2404.19019v2 [cs.DS] 12 May 2024

arxiv

Optimal Parallel Algorithms for
Dendrogram Computation and Single-Linkage Clustering

Laxman Dhulipala

University of Maryland

College Park, MD, USA
laxman@umd.edu

Xiaojun Dong
University of California
Riverside, CA, USA
xdong038@ucr.edu

ABSTRACT

Computing a Single-Linkage Dendrogram (SLD) is a key step in the
classic single-linkage hierarchical clustering algorithm. Given an
input edge-weighted tree T, the SLD of T is a binary dendrogram
that summarizes the n — 1 clusterings obtained by contracting the
edges of T in order of weight. Existing algorithms for computing
the SLD all require Q(nlogn) work where n = |T|. Furthermore,
to the best of our knowledge no prior work provides a parallel
algorithm obtaining non-trivial speedup for this problem.

In this paper, we design faster parallel algorithms for computing
SLDs both in theory and in practice based on new structural results
about SLDs. In particular, we obtain a deterministic output-sensitive
parallel algorithm based on parallel tree contraction that requires
O(nlog h) work and O(log? nlog? h) depth, where h is the height of
the output SLD. We also give a deterministic bottom-up algorithm
for the problem inspired by the nearest-neighbor chain algorithm
for hierarchical agglomerative clustering, and show that it achieves
O(nlogh) work and O(hlogn) depth. Our results are based on a
novel divide-and-conquer framework for building SLDs, inspired
by divide-and-conquer algorithms for Cartesian trees. Our new
algorithms can quickly compute the SLD on billion-scale trees, and
obtain up to 150x speedup over the highly-efficient Union-Find
algorithm typically used to compute SLDs in practice.

1 INTRODUCTION

Single-linkage clustering is a fundamental technique in unsuper-
vised learning and data mining that groups objects based on a
similarity (or dissimilarity) function [36]. The single-linkage clus-
tering of an edge-weighted tree T is defined as the tree of clusters
(a dendrogram) obtained by sequentially merging the edges of T in
decreasing (increasing) order of similarity (dissimilarity) as follows:

(1) place each vertex of T in its own cluster

(2) sort the edges of T by weight

(3) for each edge (u,v) in sorted order, merge the clusters of u

and v to form a new cluster.
The output of this clustering process is called the single-linkage
dendrogram (SLD). The SLD is a binary tree of clusters, where the
vertices of T are the leaf clusters, and the internal nodes correspond
to merging two clusters by contracting an edge. The dendrogram
enables users to easily process, visualize, and analyze the n — 1
different clusterings induced by the single-linkage hierarchy.
Since hierarchical structure frequently occurs in real world data,

single-linkage dendrograms have been widely used to analyze real-
world data in fields ranging from computational biology [15, 26, 42],
image analysis [17, 21, 33], and astronomy [4, 14], among many
others [23, 27, 43]. Due to its real-world importance, and its impor-
tance as a sub-step in other fundamental clustering algorithms such

Kishen N Gowda Yan Gu
University of Maryland University of California
College Park, MD, USA Riverside, CA, USA
kishen19@cs.umd.edu ygu@cs.ucr.edu

as HDBSCAN* [10, 41], computing the SLD of an input weighted
tree has been widely studied by parallel algorithms researchers in
recent years, with novel algorithms and implementations being
proposed for the shared-memory setting [21, 41], GPUs [31, 35],
and distributed memory settings [17, 22].

In this paper, we are interested in both theoretically-efficient and
practically-efficient parallel algorithms for computing the single-
linkage dendrogram. Sequentially, a simple and practical SLD al-
gorithm is to faithfully simulate the specification by essentially
running Kruskal’s minimum spanning tree algorithm using Union-
Find. In this algorithm, which we call SeqUF, the m tree edges are
first sorted by weight. Then, the algorithm runs in m sequential it-
erations, where the i-th iteration takes the i-th edge and merges the
clusters corresponding to the endpoints of the edge. Maintaining
information about the current cluster for a node in the tree is done
using Union-Find. Overall, the work is O(nlogn) due to sorting
the edges, and the algorithm has Q(n) depth (longest dependence
chain) since the edges are merged sequentially.

Wang et al. [41] recently gave the first work-efficient parallel
algorithm for the problem—their algorithm computes the SLD in
O(nlogn) expected work and O(log? nloglogn) depth with high
probability (whp). Although their algorithm is work-efficient with
respect to SeqUF, it is challenging to implement as it relies on ap-
plying divide-and-conquer over the weights, which is implemented
using the Euler Tour Technique [24]. Due to its complicated nature,
this algorithm does not consistently outperform the simple SeqUF.
Thus, the authors only released the code for SeqUF and suggested to
always use SeqUF rather than the theoretically-efficient algorithm.
The algorithm is also randomized due to the use of semisort [19, 41],
and there is no obvious way to derandomize it to obtain a deter-
ministic parallel algorithm for the problem.

As a fundamental problem on trees with significant real-world
applicability, an important question then is whether there is a rel-
atively simple parallel algorithm for this problem that has good
theoretical guarantees, is more readily implementable, and can ob-
tain non-trivial speedups over SeqUF. In this paper, we give a strong
positive answer to this question by giving two new algorithms for
SLD computation that achieve consistent and large speedups over
SeqUF, both of which have good theoretical guarantees. Both of
our algorithms are obtained through a better understanding of the
structure of SLDs, and in particular, by showing how to build SLDs
in a divide-and-conquer fashion using a merge primitive that can
merge the SLDs of two trees under certain conditions (Sec. 3.1).

We leverage these structural results to design two novel deter-
ministic parallel single-linkage dendrogram algorithms. The first
algorithm is based on parallel tree contraction and stores spines
(node-to-root paths in the dendrogram) in meldable heaps; it uses

heap meld and filter operations to implement dendrogram merging
(Sec. 3.2) in the rake and compress steps. We describe a modification
of this algorithm that eliminates the need for meldable heaps, which
makes our algorithm simple to describe and implement (Sec. 4.2).
The second algorithm, which we call ParUF is a bottom-up algo-
rithm inspired by the nearest-neighbor chain algorithm for hierar-
chical agglomerative clustering that merges all local-minima (edges
that are merged before all other neighboring edges by the sequen-
tial algorithm) in parallel (Sec. 4.1). We design an asynchronous
version of ParUF, whose practical success shows that there is ample
parallelism in many instances that the SeqUF algorithm does not
exploit.

Our theoretical analysis of both algorithms reveals that the
©(nlogn) solution obtained by existing SLD algorithms is in fact
sub-optimal in many cases; both of our algorithms deterministi-
cally run in O(nlogh) work where h is the height of the output
dendrogram, where |logn| < h < n — 1. Thus, our algorithms
can require asymptotically less work when the output SLD is not
highly skewed. For instance, when h = O(log n) as in the case of a
balanced dendrogram, our algorithms only use O(nloglog n) work.
We complement our upper bounds with a simple comparison-based
lower bound showing that our work bounds are optimal. Our al-
gorithms are readily implementable and enable us to consistently
compute the dendrogram of a billion-node tree in roughly 10 sec-
onds on a 96-core machine, achieving up to 149x speedup over the
highly-optimized SeqUF implementation.

The major contributions of this paper are:

o Anovel merge-based framework for computing the single-linkage
dendrogram (Sec. 3.1), and two instantiations of this framework,
the first using parallel tree contraction with meldable heaps
(Sec. 3.2), and the second algorithm (called RCTT) using the RC-
tree tracing technique (Sec. 4.2), which is readily implementable.

e ParUF, a bottom-up algorithm that is a natural parallelization of
the SeqUF algorithm, and is readily implementable using a fast
asynchronous approach (Sec. 4.1).

e Analyses of our algorithms showing that the heap-based algo-
rithm (Sec. 3.2) and ParUF (Sec. 4.1) deterministically achieve
O(nlog h) work, which is optimal for comparison-based algo-
rithms. Our heap-based algorithm has poly-logarithmic depth.

e An experimental study of our ParUF and RCTT algorithms show-
ing that they achieve between 2.1-150x speedup over SeqUF on a
collection of billion-scale input trees (Sec. 5). Our implementation
can be found at https://github.com/kishen19/ParSLD.

2 PRELIMINARIES

Notation. We denote a graph by G(V, E), where V is the set of
vertices and E is the set of edges in the graph. For weighted graphs,
the edges store real-valued weights. We denote a weight or simi-
larity of an edge e = (x, y) either by writing w(x, y) or w(e) where
w : E — R is a weight function, or by placing weight w € R
in a tuple ({u,v}, w) or (e, w). Given two graphs G;(V1, E1) and
G2(Va, E2), G1 U Gz denotes the graph G(V; U Vo, E1 U E3). We also
use the notation G U {e}, where e = (u,v) is an edge, to denote the
graph G(V U {u, v}, E U {e}). The number of vertices in a graph is
n = |V|, and the number of edges is m = |E|. Cut(X, Y) denotes the
set of edges between two sets of vertices X and Y.

