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1 INTRODUCTION

As security continues to get stronger, the actual users con-
tinue to be a problem. In addition to this, there is not much
protection for companies once an administrator’s password
does get stolen. To demonstrate this issue, consider an
example where a doctor, Alice, stores important patient
information on an AWS server. Consider an attacker that
retrieves Alice’s password using a phishing scam. The at-
tacker now logs onto Alice’s AWS account and has access to
all of the important patient documents. A simple suggestion
may be to encrypt the files on the AWS machine, but this
would include additional passwords that may be stolen in a
similar phishing scam. In addition, more passwords would
create a much less convenient environment for Alice.

One idea to limit the amount of damage an adversary
could do with a user’s password is to enforce rate limiting,.
Rate limiting is typically used by APIs in order to enforce
account limits and require users to pay for the API’s service.
This could, however, be applied to Alice in the above
example as well. In this case, Alice would be permitted to
set her own access controls. Let’s assume Alice only visits
with three patients per day. She could then set the access
controls to only allow access to three patients” documents
per day. If an adversary were to now steal Alice’s credentials
using a phishing scam, the adversary would be limited to
what he could retrieve. While he could still view documents
from three patients, he would not be able to exfiltrate all of
Alice’s patient documents. Lots of work has been done in
the field of cybersecurity to prevent attacks from happening
in the first place. In addition, researchers have been finding
ways to automate the process of finding security issues after
they have happened and automatically correcting the issue.
Access control and rate limiting is an intermediary step
with significantly less work performed on it. Rate limiting
limits the damage that an attacker can do once they have
already gotten onto a system, but before the automated
processes are able to identify and banish the attacker. While
the idea mentioned above could certainly limit the damage
in cases such as the one described above, it is quite easy
to implement. First, Alice will protect all of her patient
documents with a password unique to the patient. She can
then send these passwords to a server that implements
rate limiting. The server will have a counter associated
with Alice’s account, and once she queries the server more
than three times, it won’t return any more passwords to
Alice. While this technique would certainly solve the initial
problem, it might in fact create new problems. Namely, the

server will now have information about Alice. It will even
continue to learn more information about her as she queries
it more times.

1.1 Our Contributions

In this paper, we present Opal, a programmable OPRF to
allow for arbitrary access controls and rate limiting. This
work has two major contributions:

Programmable OPRF: Opal combines the use of oblivi-
ous PRFs (OPRFs) with zero-knowledge proofs (ZK proofs).
An OPRF on its own would not be able to impose any
restrictions on the user since all of the inputs would be
completely oblivious to the server. On the other hand, with
a regular PRF, the server would learn the inputs of the user,
and the user’s privacy would be breached. By combining
the OPRF with a ZK proof, Opal is able to ensure that the
user has the proper authorization to receive a key without
learning anything about the user’s input.

Arbitrary access controls for multi-user systems: Opal
is able to enforce access controls even for a system with
many users on it at once. In addition to this, each user can
even have different access controls from each other. This
allows many users who have different needs to use the
system at once for their own purposes.

2 RELATED WORK

In our setting, we will rely heavily on PRFs, but unfortu-
nately the typical PRF setting will not be sufficient for this
work. In order to generate the decryption key for specific
objects in our access control scheme, the user and server
must jointly generate the key. While the typical PRF setting
could allow for the joint creation of the input, one party
would have to actually calculate the PRF call on that input.
This would require that that party knows the input from the
user and the server. This would be problematic, as either
the server would learn which object the user is querying or
the user would learn the server’s private key. In order to fix
this issue, we will use oblivious pseudorandom functions
(OPRFs).

An OPREF allows for the user and server to both generate
their inputs privately and for only one party, the user in
this case, to receive the output. Specifically, we will be
using the Hashed Diffie Hellman (HashDH) OPRF [2]. This
scheme uses blinded signatures which were first introduced
by Chaum [3, 4] and used later in schemes like Privacy Pass
[5]. To create this OPRF call, the user will first hash her



input. She then blinds this by raising the output to a random
value. We can then assume the Diffie-Hellman assumption
which says the server will not be able to unblind the output.
The server will then raise the blinded hash output to the
power of its secret key and return that value to the user.
Finally, the user will unblind the output for the final key.

