Schreiber,
and L. Tanca. Context-addict. Technical report, Dip.

Elettronica e Informazione, Politecnico di Milano,
2006.

5. H. Chen, T. Finin, and A. Joshi. An ontology for
context-aware pervasive computing environments. The
Knowledge Engineering Review, 18(03):197-207,
2003.

6. H. Chen, F. Perich, T. Finin, and A. Joshi. Soupa:
Standard ontology for ubiquitous and pervasive
applications. In Mobile and Ubiquitous Systems:
Networking and Services, 2004. MOBIQUITOUS 2004.
the First Annual International Conference on, pages
258-267. Ieee, 2004.

7. A. Dey. Understanding and using context. Personal and
ubiquitous computing, 5(1):4-7, 2001.

8. A. Dey and G. Abowd. Towards a better understanding
of context and context-awareness. In CHI 2000
workshop on the what, who, where, when, and how of
context-awareness, volume 4, pages 1-6. Citeseer,
2000.

9. P. Fahy and S. Clarke. Cass—a middleware for mobile
context-aware applications. In Workshop on Context
Awareness, MobiSys. Citeseer, 2004.

10

11.

12.

13.

14.
15.
16.

17.

18.

19.

20.

21.

. K. Henricksen, J. Indulska, and A. Rakotonirainy.
Modeling context information in pervasive computing
systems. Pervasive Computing, pages 79-117, 2002.

T. Hofer, W. Schwinger, M. Pichler,

G. Leonhartsberger, J. Altmann, and W. Retschitzegger.
Context-awareness on mobile devices - the hydrogen
approach. In Proceedings of the 36th Annual Hawaii
International Conference on System Sciences
(HICSS’03) - Track 9 - Volume 9, HICSS ’03, pages
292.1-, Washington, DC, USA, 2003. IEEE Computer
Society.

M. Kaenampornpan and E. ONeill. An integrated
context model: Bringing activity to context. In Proc.
Workshop on Advanced Context Modelling, Reasoning
and Management. Citeseer, 2004.

S. Krishnamoorthy, P. Bhargava, M. Mah, and

A. Agrawala. Representing and managing the context
of a situation. to appear in The Computer Journal,
2012.

M-Urgency. http://m-urgency.umd.edu/.
OpenCyc. http://opencyc.org/.

Protege-OWL.
http://protege.stanford.edu/overview/protege-owl.html.

A. Ranganathan and R. Campbell. A middleware for
context-aware agents in ubiquitous computing
environments. In Proceedings of the
ACM/IFIP/USENIX 2003 International Conference on
Middleware, pages 143—161. Springer-Verlag New
York, Inc., 2003.

D. Salber, A. Dey, and G. Abowd. The context toolkit:
aiding the development of context-enabled
applications. In Proceedings of the SIGCHI conference
on Human factors in computing systems: the CHI is the

limit, pages 434—441. ACM, 1999.

X. Wang, D. Zhang, T. Gu, and H. Pung. Ontology
based context modeling and reasoning using owl. In
Pervasive Computing and Communications Workshops,
2004. Proceedings of the Second IEEE Annual
Conference on, pages 18-22. IEEE, 2004.

S. Yang, A. Huang, R. Chen, S. Tseng, and Y. Shen.
Context model and context acquisition for ubiquitous
content access in ulearning environments. In Sensor
Networks, Ubiquitous, and Trustworthy Computing,
2006. IEEE International Conference on, volume 2,
pages 78-83. IEEE, 2006.

J. Ye, L. Coyle, S. Dobson, and P. Nixon.
Ontology-based models in pervasive computing
systems. The Knowledge Engineering Review,
22(4):315-347, 2007.

	Introduction
	Context, Context Models and Context-aware Systems : An Overview
	Context
	Context Models
	Context-aware Systems and Middleware
	Related Work in Context Modeling, Context-aware Systems and Middleware

	RoCoM and Rover II Architecture
	Primitives
	Templates
	Rules
	Rover II architecture

	Illustrative Application - M-Urgency
	Event
	Entities
	Activities
	Relationships

	M-Urgency and Rover II

	Conclusion and Future Work
	REFERENCES