(L f_
Figure 1: Example of single-linkage clustering on the input tree shown
in the top panel. The bottom left panel shows a typical visualization of the

dendrogram based on the “height” of each edge, and the bottom right panel
shows the structure of the output SLD.

Model. We analyze the theoretical efficiency of our parallel al-
gorithms in the binary-forking model [8], a concrete work-depth
model used to analyze many recent modern parallel algorithms.
The model is defined in terms of two complexity measures work
and depth [8, 11, 24]. The work is the total number of operations
executed by the algorithm. The depth is the longest chain of se-
quential dependencies. We assume that concurrent reads and writes
are supported in O(1) work/depth. A work-efficient parallel algo-
rithm is one with work that asymptotically matches the best-known
sequential time complexity for the problem.

2.1 Parallel Tree Contraction

Given a tree G, the parallel tree contraction framework by Miller
and Reif [29] contracts G to a single node (or cluster) by repeatedly
applying alternate rounds of rake and compress.

» rake(u, v): Given a vertex v of degree 1 and its (only) neighbor
u, contract v and merge it into u.

» compress(u,v,w): Given a vertex v of degree 2 and its neigh-
bors u and w, contract v and merge it into u (arbitrarily), and
make u and w neighbors with w(u, w) = w(o, w).

Parallel tree contraction has been studied since the 1980s [1-
3, 20, 29, 34, 38] and can be solved deterministically in O(n) work
and O(log? n) span in the binary-forking model by simulating the
PRAM algorithm of Gazit et al. [16]. The output of parallel tree con-
traction assigns each vertex to one of O(log n) rounds, specifying
whether it is raked/compressed, and the edge(s) it is raked/com-
pressed along. Another way of viewing the output is as a well-
defined hierarchical decomposition (clustering) of trees. Starting
with each vertex as a singleton cluster, each rake or compress
merges two clusters along an edge; thus the subgraph induced
on the vertices in a cluster will always be a connected subtree.
Structurally, it can be represented as a rooted tree known as the
rake-compress tree (or RC-tree). The RC-tree is essentially a hierar-
chical clustering defined over the input. In RC-trees, we have a node
(which we call rcnode) corresponding to each vertex in the input
tree. If a vertex v is contracted, say via the edge e = (u,v), then the
parent of rcnode(v) will be rcnode(u), and we also associate the
edge e to rcnode(v).

2.2 Meldable Heaps

We make use of meldable heaps in this paper. The heaps contain
edges keyed by a comparable edge weight where the comparison
function orders edges in sorted order of rank. Concretely, we make
use of binomial heaps [11], which support the meld operation in
logarithmic time. The primitives we use are:
e H' « INSERT(H, e): insert e into H; return the new heap H’.
e (H’,e) « DELETEMIN(H): remove the minimum element.
e H' « MELD(Hj, Hz): meld the two heaps H; and Hy.
e (S,H’) « FiLTER(H, ¢): given a heap H and edge e, return a
pair (S, H") where S contains all edges smaller than e in H, and
H’ contains all elements greater than e in H.

The FILTER_AND_INSERT primitive used in Alg. 3 and Alg. 4
works by first performing INSERT, followed by FILTER.

Basic Operations. Sequential binomial heaps support performing
INSERT, DELETEMIN, and MELD operations in O(log n) worst case
time where n is the number of total elements in the heap(s) [11].
Filter. We implement FILTER on a heap with s elements in O(k log s)
work and O(log? s) depth where k is the number of elements ex-
tracted by the filter operation as follows. We independently filter
the O(log s) roots of the binomial trees stored in the binomial heap
in parallel. To filter a binomial tree, we check whether the root is
filtered, marking it if so, and recursively proceed in parallel on all
children of the root. This traversal costs O(k) work and runs in
O(log? s) depth; the number of nodes filtered in each tree can be
computed in the same bounds by treating the set bits as an aug-
mented value. Emitting the k removed elements into a single array
can also be done in the same bounds by using prefix sums.

To rebuild the binomial trees and restore the invariant of a single
binomial tree per-rank, we can first emit the children of all nodes
removed in the previous step into a single array, where each subtree
is stored along with its associated rank. Rebuilding the heap can
then be done by simply performing the same procedure used to
build a binomial heap on the trees in this collection. In a little more
detail, the number of subtrees when we remove k nodes is at most
O(klogs). We can group these subtrees by rank by sorting using
a parallel counting sort, which can sort N elements in the range
[0, M] in O(logn + M) depth [7]. After sorting the trees into the
O(logs) ranks, rebuilding the trees can be done within each rank
in O(logs) depth using parallel reduce. We note that the overall
structure we maintain is exactly the same as an ordinary binomial
heap; we simply augment the heaps with a parallel filter operation
that relies on a parallel rebuilding procedure.

2.3 Single-Linkage Clustering

Consider an input weighted undirected graph G(V, E). In single
linkage clustering, the similarity ‘W (X,Y) between two clusters X
and Y is the minimum similarity between two vertices in X and Y,
ie.,
WX.Y) = (x,9).

In this paper, we assume the input graph is an edge-weighted
tree as it is well known that single-linkage clustering on weighted
(connected!) graphs can be reduced to single-linkage clustering on

min w
(x,y) eCut(X,Y)

!1f the graph is not connected, we can solve single-linkage clustering on each connected
component independently.

Figure 2: An example illustrating SLD-MERGE. The tree is split at node e
into two trees (the left and right sides of the dashed line) which share no
edges, and only share the vertex e. The SLD-MERGE routine merges the two
spines formed by the lowest-rank edge incident to e in both trees.

weighted trees; the edges considered for merges are exactly that of
the minimum spanning tree of the graph [18].

Given an input edge-weighted tree G(V, E), let the rank r, € [n]
of an edge e be the position of this edge in the edge sequence sorted
by weight (ties broken consistently). We note that our algorithms
do not require us to compute the ranks; however, this simplifies the
presentation of our algorithms.

The single-linkage dendrogram (SLD) of a tree G(V,E) is a
rooted-tree D(G) where each leaf corresponds to a vertex in V
and each internal node in D(G) corresponds to an edge in E. We
denote the internal node corresponding to edge e as node(e) or
simply node e. See Figure 1 for an example.

The SLD problem has been widely-studied in recent years [10,
21, 31, 35, 41]. However, only Wang et al.’s algorithm [41] is work-
efficient with respect to SeqUF. We discuss related work on SLDs
in more detail in Appendix A.

We assume the output SLD will be stored as a linked list, where
each node e points to its parent node p(e). For convenience, we
drop the leaf nodes and only consider the tree on the n — 1 internal
edge nodes. For an edge e € E, the spinep) (e) denotes the partial
linked list starting from node e until the root in D(G). We use
spine(e) when the tree and SLD are clear from context. We use the
terms SLD and dendrogram interchangeably.

In this paper, we deal with three types of trees: the input tree,
the SLD and RC-trees. To keep things clear, we use vertices and
edges when referring to the input, nodes and links when referring
to the SLD, and rcnode when referring to RC-trees.

3 MERGE-BASED ALGORITHMS

In this section, we discuss merge-based algorithms for computing
SLDs. We first describe a merge subroutine called SLD-MERGE that
allows us to merge the dendrograms of two subtrees, and thus
enables various divide-and-conquer algorithms. Leveraging the
merge subroutine, we give an optimal algorithm for computing
SLDs with the help of the parallel tree contraction framework.

3.1 Merging Dendrograms

The key component in our merge-based framework is the subrou-
tine called SLD-MERGE, which can merge the SLDs of two trees
under the following conditions:

o the trees share exactly one vertex (denoted by v),

o the trees share no edges.
Given these conditions, observe that the union of the two trees
will also be a tree. More abstractly, from the divide-and-conquer
viewpoint merging is algorithmically useful if for example, an input
tree is split at vertex v and the SLDs of the two resultant trees
are computed recursively, and we wish to merge the two SLDs to
compute the SLD of the entire tree; see Figure 2 for an example.

More formally, let G (V1, E1) and G2(V2, E2) denote the two input
trees with V1 NV, = {0} and E; N E2 = @, and let D1 and D, denote
their SLDs. We assume that the SLDs are maintained as linked
lists, where each node points to its parent node. Alg. 1 defines the
function SLD-MERGE(G1, G2, v) that, given the two trees and their
SLDs, returns the SLD of the merged tree.

Algorithm 1: SLD-MERGE(G1, Gz, v)

1 Let e and e} denote the edges with minimum rank

incident to vertex v in G and Gy, respectively.
2 Merge D; and D; along the spines of e} and e

Given the linked list representation, the spine of a node e is the
partial linked list starting at e and ending at the root. The nodes
have ranks in increasing order from e to the root. Thus, we can apply
the standard list merge algorithm for merging the two (sorted) lists.
The idea here is inspired by the Cartesian tree algorithm of [37].
Indeed, it is not hard to see that the Cartesian tree problem on lists
is equivalent to single-linkage clustering on path graphs. In [37],
the authors employ an elegant divide-and-conquer approach where
they split the input list into two halves, compute the Cartesian tree
of each half, and then merge them.