While using OPRFs is necessary in order to hide the
inputs from the server, this does cause one additional prob-
lem. The server now has no way to verify that the access
control restrictions are satisfied. There is one solution to
this problem which is called Pythia [6]. Pythia is a partial
oblivious PRF. This, however, as the name suggests, does
reveal part of the input. This is certainly an improvement
as compared to a traditional PRF, but it still reveals some
information about the inputs. Our construction, on the other
hand, does not reveal any information about the OPRF in-
put. The user will have to reveal some information such as a
random nonce and serial number, but no actual information
about the OPRF call.

In order to allow for the server to learn only whether
these limits are satisfied, we use zero knowledge proofs,
specifically we use zk-SANRKSs. By using zk-SNARKs, we
are able to allow the user to create a proof that her inputs
satisfy all of the access control constraints without revealing
what any of her input values are.

3 SECURITY GUARANTEES

Pseudorandomness: The first security guarantee is pseudo-
randomness. This means that if the user and server generate
a key using the OPRF, the output should be computationally
indistinguishable from random. In other words, if there is
an adversary who receives an output from the OPRF and a
uniformly random number, the adversary could not which
was the OPRF output.

Obliviousness: The second guarantee is obliviousness.
This guarantee works in both directions. We guarantee that
in the evaluation of the OPRF the server will not learn
anything about the input of the user and will not learn any-
thing about the output. In this scheme, we of course allow
the server to learn whether the access control constraints
are fulfilled, but no additional information about the input.
Finally, we guarantee that the user will not learn anything
about the server’s signing key.

Unlinkability: The third guarantee is unlinkability. This
means that multiple activities by the same user are never
linkable to each other. This is somewhat similar to oblivi-
ousness which says that activity is not linkable to a specific
user. This, however, is an even stronger notion which says
that even if the server cannot identify the user, this is not
enough. Instead, the server must not even be able to identify
that previous or future actions are made by the same user.

Confidentiality: The fourth guarantee is confidentiality.
This means that only the user that is permitted to view the
data is able to. This combined with the above guarantees
of obliviousness and unlinkability allows for a very secure
system.

Correctness: The final guarantee is correctness. As the
name suggests, this means that the OPRF evaluates correctly
each time.

4 AccEeEsS CONTROL SCHEME
4.1 Setup Stage

Before any users are able to use the system for rate limit-
ing, the server has to set up two databases to record the
necessary data:

Nonce DB: The first database the server will generate
is to store all of the nonces that have been used to create
OPREF calls in the past. As explained below in section 4.2,
the server will ensure that each new key generation has an
unused nonce to assist in the enforcement of rate limiting.

Serial Number DB: The second database the server will
generate is to store the serial numbers that are used for
retrieving keys. As explained in section 4.3, the server must
ensure that each OPRF call contains a new serial number.
In order to enforce this rule, the server must store all of the
serial numbers used and ensure that each new serial number
is not already contained in the database.

4.2 Key Signing

For the rate limiting scheme, users will be able to either
generate a new key or retrieve an old key. Opal is able to
perform either action and only enforce rate limiting when
retrieving an old without alerting the server which action
the user is performing. In order to accomplish this, the user
will have to send the exact same input to the server regard-
less of whether she is generating a new key or retrieving an
old key. For this scheme, the user will send five inputs to
the server regardless. The actual generation of these inputs
will be explained in the next two sections, as it is different
for key generation and key retrieval. A short description of
each input is below.

Serial number: As mentioned above in section 4.1, each
new query to the server will include a serial number. This
prevents a user from forking an old state and abusing
the rate limits. Each time the user generates a new key
or retrieves an old key, she will reveal the previous serial
number, and the server will record it.

New nonce: As mentioned above in section 4.1, each
new query will also contain a nonce. The nonce, as opposed
to the serial number, will be used for something different
depending on whether the user plans to retrieve an old key
or generate a new key. If the user is generating a new key,
the nonce will be part of the new key generated. Otherwise,
the nonce is irrelevant to the actual OPREF call and just there
to confuse the server.