The key idea when merging the two Cartesian trees was that the
merge impacts only nodes on certain spines, while the rest of the
nodes are “protected”. Interestingly, we prove that such a property
holds even when we merge the dendrograms of trees with arbitrary
arity. In particular, the merge potentially impacts only nodes on the
spines of e;‘ and e;‘ (defined above). We will call these min-rank
edges e} and e; as the characteristic edges of the merge, and
their spines in their respective SLDs as the characteristic spines.
Therefore, in other words, the parent of nodes that are not on the
corresponding characteristic spines remains unchanged. In the case
where one of the trees is just a single vertex, we do not have a
characteristic edge. Here, we call the empty list as the characteristic
spine of this tree.

Before proving the correctness of SLD-MERGE, we first state
some useful structural properties of SLDs.

Definition 3.1 (Adjacent Superior and Inferior). Givenatree G(V, E)
and an edge e = (u,v) € E, the edge f € E is an adjacent superior
of e if re < ry and for every edge g in the unique path between e
and f, ry < re. The edge f is an adjacent inferior of e if re > ry
and for every edge g in the unique path between e and f, ry < re.
Let 7%(e) (and S¥(e)) denote the set of adjacent inferior (superior)

Figure 3: Adjacent Superiors and Inferiors (see Definition 3.1).

edges to e that are closer to vertex u compared to vertex v. Simi-
larly, we define 79(e) and S%(e). Let 7 (e) = 7%(e) U I%(e) and
S(e) = S%(e) US?(e). See Figure 3 for an illustration.

Observe that the subgraphs induced on the sets of edges 7% (e)
and 7% (e) will be connected, respectively. We have the following
lemma about the correspondence of these sets in the output SLD.

LEMMA 3.2. Let D be the output SLD of the tree G(V, E). For the
edge e = (u,v) € E, let D(e) denote the subtree rooted at node e,
and let D" (e) denote the subtree rooted at the child of node e that
contains the vertex u as a leaf. Similarly, we define D®(e). Then,
D4(e) = I%(e) and D®(e) = I°(e).

Proof. Observe that during single linkage clustering the edges in
T (e) are processed before edge e. Just before e is processed, the
clusters on the endpoints are exactly the sets 74(e) and 7% (e). To
see this, observe that after 7 (e) is processed, the minimum rank
edge incident on clusters of u and v is the edge e, since all the other
incident edges will be the set S(e). Hence, D¥(e) = I%(e) and
D%) = I%e). O
We also have the following simple and useful observation.

LEMMA 3.3. Letey, e, ..., eq be the set of edges incident to some
vertex u, sorted by rank. Then, e; € spine(e;), forall2 <i < d.

The proof follows due to the fact that these edges share an
endpoint. Returning to the merge subroutine, we define a node
(in D1 and Dy) as protected under the merge if its parent doesn’t
change in the output after the merge. We now prove a crucial lemma.
Henceforth, when we say “nearest edge”, the distance here is the
unweighted hop distance.

LEMMA 3.4. Every node in D1UD that is not present in spine (e})U
spine(e)) is protected under the merge.

Proof. Let e = (u,v) € E; such thate ¢ spine(ef). Observe that if
7 (e) doesn’t change when we union the two trees, then the subtree
rooted at e in Dj is protected. This follows from the fact that the
subtree rooted at e in D; corresponds to a (connected) subtree in
Gj (by Lem. 3.2), and SLD is computed correctly on this subtree (by
induction). Thus, it is enough to show that 7 (e) doesn’t change for
every e ¢ spine(e]").

Let a be the lowest common ancestor of e and e;‘ in D1. Then,
observe that r, < r; and a lies on the unique path between e and
e, where e] is its nearest edge incident on v. We also know that
e] € spine(e]’) by Lem. 3.3. Therefore, S(e) cannot change, since
any possible change would be via e/, i.e. via vertex v, but this is
blocked by edge a. Hence, 7 (e) cannot change as well, completing
the proof. A symmetric argument can be made for edges in E;. O

Finally, we now prove the correctness of SLD-MERGE.

THEOREM 3.5. SLD-MERGE(G1, Ga,v) outputs the correct SLD of
G1 UGa.

Proof. From Lem. 3.4, we know that nodes not on spine(e}) U
spine(ej) are protected. Consider some edge e € spine(e]’), and let
e] denote its nearest edge incident to v in Gy. Observe that e doesn’t
have an adjacent superior on the path from e to e]. Therefore, after
the merge, e might have new adjacent superiors introduced along
this path. The parent of e (say p(e)) will change iff rj,(¢) > 17 for
some new adjacent superior f. We claim that all the new adjacent
superiors for e belong to spine(e;).

To see this, consider some new adjacent superior f, and let e}
denote its nearest edge incident to v in Gy. Then, for all edges g in
the unique path between e} and f, r4 < re (by definition), which
implies ry < ry. Thus, f too doesn’t have an adjacent superior on
the path from f to e). From the proof of Lem. 3.4, f is not protected,
implying that f € spine(e)).

Since spine(e;) is sorted, if p(e) changes, it will be the first
node f in the list with rank greater than r,. Thus, SLD-MERGE is
correct.]

3.2 Optimal Algorithm via Tree Contraction

We now describe an optimal O(n log h) work and O(log? nlog? h)
depth algorithm for computing SLDs; we will refer to this algorithm
as SLD-TREECONTRACTION. We achieve this with the help of the
merge subroutine described above and parallel tree contraction.
Our bounds match those of the following comparison-based lower
bound stated next, which we show in Appendix B:

LEMMA 3.6. For any |logn] < h < n — 1, there is an input that
every comparison-based SLD algorithm requires Q(nlog h) work to
compute the parent of every edge in the output dendrogram.

As indicated previously, with the help of SLD-MERGE, we can
design divide-and-conquer algorithms that partition the input tree
into smaller subtrees, compute their respective SLDs in recursive
rounds, and finally applies the SLD-MERGE subroutine, suitably,
to obtain the overall SLD. A critical task here is to structure these
recursive rounds as efficiently as possible, with low depth; parallel
tree contraction [34] provides one such structure.

As discussed earlier (in Sec. 2), parallel tree contraction defines a
convenient low-depth hierarchical decomposition (or clustering) of
trees. Our core idea is to maintain the SLD of each cluster (which
is a connected subtree) and apply SLD-MERGE appropriately dur-
ing rakes and compresses to obtain the SLD of the merged cluster.
This way, by the end of tree contraction when we have a single
cluster containing the entire input tree, we will have constructed
its corresponding SLD, as required. First, we will discuss how rakes
and compresses can be realized as a couple of SLD-MERGE oper-
ations, assuming merges are performed as standard (linked) list
merges. However, this approach leads to sub-optimal work and
depth bounds. Second, we will discuss how to optimize the merges
by additionally maintaining certain spines in a more efficient data
structure, and prove optimal work and depth bounds.

3.2.1 A Sub-optimal Tree-Contraction Algorithm. Formally, for
a cluster represented by u during tree contraction, let G, denote

the induced subtree on the vertices in cluster u, and let D,, denote
the SLD of G,,. Consider some rake operation given by rake(u, v),
raking vertex o into u. The subtrees G, and G, are connected via
the edge e = (u,v). For convenience, let G, denote the union of
Gy, and Gy, i.e. the cluster obtained after performing the rake. We
can implement the rake using two steps: (1) Add the edge e = (u,v)
to Gy to obtain the subtree G, and (2) merge the subtrees G, and
G;,. We compute the SLD of Gy in the following two step process:

Algorithm 2: rake(u,v)
1 G, « Gy U {e}, and

D}, « SLD-MERGE(Gy, {e},),
2 Gyp <« Gy UG), and

Dyy < SLD-MERGE(Gy, G, u).

Figure 4: An example illustrating the two-step rake (see Alg. 2). Here, we
perform rake(e, ¢), which rakes c into e.

Compress can be performed in an identical fashion: given an
operation compress(u, v, w), we can choose to merge v with u (ar-
bitrarily) and a similar viewpoint, as in rake, can be applied for this
merge. Therefore, each rake and compress operation (identically)
performs two SLD-MERGE operations.

During tree contraction, if we execute the rake/compress opera-
tions in parallel, we could encounter race conditions. For instance,
multiple clusters might get raked or compressed into the same clus-
ter, and we make no assumptions about the structure of the input
trees (e.g., some applications of tree contraction assume bounded-
degree input trees). Note that these are the only race conditions
that occur in any rake/compress round of tree contraction.

We can handle parallel rake or compress operations as follows:
let v1,09,...,04 be vertices that are being raked (or compressed)
into the same cluster u. Observe that the step (1) described above
doesn’t affect G, or Dy,. Thus, this step can be run safely in par-
allel. Let G}/ denote the tree formed by taking the union of trees
GZ’,I, G{,z, e G;,d. Our idea is to first compute the dendrogram of
G,/, and then finally run SLD-MERGE(Gy, G;/, u). We can compute
the dendrogram of G;; by simply merging the dendrograms of
Gy, Gy, - - - Gy, together, ie. merging the d sorted lists given be
spine((u,v;)) for each i € [d]. This is correct due to a simple exten-
sion of Lem. 3.3: since all these edges incident to u will be on the

same spine, their respective spines in G;, will also end up on the
same spine. This can be computed quickly by running a parallel
reduce operation with SLD-MERGE as the reduce function, result-
ing in depth O(logd) (= O(log h) by Lem. 3.3) times the depth of
SLD-MERGE for all the rakes (and compresses) on u.

The naive (sequential) linked list based implementation of SLD-
MERGE has O(h) work and depth. Thus, if we charge each merge
cost of O(h) to the vertex that is being raked/compressed, we get
an overall work bound of O(nh) for this sub-optimal version of
SLD-TREECONTRACTION. As discussed, each rake/compress round
will have a worst case depth of O(hlogh). Since the number of
such rounds is O(log n), the overall depth will be O(hlog hlogn).
We will now prove its correctness.

LEMMA 3.7. The sub-optimal version of SLD-TREECONTRACTION
correctly computes the SLD.

Proof. Observe that both step 1 and step 2 are merges between
subtrees that satisfy the requirement mentioned in Sec. 3.1, i.e. the
subtrees share exactly one vertex and no edges. Thus, rake correctly
computes the dendrogram of the merged cluster; a similar argument
works for compress. Since tree contraction is just a sequence of
rake and compress operations, the correctness follows by a simple
inductive argument. O

3.22 Optimizing the merge step. We now describe how to optimize
the merge step. From Sec. 3.1, we know that merging affects only
nodes on the characteristic spines associated to that merge. Our
main idea is that, in addition to the linked list representation for
storing the output of the dendrogram, for each cluster we (try
to) maintain the characteristic spines, corresponding to the next
(future) merge involving that cluster, in parallel binomial heaps and
perform merges via these heaps. We chose binomial heaps since
(to the best of our knowledge) it is the only data structure that
supports fast merge (or meld) and can support low-depth parallel
filter operations. We describe the heap interface and the cost bounds
in Sec. 2.2. As we will see, if we perform only rakes, it is easy
to always store these characteristic spines. However, compress
operations pose a significant challenge towards exactly storing the
characteristic spines. Nevertheless, if compresses are performed
carefully (in terms of which cluster to merge with), we show that
the spine consequently stored at each cluster is always sufficient
for every merge operation performed in the future. Henceforth,
when we mention heaps, we refer to parallel binomial heaps.

Extending the notation from before, let H;, denote the min-heap
associated with the cluster represented by u. We first extend the
notion of protected nodes defined in Sec. 3.1 as follows: a node e
is protected if its parent node is identical to its parent in the final
output. We would like to maintain the following invariant: (1) nodes
present in the heap are potentially not protected and correspond
to some spine in the dendrogram associated to that cluster, and,
(2) all nodes in that cluster not present in the heap are protected.
We also show that when a node is deleted from its heap during the
course of the algorithm, it is definitely protected. Thus, we ensure
that we update the output (i.e. parent array) only when a node is
deleted from its heap. This invariant helps us carefully charge the
associated merge costs to these nodes.

We will now describe optimized versions of the previously de-
scribed two-step rake and compress operations, in which SLD-
MERGE will be implemented in a white-box manner via the heaps.
rake(u, v). Rake is implemented as follows:

Algorithm 3: rake(u, v) (optimized version)

1 Lete = (u,0).

2 S,H}, = H, .FILTER_AND_INSERT(e).

3 Hy «— MELD(H,, H}).

4+ // Update output; S contains edges f € Hy thathad ry <
and were filtered out on Line 2.

5 if S.size > 0 then

6 Sort S according to rank.

7 parfor each i = 1 to S.size — 1 do
8 | p(S[i) = STi+1]

9 end

10 p(S[S.size]) =e.
11 end

Note that vertex u will be the representative of the merged cluster,
hence the new spine is stored in Hy,. Now, we prove the following
claim about the set S.

Cramv 3.8. The nodes in the set S computed during rake are pro-
tected after the merge.

Proof. To see this, observe that for each f € S, re <Te. Thus, e is
either an adjacent superior to f, or f has an adjacent superior on
the unique path between f and e. Since cluster v is being raked,
for any future merge corresponding to some edge g, the unique
path between f and g will contain e. Thus, e protects f from all
future merges. Further, since the nodes in S are on the same spine,
they will be present in sorted order, and e will be the parent of the
max-rank edge in S. O

compress(u,v,w). Compress is executed in a similar manner as
rake, except for one difference: the cluster v will always merge with
the cluster along the lesser rank edge (previously we could merge
with an arbitrary neighboring cluster). The pseudocode is shown
in Alg. 4. Next, we prove a similar claim, as in rake, about the set S.

CramM 3.9. The nodes in the set S computed during compress are
protected after the merge.

Proof. Consider some edge f € S. We have ry <1, < re,. Let ¢]
and e; denote the adjacent superiors on the paths from f to e; and
ez, respectively. Consider some future merge involving an edge g.

(1) If e] # e; and ej # ez, then e and e, protect f from any
future merges. (Interestingly, in this case, f would have already
been protected by a previous rake/compress operation involving
either e] or e}, but this is not important for this proof.)

(2) If € # ez, then f is protected by e; in the case when g is
closer to ez than e;. Similarly, f is protected by e in the case g is
closer to e; than es.

(3) Finally, we have the case e} = ez.If g is closer to ey, e] protects
f. Consider the case when g is closer to e; than e;. Observe that g
cannot have an endpoint in the cluster containing f until g = e5.
After merging along ey, any future merge corresponding to edge g

Heaps Output
d i~10 ~
7 O O
Init: 3 42 5 1 9 g
3% e h
a c f e \Ok
d 1 10
Round 1: Ols 2 s N
rake(a,b) y/ O : ot
rake(d, e) a ¢ f g K Hp Hp Hy H; Dy Dp Dy Dy
’ s] bee]]]
rake(h, k) ﬂ
rake (i, j) ® B—o0—o0—W
¢ f e
q iO 10
7) J
Round 2: Ol 2 0ls ‘O} . Hy Hp He H; D Dg D¢ Dr
conpress(B.e.E) | (673 TG 0 | sl el | PRI
compress(E, f, g)
compress(g, H,I)

Round 3: § 4 2

\.

rake(B, E) A S i ? ok
rake(G,I) @\@
d - 7 10
3 4 2 5 i 9)
Round 4: b > n &
rake(E, G) 4 :

Figure 5: A full example of SLD-TREECONTRACTION: the first column represents the rakes/compresses performed in that round; the second column displays
the clustering obtained by tree contraction (as well as a compact representation); the third column displays the (non-empty) heaps maintained at each cluster;

and the fourth column represents the (non-empty) SLDs of each cluster.

Algorithm 4: compress(u, v, w) (optimized version)

1 Let e; = (u,0) and e = (v, w).

2 if re; > re, then

3 ‘ swap u and w // Thus, we will have re, < re,.

4 end

5 S, H}, = H,.FILTER_AND_INSERT (e1).

6 H, <« MEeLD(H,, H}).

7 // Update output; S contains edges f € Hy that had ry < re,
and were filtered out on Line 5.

8 if S.size > 0 then

9 Sort S according to ranks.

10 parfor each i = 1 to S.size — 1 do

1 ‘ p(S[i]) =S[i+1]
12 end

13 p(S[S.size]) = e;.

14 end

that is closer to e; will not affect f since it will be protected by e;.
We claim that the merge corresponding to e also doesn’t affect f.

Firstly, if re] < Te; then we are done since both ei and ey are
adjacent superiors to f but e; will be processed before e; in single-
linkage clustering. Hence, e] will be the parent of f in the output
SLD. Now, assume re; > re,. We will prove that this is not possible.
We know that] and f are present on the path between e; and
e2. Consider the merge corresponding to the edge e]. Observe that
this has to be a compress (none of its endpoints can have degree
1). Since it is a compress, the counterpart edge, say e;’, will have
rank greater than e]. We know that]’ has to be present on the
path between e and e;. It cannot be present between f and e]
(contradiction that e{ is an adjacent superior). Further, it cannot be
present between f and ez as well (contradiction that e is an adjacent
superior). Thus, it must be present between e; and e]. However, the
present compress corresponding to e; cannot be performed until
the merge corresponding to e}’ is performed. If we repeat the same
argument for e/’, we will reach the conclusion that either re! <Tey

or rer < re;, both leading to contradictions. O

The following correspondence is true of Alg. 3, barring for the
update output step: the filter and insert step corresponds to step 1,
whereas the meld step corresponds to step 2, respectively in Alg. 2,
and similarly for the optimized version of compress. The main differ-
ence is that the optimized versions of rake and compress essentially

delay the update to the output until the nodes get protected, thus
having to update the parent of any node at most once.