OPREF call: This will be the data that the OPRF is actually
called on. The user will initiated the OPRF call by comput-
ing a hash using a hash-to-group function of the input data.
Once this hash is computed, the user will blind it by raising
to the power of a randomly generated value r.

State: The user will provide a new state each time they
query the server either to generate a new key or retrieve
an old key. The state will be the hash of the user’s counter
values and her serial number. The server will then sign the
state using ECDSA.

Proof: Finally, the user will attach a zk-SNARKSs proof
to her request. The server will verify that the proof is a
valid proof either for key generation or for key retrieval.
The actual things the user will prove completely depends
on whether the user is retrieving an old key or generating a



new key and will be explained in great detail in sections 4.3
and 4.4.

Once these inputs are received by the server, the server
will perform a few checks before returning the necessary
data. First, the server will ensure that the serial number
has not been used before. Next, the server will ensure that
the nonce has not been used before. Finally, the server
will ensure that the proof is a valid zk-SNARKSs proof and
verifies with the server’s verification key. If all three of these
tests pass, the server will perform two operations. First, the
server raises the blinded OPRF input to the power of k, the
server’s secret key. Next, the server signs the current state
using ECDSA and its secret key I. The server returns these
values to the user who can then unblind the OPRF input
and get their original input raised to the power of k.
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Fig. 1. This shows the key generation stage of the scheme

4.3 Key Generation

In section 4.2, we described each of the input values that
the client sends to the server. We now describe how a user
would generate these values if she wishes to generate an
entirely new key for a new object.

Serial number: The serial number will be generated by
uniformly selecting an integer between 0 and 254.

New nonce: The nonce will also be generated by uni-
formly selecting an integer between 0 and 254,

OPREF call: The OPREF call inputs will be the inputs that
the user uses for her key. This will include the user’s secret

3

key, the bucket and object name that the user wants an
encryption key for, and finally, the nonce. In this case, the
nonce will be exactly the same as the nonce just generated.
The user will hash all four of these values together using
some hash-to-group function.

State: Since the user is generating a new key, this will not
affect any of her counters. Her new state is identical to her
old state with the only difference being a new serial number.

Proof: The proof for key generation will be simple. the
user will need to prove four things:

o First, the user will prove that her new state’s counter
values are the same as her old state’s.

e Next, the user will prove that she has a valid signa-
ture for her old state.

e Next, the user must prove that the public OPRF call
she sends is indeed the hash-to-group function of the
required inputs.

o Finally, the user will prove that her public nonce is
equal to the nonce used in the OPRF call.
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Fig. 2. This shows the key generation stage of the scheme



4.4 Key Retrieval

We now describe how a user would generate the values
from section 4.2 if she wishes to retrieve a key that has
already been generated.

Serial number: The serial number will be generated by
uniformly selecting an integer between 0 and 2%4.

New nonce: The nonce will also be generated by uni-
formly selecting an integer between 0 and 264,

OPREF call: The OPRF call inputs will be the inputs
that the user uses for her key. This will include the user’s
secret key, the bucket and object name that the user wants
an encryption key for, and finally, the nonce. In this case,
the nonce will not be the same as the nonce just generated.
The user will instead use the nonce from the key when she
originally created it. She will then hash all four of these
values together using some hash-to-group function.

State: Since the user, in this case, is retrieving an old key,
she will have to update her counter values. To illustrate this,
consider the following example. Assume Alice has queried
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three objects from bucket A, four from bucket B, and eight
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e Once she proves that her new state is a function of
her old state, she will prove that the function is valid.
This can mean one of two things. It could mean that
only one bucket was iterated, and the counter for that
bucket was iterated once. It could also mean that a
new bucket was created, the counter for that bucket Fig. 3. This shows the key generation stage of the scheme
is 1, and no other counters were altered.

e Next, the user will prove that she has a valid sig-
nature for her old state. This will prove that the old
state was signed by the server and is not a fake. This
prevents the user from developing fake old states
and then performing valid functions on them to get
unlimited key retrievals.

e Next, the user must prove that the public OPRF call
she is sending is indeed the hash-to-group of the
required inputs.

o Finally, the user will prove that the new state is valid.
Since Opal is able to support arbitrary rate limits, this
will depend on the implementation. The main thing else
that is required for a valid state, however, is that it counters[bucket] < 1
meets all of the counter limits. Assume that Alice is
implementing Opal and she chooses to allow access end if
to three buckets and eight objects per bucket. Alice end for
would need to prove she is in compliance with both
of these rules.