This correspondence helps us handle the race conditions men-
tioned before, i.e. multiple clusters getting raked/compressed into
the same cluster in the same round. Using the same notation as
before, we perform the filter and insert step at the clusters being
raked/compressed, in parallel, to obtain the heaps H{,l, Hz’,z, . ,Hz'Jd.
Then, we merge all of these heaps together to obtain the heap H;, by
running a parallel reduce operation (with meld now as the function).
Finally, we meld H,, and H;/ to obtain the final spine.

For performing the merges correctly, we need to ensure that we
indeed merge the characteristic spines associated to that merge, as
required by SLD-MERGE. Instead, we show that for every merge
performed, at least one of the spines will be the exact characteristic
spine, and the other spine will be sufficient for the corresponding
merge, as stated by the following lemma.

LEMMA 3.10. For any cluster u during tree contraction, Hy, stores
a spine in the SLD of G, satisfying one of the following properties:

(1) Hy contains the characteristic spine corresponding to the next
merge involving u.

(2) Let e be the characteristic edge in u, and f be the characteris-
tic edge in the other subtree corresponding to the next merge
involving cluster u. Then, Hy, contains spine(e’) such that
spine(e’) C spine(e) andrer < re.

Proof. We prove the lemma by induction on the tree contraction
rounds. Initially, all the clusters are singleton and the heaps are
empty, which corresponds to the characteristic spine of the next
merge. Let us assume that the clusters at the end of round k — 1
store spines in their heaps that satisfy one of the properties stated.
Now, consider some cluster u. At round k, if no clusters merge with
u, we are done.

Suppose that in round k, the clusters v1,0z,...,04 get raked
into u. We first look at the filter and insert step: the single edge
e; = (u,v;) corresponds to the characteristic spine for its subtree. By
induction, in the first case Hy, contains the characteristic spine, in
which case the merge is correct and we obtain the spine(e;) in Hy, .
Otherwise, let spine(f;) be the required characteristic spine. Since
we are in the second case, we know that Hy, contains spine(f) C
spine(f;) such that g < Tep Observe that the output of merg-
ing spine(e;) and spine(f;) is equivalent to the output of merg-
ing spine(e;) and spine(f;), since spine(f/) C spine(f;). Thus,
the merge is correct, and we similarly obtain spine(e;) in H, . By
Lem. 3.3, the characteristic spine of the SLD of G,/ when merging
with the SLD of G,, is nothing than the union of spine(e;) over all
i =1,...,d. Thus, H]/ stores the characteristic spine of the next
merge. By induction, if Hy, stores the characteristic spine, the merge
is performed correctly. Otherwise too, with a similar (equivalence)
argument as before, the merge is correct.

Now, let us instead consider that round k performs compresses.
Let e;, = (u,v;) and e;, = (v;, w;), such that Te, < Te,- The same
argument, as in the case of rakes, can be extended to work here.
Now, we are left to prove that the final computed spine in Hy,
satisfies one of the stated properties.

In the future, u can be involved in a merge along the edge e;,.
However, the final spine computed in Hy, contains spine(e;,), which
is a subset of the characteristic spine corresponding to the merge

along e;,; the characteristic edge would be the min-rank edge inci-
dent at that vertex, but by Lem. 3.3, spine(e;,) will be a subset of
the characteristic spine. Thus, if e;, is the next merge, Hy, satisfies
property (2).

Since we do not delete nodes from H;, until cluster u is raked/-
compressed, it satisfies property (2) until then. By induction, Hy,
will continue to satisfy property (2) for all other possible future
merges determined by compresses (involving u) performed in the
past. Hence, it will continue to satisfy this property even after round
k (this holds even in the case when the round performs rakes).

Thus, by induction, the heaps stored at any cluster always satis-
fies one of the two stated properties. O

At the end of tree contraction when we obtain a single cluster,
observe that we have a spine stored in the heap associated to that
cluster, whose parent nodes are not updated in the output. Since
there are no more merges left and the nodes form a spine, we can
just sort all the nodes in the heaps and assign parents, identically
to the update output step described in Algs. 3 and 4. With the
algorithm fully described, we will now prove the correctness and
work-depth bounds of SLD-TREECONTRACTION.

THEOREM 3.11. SLD-TREECONTRACTION correctly computes the
SLD, and runs in O(nlog h) work and O(log? nlog? h) depth.

Proof. The proof idea is similar to Lem. 3.7, except the fact that
SLD-MERGE is executed in a white-box manner. By Lem. 3.10, every
cluster maintains the correct characteristic spines (or a sufficient
version of it) in their heaps, and thus rakes and compresses are
executed correctly. By Claim 3.8 and Claim 3.9, the output will
be updated correctly. Thus, as tree contraction is a sequence of
rakes and compresses, we can apply a simple inductive argument
as before to complete the correctness argument.

We will now analyze the work and depth bounds. Recall that we
decided to use parallel binomial heaps since they support both fast
meld (O(log(s) work and depth), where s is the size of the merged
heap) and low-depth parallel filter operations (O(k logs) work and
O(log? s) depth, where k is the number of nodes filtered). Note that
since at any point the nodes in any heap correspond to some spine,
the size of every heap will always be O(h).

Work Analysis. If k nodes are protected at any rake/compress,
the total work for the filter step will be O(k log h). The subsequent
output SLD update step also performs O(klogh) work (sorting
plus update). Thus, we can charge O(logh) work to each of the
protected nodes. Since each node is protected at most once, the
overall work incurred will be O(n log h). Next, each meld operation
requires O(log h) work. Since every rake/compress operation is
associated to exactly one edge of the input tree, we can associate
this O(log h) work to that edge, leading to a total of O(nlogh)
work across all edges. Hence, the overall work of the algorithm is
O(nlogh).
Depth Analysis. Let us now analyze the depth of the algorithm.
The number of rake and compress rounds is at most O(log n). The
cost of spawning threads within a round is O(log n). The depth
of the heap filter step is O(log? h), the depth of update output
and heap meld is O(log h) (times O(log h) for meld due to the re-
duce). Therefore, the overall depth of each rake/compress round is
O(log nlog? h), giving the overall depth bound of O(log? nlog? h).
O

4 PRACTICAL ALGORITHMS

In this section, we describe two algorithms for dendrogram com-
putation, both of which have strong provable guarantees (both
achieve the optimal work bounds we showed in Sec. 3.1) but are
also implementable and achieve good practical performance. The
first is an activation-based algorithm that achieves the optimal work
bound of O(nlog h) and has O(hlog n) depth (Sec. 4.1). The second
algorithm is a twist on the tree contraction algorithm described
in Sec. 3.2 that first performs tree contraction, and subsequently
traces the tree contraction structure to identify the parent of each
edge in the dendrogram (Sec. 4.2). It also achieves optimal work,
and additionally runs in worst-case poly-logarithmic depth.

4.1 Activation-Based Algorithm (ParUF)

The sequential Kruskal algorithm processes edges in increasing
order of rank, thus emulating the process of single-linkage HAC
and building the output dendrogram in a bottom-up fashion, one
node at a time. We can generalize this approach to safely process
multiple edges at the same time by building the dendrogram in a
bottom-up fashion, one “level” at a time. This approach is similar to
the nearest-neighbor chain algorithm, a well-known technique for
HAC [5] that obtains good parallelism in practice for other linkage
criteria such as average-linkage, and complete-linkage [13, 40, 44].

Indeed, the algorithm we propose can be viewed as an optimized
and parallelized version of the sequential algorithm in [13]. The
striking difference between our activation-based algorithm and
other nearest-neighbor chain algorithms is that our algorithm is
asynchronous and only requires a single instance of spawning par-
allelism over the set of edges, whereas all other nearest-neighbor
chain implementations we are aware of run in synchronized rounds.

The following simple but important observation allows us to
process multiple edges at a time:

LEMMA 4.1 (FOLKLORE). Ifan edge e = (u,v) is a local minima, i.e.
re <y for all other edges f incident to the clusters containing u and
v, then the clusters u and v can be safely merged.

The proof follows due to the fact that single-linkage clustering
processes edges in sorted order of ranks, and hence edge e will be
processed before all of the other edges incident to its endpoints.
In other words, the edge e is processed only when it becomes the
minimum rank edge incident to the clusters on both of its endpoints.
We also have the following useful lemma.

LEMMA 4.2. Let e = (u,v) be a local minima. Then, the parent of
node e in the output SLD will correspond to the minimum rank edge
incident on the merged cluster uv.

Proof. Once u and v are merged along e, let e, ea, . . ., ey denote the
set of edges incident to the merged cluster uv, in sorted order of
ranks. The parent of e is the first edge that merges the cluster uv
with some other cluster. However, uv can merge only via one of
ej, ez, ..., or eq, and the first edge to be processed among them will
be e1, by the definition of single-linkage clustering. Therefore, e;
will be the parent of e in the output SLD. O

Based on these observations, we now describe an asynchronous
activation-based algorithm that we call ParUF. We give the pseu-
docode in Alg. 5. The idea is natural: when an edge becomes a

local minima, we merge it. We maintain the set of edges incident
to a cluster in a meldable min-heap (which we call the neighbor-
heap of that cluster). Each unmerged edge will be present in two
neighbor-heaps corresponding to the clusters containing it’s end-
points. The element at the top of a cluster’s heap will correspond to
the min-rank edge incident to that cluster. We maintain the cluster
information using a Union-Find data structure. Note that due to
our strategy of only processing the local minima in parallel, we can
use any sequential Union-Find structure with path compression. To
identify if an edge is ready to be processed, i.e. it is a local minima,
for each edge e € E we maintain an integer status(e) value:

2, ready

1, almost read
status(e) = Y
0, notready

—1, inactive

An edge is ready if it is at the top of both the neighbor-heaps of its
endpoints, i.e. it is a local minima. An edge is almost ready if it is at
the top of the neighbor-heap of only one of it’s endpoints. If it is
not on top of either neighbor-heaps, the edge is not ready. Finally,
if the edge has already been merged/processed, it is inactive.

The overall algorithm is given in Alg. 5. The updates/accesses
to status(e) (Line 7 and Line 19) must be atomic since it could be
updated/accessed by both of it’s endpoints simultaneously. We now
show that the rest of the steps of the algorithm do not have any
race conditions, and that the algorithm is efficient:

Algorithm 5: Activation-based Algorithm (ParUF)

1 F « Initialize Union-Find with all singleton clusters
2 Initialize the output SLD: Ve € E, p(e) = e

3 heaps < Initialize neighbor heaps

4 Initialize status(.) values

5 parfor each e € E do

6 cur «— e
7 while CAS(status(cur), 2,—1) do

8 (u,0) < cur

9 (v,v") « (F.FinD(u), F.FIND(v))

10 w « F.UN1ON(2/,0")

1 heaps(u’).DELETE_MIN()

12 heaps(v”").DELETE_MIN()

13 heaps(w) « MELD(heaps(u’), heaps(v”))
14 if heaps(w) is empty then

15 ‘ break

16 end

17 new_cur « heaps(w).Top()

18 p(cur) = new_cur

19 ATOMIC_INC(status(new_cur))

20 cur « new_cur

21 end

22 end

THEOREM 4.3. ParUF correctly computes the SLD, and runs in
O(nlogh) work and O(hlogn) depth.

Further Optimizations and Implementation. As we will see in
Sec. 5, the height of the resultant SLD is typically large in many
instances. However, in most cases, the number of nodes in each
level of the output dendrogram, as we go upwards, converges to
1 quickly. In other words, the number of local-minima edges is
exactly one the majority of the time, rendering ParUF ineffective.
However, we can apply a very simple optimization in this case.

If the number of local-minima edges is 1, this means we have to
process the edges one-by-one. However, we know that they will be
processed in sorted order. Thus, when running ParUF, if the number
of local-minima edges (or the number of ready edges) drops to 1, we
can stop and compute the set of remaining edges, say E’. Then, we
sort E’ based on rank, and assign parent[E’[i]] = E’[i+1]. In terms
of finding out the number of ready edges, a simple approach is to
periodically stop and check the count. This optimization provides
incredible speed-ups in most of our experiments. However, it is not
too hard to generate adversarial inputs that have low parallelism,
but elude this strategy (for instance, if the output dendrogram has
two nodes in each level for the majority of the time.)

4.2 RC-Tree Tracing Algorithm (RCTT)

Implementing a fast and practical algorithm that computes the
SLD by leveraging the properties of SLD-MERGE is highly non-
trivial. The practical bottleneck of a faithful implementation of
SLD-TREECONTRACTION, our merge-based algorithm appears to
be the need to maintain meldable heaps supporting the heap-filter
operation for merging spines. In this section, we explore a few more
structural properties of SLD-MERGE and parallel tree contraction
to design a fast and practical O(nlogn) work and O(log? n) depth
algorithm for computing the SLD that completely removes the
requirement of maintaining the spines. The idea is to use the RC-
tree representation of the tree contraction process and apply a
post-processing tracing step to compute the final output.

Alg. 6 gives pseudocode for the RCTT algorithm. It first com-
putes the RC-tree associated to the tree contraction performed
by SLD-TREECONTRACTION, without computing the output SLD
or maintaining any spines (Line 1). We note that when a vertex
(cluster) is compressed in the RC-tree, it will merge with the neigh-
bor along the lesser rank edge, as required by the algorithm SLD-
TREECONTRACTION.

Given the RC-tree, consider some edge e. Recall that each edge
e is associated to the rcnode of some vertex v that gets raked or
compressed via e. From the viewpoint of SLD-TREECONTRACTION,
rcnode(v) corresponds to the stage when e gets introduced into
some heap. Edge e will successively be involved in every rake/com-
press operation involving the cluster containing v until (if at all) it
gets protected (or filtered during a heap-filter operation) by some
edge f. More specifically, e is either protected by the first edge f
it encounters during tree contraction, after it’s introduction, such
that re < ry, or it doesn’t encounter such an edge and is, conse-
quently, present in the heap at the root rcnode, or in other words,
it is protected at the root rcnode. Let u denote the rcnode where
edge e gets protected. A critical observation here is that the set of
rake/compress operations that includes e until it becomes protected
are associated to the rcnode(s) along the (unique) path between

10

Algorithm 6: RCTREETRACING

1 Compute the RC-Tree RCT.
2 bkts « set of empty buckets corresponding to eachu € V

parfor each e € E do

3 u « rcnode associated to e

4 u < u.parent

5 f < edge associated to u

6 while re<te and u is not the root do
7 u « u.parent

8 f <« edge associated to u

9 end

10 Add e to bucket corresponding to u

11 end

12 parfor each u € V do

13 Let bkt be the bucket associated to rcnode(u)
14 Sort the edges in bkt by ranks

15 Let e < edge associated to rcnode(u)
16 parfor each i = 1 to bkt.size — 1 do

17 | plbke[i]] = bkt[i+1]

18 end

19 if u is not root then

20 | plbkt[bkt.size]] — e

21 end

22 end

rcnode(u) and renode(v). This is true due to the properties of RC-
trees: the set of clusters containing the edge e throughout tree con-
traction correspond exactly to the set of rcnodes on the path from
rcnode(v) until the root (in order). But, in SLD-TREECONTRACTION,
e gets filtered out from its heap once it encounters f (or rcnode(u)).
Thus, for each edge e, starting from rcnode(v), we traverse the
O(log n) length path in the RC-tree along the path towards the root
until we find rcnode(u). This way, for each rcnode, we can collect
all nodes e that were protected at this node. This corresponds exactly
to the set S obtained by the first step via the heap-filter operation;
in case of the root, it is the remaining set of nodes in the spine.
We can finally post-process these sets by sorting each of them by
rank and updating the output SLD same as before. The pseudocode
of this algorithm, which we refer to as RCTREETRACING (RCTT in
short), is given in Alg. 6.
Analysis and Implementation. RCTREETRACING is a simpler
algorithm than SLD-TREECONTRACTION in the sense that it doesn’t
require meldable or filterable heaps and, in fact, doesn’t require us
to perform the actual merges of edges. The main practical challenge
in the algorithm is to maintain a dynamic adjacency list as the input
tree contracts due to rakes and compresses. The RC-tree can easily
be computed in O(n) work and O(log? n) depth. Sorting within
buckets to compute the final output runs in O(nlog h) work and
O(log? n) depth, since the bucket sizes are O(h) (all of these nodes
are along some spine). The tree tracing step has the most work, i.e.
O(nlogn) work and O(log? n) depth, since it requires us to trace
the entire height of the RC tree from each node in the worst case,
and the height of the RC Tree is O(log n). However, in terms of

experiments, we see that the tracing step is very fast; indeed the
bottleneck is the RC tree construction time (see Fig. 7).

5 EXPERIMENTAL EVALUATION

In this section we evaluate our parallel implementations for SLD

construction and show the following main experimental results:

o RCTTis usually fastest on our inputs, achieving 2.1-132x speedup
(16.9x geometric mean) over SeqUF on billion-scale inputs.

e ParUF achieves 2.1-150x speedup over SeqUF (5.92x geometric
mean) on billion-scale inputs, but can be up to 151x slower than
SeqUF on adversarial inputs.

Experimental Setup. Our experiments are performed on a 96-
core Dell PowerEdge R940 (with two-way hyperthreading) with
4%2.4GHz Intel 24-core 8160 Xeon processors (with 33MB L3 cache)
and 1.5TB of main memory. Our programs use the work-stealing
scheduler provided by ParlayLib [6]. Our programs are compiled
with the g++ compiler (version 11.4) with the -03 flag.

Inputs. The path input is a path containing n vertices and n — 1

edges arranged in a path (or chain); star is a star on n vertices

where one vertex, the star center, has degree n — 1, and all other

vertices are connected to the center, and have degree 1; knuth is a

tree similar to the dependency structure of the Fischer-Yates-Knuth

shuffle [9], as follows: vertex i > 0 picks a neighbor in [0,i — 1]

uniformly at random and connects itself to it.