Algorithm 1 F: State update function

counters < old_state.counters
was_added < False
for bucket in counters.keys() do
if new_bucket == bucket then
counterslbucket] « counters[bucket] + 1
was_added < True




5 APPLICATIONS
5.1 A File System

The most obvious application of the rate limiting described
above is the example used in the introduction. We assume
that a user has a filesystem that they wish to impose rate
limiting on. For this example, let’s assume Alice works
closely with clients in a very sensitive manner. Alice knows
how many clients she typically meets with per day. She
could then set rate limits to only allow the retrieval of
documents from that many clients per day. This would be a
very basic type of rate limiting. Alice would simply have a
limit on how many documents could be viewed.

Let’s now assume Alice has a slightly more complicated
need for rate limiting. Perhaps Alice is a lawyer, and she
would not want an adversary to learn everything about
even one client if they were to break in. If Alice knows,
for example, that she would only need to access documents
from one case for each of her clients, she could impose
further access control restrictions to only allow for such
behavior. This way, if an adversary were to break into Alice’s
machine, they would not even be able to view all of the
documents for one client. The adversary would be limited to
viewing only the information from one case for each client.

The above is an example of a slightly more complicated
rate limiting scheme. Due to the programmability and cus-
tomizability of our rate limiting scheme, Alice would actu-
ally be able to implement custom rate limiting constraints.
Since Alice would know her needs for viewing files, she
could construct rate limits that allow her to access all of the
documents she would need for typical business activities,
but restrict any further access to any documents.

5.2 Social Media

Another application we give for our rate limiting scheme
is a social media application. Specifically, assume that Alice
wants to limit how many of her posts her friends are able
to view. Alice would then be able to impost arbitrary rate
limits to limit how many posts her friends could see. This
could be quite effective at limiting social media stalking.

To implement this rate limiting, we follow a very similar
construction as in section 4 with a slight change. To make a
post, Alice will ask the server for an encryption key just as
in section 4, and she will encrypt the post. She will then
send the encrypted post to the server for storage. Once
Bob wishes to retrieve a post, he will ask the server for
the password and send a proof that he is within the limits.
Next, he will use private information retrieval [7] in order
to retrieve the encrypted post from the server without the
server learning which post he is retrieving. Finally, he will
decrypt the post locally and be able to view it.

In order to actually implement this application of the rate
limiting, there will be a slight change. Specifically, if Bob
wishes to view one of Alice’s posts, he will have to prove
that he is actually friends with Alice. In order to accomplish
this, Alice will generate a key upon creation of her account.
Whenever she adds a new friend, she will share this key
with them. In addition, whenever she makes a new post,
she will include this key in the OPRF call that she makes.
This way, only someone with the key will be able to generate
the same OPREF call for decryption.

Proof JSON
Password:

Fig. 4. Flask site starting page

6 RESULTS

We were able to successfully implement a Flask server that
ran this rate limiting. You begin by inputting a JSON file
with all of your inputs into the website. The website then
generates a proof that all of the rate limiting constraints have
been met. The proof is then sent to the server along with all
of the public values. The server verifies that the proof is
valid and that the serial number hasn’t been seen before. It
will then return the password for that object and the ECDSA
signature for the current state.

For the exact constraints, we decided to implement sev-
eral different rules. We limit the total number of password
queries to 5, the maximum number of buckets to 2, and
the maximum number of objects per bucket to 3. Finally,
we decided to implement a leaky bucket style of adding
availability. This means that each day, the limits are not
completely reset. For our implementation, we decided to
eliminate one previous request. This means that if a user
has already used up all of their requests, they will only be
allowed one request the following day. If they don’t use that
query, they will be allowed two the following day and so
on.