We also generate several real-world tree inputs drawn real-world
graphs. Friendster is an undirected graph describing friendships
from a gaming network.? Twitter is a directed graph of the Twitter
network, where edges represent the follower relationship [25].3 We
build tree inputs for these real-world graphs by (1) symmetrizing
them if needed (2) setting the weight of each edge (u,0v) to be
m, where t(u,v) is the number of triangles incident on the
edge (u,v) and (3) computing a minimum spanning tree.

We build another real-world tree input using the BigANN dataset
of SIFT image similarity descriptors; we compute the minimum
spanning tree over an approximate k-nearest neighbor graph over a
100 million point subset of the BigANN dataset.* For our construc-
tion, we used an in-memory version of DiskANN algorithm [39]
implemented in the ParlayANN library [28].

Weight Schemes. We consider several different weight-schemes.

The unit unit assigns all edges a weight of 1. The perm scheme

generates a random permutation of the edges and assigns each

edge a weight equal to its index in the random permutation. The
low-par scheme is only applicable to paths, and is designed to be
adversarial for the ParUF algorithm. This scheme assigns weights
in increasing order to the first half of the edges in the path, and
assigns weights in decreasing order for the second half of the path.

5.1 Algorithm Performance

Next, we analyze the performance of our algorithms, including
(1) their self-speedup, (2) their speedup over SeqUF, and (3) the
performance breakdown of our algorithms. Fig. 6 shows the running
times of our algorithms on a representative subset of the 100M-scale
inputs as a function of the number of threads.

2Source: https://snap.stanford.edu/data/.
3Source: http://law.di.unimi.it/webdata/twitter-2010/.
4Source: http://corpus-texmex.irisa.fr/.

11

SeqUF —— ParUF

knuth-unit path-unit

e
321 16+
164 8-

8- 4

41 d

2] *]
1

128 644

64 321

321 164

8-

44 8- 4

24 41 2

i 21 1

Figure 6: Running time of our SLD implementations on different input
trees as a function of the number of threads. All inputs contain 100M vertices.

—— RCTT

star-unit

Running Time (Seconds)

®
1

=)
1

RCTT: CJ Build KEXX Trace Sort
ParUF: 1 Preprocess B2 Async Postprocess

@ path-unit path-perm star-unit star-perm knuth-unit knuth-perm
20 4

o

8 80 1

wn

° 60 4

€

= 40

o

£ 20 4

£ u

C

E T 04 T
Es &8
T L L

Figure 7: Parallel 192 thread running time breakdowns of the RCTT and
ParUF algorithms on billion-scale inputs. For RCTT, the Build step corre-
sponds to building an RC tree; the Trace step finds the bucket associated
with each edge; and the Sort step sorts each of the buckets. For ParUF, the
Preprocess step sorts the edges and identifies initial local minima; the Async
step performs bottom-up clustering; the Postprocess step sorts all remaining
edges once the number of local-minima in the Async step becomes 1.

SeqUF. SeqUF achieves between 1.36-11.6x self-relative speedup
(2.94x geometric mean); it achieves the best self-speedups for the
star and path graphs using unit weights as shown in Fig. 6. We em-
phasize that despite its name, SeqUF is able to leverage parallelism
since the first step in the algorithm is to sort the edges, and we use
a highly optimized parallel sort from ParlayLib [6]. For all other
inputs, in which the input tree or edge weights induce an irregular
access pattern, the algorithm achieves poor speedup (under 2x).
In more detail, for star and path graphs using unit weights, the
edges merged all lie one after the other in memory, and so the
access pattern of the sequential algorithm has good locality. When
the weights are permuted or the input tree has an irregular struc-
ture (e.g., in the case of the knuth inputs), the algorithm accesses
essentially two random cache-lines in every iteration.

ParUF. ParUF achieves between 4.91-50.1x self-relative speedup
(30.1x geometric mean). In Fig. 6, it achieves the lowest speedups
on the knuth input with permuted weights due to this input tree
resulting in a high height dendrogram (h = 2.5M) which is not
amenable to our post-processing optimization. Fig. 7, which shows
the performance breakdown of ParUF on different inputs shows that
on the knuth input with permuted weights, almost all of the time is
spent on the asynchronous Union-Find step (the while loop starting
on Line 7 in Alg. 5). Although several other inputs have high height
(e.g., knuth with unit weights, whose dendrogram forms a path of

Table 1: Parallel running times of our SLD implementations on different
tree inputs. The last two columns show the speedup of our implementations
over SeqUF.

Type Sizes ‘ SeqUF ParUF RCTT :(385 ieél.g
10M .253 120 .101 2.10 2.50
path 100M 2.20 962 897 2.28 2.45
1B 21.8 7.93 8.15 2.74 2.67
10M 5.56 .09 099 61.7 56.1
path perm 100M 68.6 .881 904 77.8 75.8
1B 989 6.61 7.49 149.6 132
10M .335 41.9 101 0.007 3.31
path low-par 100M 2.42 366 .884 0.006 2.73
1B 23.4 2640 7.73 0.008 3.02
10M .252 125 111 2.01 2.27
star 100M 2.04 1.03 895 1.98 2.28
1B 20.3 8.49 7.61 2.39 2.66
10M 4.71 141 116 33.4 40.6
star perm 100M 56.1 1.29 1.01 43.4 55.5
1B 824 13.9 .68 59.2 94.9
10M 1.70 .140 156 12.1 10.9
knuth 100M 39.2 1.12 1.69 35.0 23.1
1B 458 9.61 19.2 47.6 23.8
10M 5.83 2.55 155 2.28 37.6
knuth perm 100M 79.9 37.7 1.61 2.11 49.6
1B 1110 95.1 17.3 11.6 64.1
SeqUF —— ParUF —— RCTT
im twitter . friendster bigann
2 16 > 128
3 329 i
o 164 64-
L 4 324
o 8
£ 2 16
= 1 ks 84
2 o 4
? TATILHRs IV iig AVehEs
B o o
Num. Threads

Figure 8: Running time of our SLD implementations on different real-
world input trees as a function of the number of threads.

length n—1), they are amenable to the post-processing optimization,
and thus ParUF achieves good speedup since the post-processing
step simply sorts the remaining edges. ParUF typically begins to
out-perform SeqUF with more than 8 threads. Compared to SeqUF,
as shown in Tab. 1, it obtains between 2.1—150x speedup over
SeqUF (5.92x geometric mean speedup) on the billion-scale inputs;
however, it performs poorly on the adversarial low-parallelism
input (path low-par) it is 151x worse at the 100M scale.

RCTT. The RCTT algorithm achieves the most consistent speedups
among the algorithms studied in this paper, achieving between 35.2—
75.5x self-speedup (52.1x geometric mean). From Fig. 6 and Tab. 1,
we can see that RCTT is usually the fastest algorithm when using
all threads, and is always within a factor of 2x of the performance
of ParUF. Similar to ParUF, it starts to outperform SeqUF on all
inputs after about 8 threads, and is never slower than SeqUF on
any input, at any of the scales that we evaluated. Unlike ParUF,
whose behavior depends on the amount of parallelism available to
it and sometimes performs much worse than SeqUF, RCTT always
obtains speedups over SeqUF, achieving between 2.1—132x speedup
(16.9x geometric mean speedup) over SeqUF on the billion-scale

12

inputs. We can see from Fig. 7 that despite the Trace step being
the most costly step in theory (see Sec. 4.2), it takes at most 23%
of the time across our inputs, and is usually only a few percentage
of the total running time. The majority of the time is spent on the
RC tree construction; optimizing this step by designing faster tree
contraction algorithms is an interesting direction for future work.
Real-World Inputs. We also ran our implementations on three
real-world tree inputs described earlier in this section (results in
Figure 8). On these inputs, we observe that SeqUF achieves modest
speedups more similar to the permuted weights, rather than the
high self-relative speedup in the unit weight case. In particular,
it achieves between 1.2-1.8x self-relative speedup. On the other
hand, both ParUF and SeqUF achieve strong self-speedups, with
ParUF achieving between 36-52x self-speedup and RCTT achieving
between 48.7-84x self-speedup. Both of our parallel algorithms
achieve strong speedups over SeqUF—on all 192 threads ParUF is
between 18.4-39.8x faster, and RCTT is between 21.1-34.4x faster.

6 CONCLUSION

In this paper, we gave optimal parallel algorithms for computing the
single-linkage dendrogram. We described a framework for obtain-
ing merge-based divide-and-conquer algorithms, and instantiated
the framework using parallel tree contraction, showing that it yields
an optimal work deterministic algorithm with poly-logarithmic
depth. We also designed two practical algorithms, ParUF and RCTT,
both of which have provable guarantees on their work and depth,
and which achieve strong speedups over a highly optimized sequen-
tial baseline. An interesting question is whether we can extend our
approach to obtain good dynamic algorithms for maintaining the
single-linkage dendrogram.