Figure 4 below shows the Flask site. A user will begin by
uploading their inputs to the file input field. Alternatively,
the user could generate a proof on their own and copy
and paste the results in the respective fields. Once the user
inputs his file, he will click the generate button and the
public and proof fields will populate. This can be seen in
Figure 5 below. The user can then click submit and the
information will be sent to the server.

Once the user sends these fields to the server, the server
will verify that the proof is in fact valid. The server then
verifies that the serial number has not been used before.
Once the server completes this process, it will send one of
three responses. The first response, meaning that everything
was successful is the password to decrypt the object, as well
as the ECDSA signature. This can be seen below in Figure 6.
The second response would be an alert that the rate limiting
constraints have not been fulfilled and the proof did not
verify. This can be seen below in Figure 7. Finally, the server
could respond with an alert that the serial number or nonce
has been used before and the request is therefore invalid.
This can be seen below in Figures 8 and 9 below.

6.1 Evaluation

In addition to creating a the Flask site presented above,
we timed some of the important operations that would
be done by the server and user. Specifically, we timed the



Public JSON:

[12499400397097633333592970311274847592052686137794033645066820404945578226570"
,"14651235206589166192086968924201605900308957801748849028717461379922178850210"
,"'3690079189527682917988988962884792145612713900578477470610327981673839687611",
"'240428","4179197250","15"]

Proof JSON:

{"pi_a":
["7164979860348153197776096338829029939102980270294882027804502076303108773044" ,"
363210935056281801772482590159142518441376820448779663657748558319057838699","'1" ]

,"pi_b":
[["17184278860131871273738183818224506198189490678759363203059908047897450508348"
,"10808699700183605693251027940620307776560814690359760688341344801395147521354" ]

["14026272276951300870056138596741953063371976830229575168181357542456988370286",
"13685145810197666401082307757617735996341781840969243110728893229875237237948" 1,
["1","0"11,"pi_c":
["'9149991525564044855782078804760885124320379837325323579307767971866786801543" ,"
20762944532535191646765074115286855971170808775095424567200346203233873091352","1
"],"protocol":"groth16","curve":"bn128"}

4

Fig. 5. Flask site with public and proof fields populated

pass:
403697705226699737395852623296
647446460247809930920190099095
0531775881713681,1764647059260
852286764215181574592944657323
460948995877792551466346771629
4134
r:
141215097752339326406876369784
243546686249169290046573677038
8297532125897588
s_inv:
136370341101629970792504620924
838537047056492768843289907263
0693014901330924

Fig. 6. Successful response from the server including password and
ECDSA signature

The serial number you provided
has already been used. Please
select a new serial number.

Fig. 7. Alert from server that the proof is invalid

Your proof did not verify correctly.
Please update your proof.

Fig. 8. Alert from server that the serial number has been used before

proof generation and verification time for both generating
a new key and retrieving an old key. The data is shown in
the table below.

Process Completed Time Taken
Proof generation for new 7.72 seconds
key
Proof verification for new 0.44 seconds
key
Proof generation for old 7.69 seconds
key
Proof verification for old 0.44 seconds
key

7 CONCLUSION

In this paper, we presented the design and implementation
of an oblivious rate limiting scheme. This scheme allows for
customizability in the specific rate limiting constraints that
are applied. The user will begin by generating a password
using an OPRF with the server to generate a password to
encrypt a file. When trying to decrypt the file, the user
computes the same OPRF and sends a proof that the user
is within the given rate limiting constraints. This allows for

The nonce you provided has
already been used. Please select a
new nonce.

Fig. 9. Alert from server that the nonce has been used before




arbitrary rate limiting constraints for the user to fulfill. In
addition, this allows the user’s actions to be oblivious to
the server and allows for the server to correctly perform the
necessary rate limiting.

In this case, the input data is the bucket name, object name,
password, and old nonce. This is, again, different depending
on whether the user is generating a new key or retrieving
an old key. If the user is generating a new key, this will be the
same as the new nonce and will be a randomly generated
number. If the user is retrieving an old key, the old nonce
will be the nonce from the key she is retrieving and entirely
different from the new nonce.
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