ACKNOWLEDGMENTS

This work is supported by NSF grants CCF-2103483 and CNS-
2317194, NSF CAREER Award CCF-2339310, the UCR Regents Fac-
ulty Award, and the Google Research Scholar Program. We thank
the anonymous reviewers for their useful comments.

REFERENCES

[1] Karl Abrahamson, Norm Dadoun, David G. Kirkpatrick, and T Przytycka. 1989.
A simple parallel tree contraction algorithm. Journal of Algorithms 10, 2 (1989),
287-302.

[2] Umut A Acar, Vitaly Aksenov, and Sam Westrick. 2017. Brief Announcement:
Parallel Dynamic Tree Contraction via Self-Adjusting Computation. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA).

[3] Daniel Anderson. 2023. Parallel Batch-Dynamic Algorithms Dynamic Trees,
Graphs, and Self-Adjusting Computation. Ph.D. Dissertation. Carnegie Mellon
University.

[4] Dalya Baron. 2019. Machine Learning in Astronomy: a practical overview.
arXiv:1904.07248 [astro-ph.IM]

[5] J-P Benzécri. 1982. Construction d’une classification ascendante hiérarchique par

la recherche en chaine des voisins réciproques. Cahiers de I’analyse des données

7,2 (1982), 209-218.

Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib -

A Toolkit for Parallel Algorithms on Shared-Memory Multicore Machines. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 507-509.

https://cmuparlay.github.io/parlaylib/

Guy E. Blelloch, Laxman Dhulipala, and Yihan Sun. 2021. Introduction to Parallel

Algorithms. https://www.cs.cmu.edu/~guyb/paralg/paralg/parallel.pdf. Carnegie

Mellon University.

Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. 2020. Optimal Parallel

Algorithms in the Binary-Forking Model. In ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA). 89-102.

G

7

—_
)

=

]

[10

[11

[12]

[13

[14]

[15]

[16

[17]

(18]

[19

[20]

[21]

[22

[23

[24]
[25

[26]

[27

[28]

[29]

[30]

[31]

[32]

[33

Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2020. Randomized Incre-
mental Convex Hull is Highly Parallel. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 103-115.

Ricardo JGB Campello, Davoud Moulavi, Arthur Zimek, and Jérg Sander. 2015.
Hierarchical density estimates for data clustering, visualization, and outlier de-
tection. ACM Transactions on Knowledge Discovery from Data (TKDD) 10, 1 (2015),
1-51.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms.

Erik D Demaine, Gad M Landau, and Oren Weimann. 2009. On Cartesian trees
and range minimum queries. In Automata, Languages and Programming: 36th
International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings,
Part I 36. Springer, 341-353.

Laxman Dhulipala, David Eisenstat, Jakub Lacki, Vahab Mirrokni, and Jessica
Shi. 2021. Hierarchical agglomerative graph clustering in nearly-linear time. In
International Conference on Machine Learning. PMLR, 2676-2686.

E.D. Feigelson and G.J. Babu. 1998. Statistical Methodology for Large Astro-
nomical Surveys. Symposium - International Astronomical Union 179 (1998),
363-370.

Molly Gasperini, Andrew J Hill, José L McFaline-Figueroa, Beth Martin, Seungsoo
Kim, Melissa D Zhang, Dana Jackson, Anh Leith, Jacob Schreiber, William S Noble,
et al. 2019. A genome-wide framework for mapping gene regulation via cellular
genetic screens. Cell 176, 1 (2019), 377-390.

Hillel Gazit, Gary L Miller, and Shang-Hua Teng. 1988. Optimal tree contraction
in the EREW model. In Concurrent Computations: Algorithms, Architecture, and
Technology. 139-156.

Markus Gotz, Gabriele Cavallaro, Thierry Géraud, Matthias Book, and Morris
Riedel. 2018. Parallel computation of component trees on distributed memory
machines. IEEE Transactions on Parallel and Distributed Systems 29, 11 (2018),
2582-2598.

J. C. Gower and G. J. S. Ross. 1969. Minimum Spanning Trees and Single Link-
age Cluster Analysis. Journal of the Royal Statistical Society. seriesx C (Applied
Statistics) 18, 1 (1969), 54—64.

Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-Down Parallel
Semisort. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 24-34.

MohammadTaghi Hajiaghayi, Marina Knittel, Hamed Saleh, and Hsin-Hao Su.
2022. Adaptive Massively Parallel Constant-Round Tree Contraction. In 13th Inno-
vations in Theoretical Computer Science Conference (ITCS 2022), Mark Braverman
(Ed.), Vol. 215. 83:1-83:23.

Jiti Havel, Frangois Merciol, and Sébastien Lefévre. 2019. Efficient tree construc-
tion for multiscale image representation and processing. Journal of Real-Time
Image Processing 16 (2019), 1129-1146.

William Hendrix, Diana Palsetia, Md Mostofa Ali Patwary, Ankit Agrawal, Wei-
keng Liao, and Alok Choudhary. 2013. A scalable algorithm for single-linkage
hierarchical clustering on distributed-memory architectures. In IEEE Symposium
on Large-Scale Data Analysis and Visualization (LDAV). IEEE, 7-13.

David B Henry, Patrick H Tolan, and Deborah Gorman-Smith. 2005. Cluster
analysis in family psychology research. Journal of Family Psychology 19, 1 (2005),
121.

J. JaJa. 1992. Introduction to Parallel Algorithms.

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In International World Wide Web
Conference (WWW). 591-600.

Ivica Letunic and Peer Bork. 2007. Interactive Tree Of Life (iTOL): an online
tool for phylogenetic tree display and annotation. Bioinformatics 23, 1 (2007),
127-128.

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schiitze. 2008. Intro-
duction to Information Retrieval.

Magdalen Dobson Manohar, Zheqi Shen, Guy Blelloch, Laxman Dhulipala, Yan
Gu, Harsha Vardhan Simhadri, and Yihan Sun. 2024. ParlayANN: Scalable and
Deterministic Parallel Graph-Based Approximate Nearest Neighbor Search Algo-
rithms. In ACM Symposium on Principles and Practice of Parallel Programming
(PPOPP). 270-285.

Gary L Miller and John H Reif. 1985. Parallel tree contraction and its application.
In IEEE Symposium on Foundations of Computer Science (FOCS), Vol. 26. 478-489.
Ugo Moschini, Arnold Meijster, and Michael HF Wilkinson. 2017. A hybrid shared-
memory parallel max-tree algorithm for extreme dynamic-range images. IEEE
transactions on pattern analysis and machine intelligence 40, 3 (2017), 513-526.
Corey J. Nolet, Divye Gala, Alex Fender, Mahesh doixjade, Joe Eaton, Edward
Raff, John Zedlewski, Brad Rees, and Tim Oates. 2023. cuSLINK: Single-Linkage
Agglomerative Clustering on the GPU. In ECML PKDD. 711-726.

Georgios K Ouzounis. 2020. Segmentation strategies for the alpha-tree data
structure. Pattern Recognition Letters 129 (2020), 232-239.

Georgios K Ouzounis and Pierre Soille. 2012. The alpha-tree algorithm. JRC
Scientific and Policy Report (2012).

13

[34] John H. Reif and Stephen R. Tate. 1994. Dynamic parallel tree contraction
(extended abstract). In ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA). 114-121.

Piyush Sao, Andrey Prokopenko, and Damien Lebrun-Grandié. 2024. PANDORA:
A Parallel Dendrogram Construction Algorithm for Single Linkage Clustering
on GPU. arXiv:2401.06089 [cs.LG]

Hinrich Schiitze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval.

Julian Shun and Guy E. Blelloch. 2014. A simple parallel cartesian tree algorithm
and its application to parallel suffix tree construction. ACM Trans. Parallel Comput.
1,1(2014).

Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons.
2015. Sequential random permutation, list contraction and tree contraction
are highly parallel. In ACM-SIAM Symposium on Discrete Algorithms (SODA).
431-448.

Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Kr-
ishaswamy, and Harsha Vardhan Simhadri. 2019. DiskANN: fast accurate billion-
point nearest neighbor search on a single node. In Neural Information Processing
Systems (NeurIPS).

Baris Sumengen, Anand Rajagopalan, Gui Citovsky, David Simcha, Olivier
Bachem, Pradipta Mitra, Sam Blasiak, Mason Liang, and Sanjiv Kumar.
2021. Scaling Hierarchical Agglomerative Clustering to Billion-sized Datasets.
arXiv:2105.11653 [cs.LG]

Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. 2021. Fast Parallel Algorithms
for Euclidean Minimum Spanning Tree and Hierarchical Spatial Clustering. In Pro-
ceedings of the 2021 International Conference on Management of Data. 1982-1995.
Loic Yengo, Sailaja Vedantam, Eirini Marouli, Julia Sidorenko, Eric Bartell, Saori
Sakaue, Marielisa Graff, Anders U Eliasen, Yunxuan Jiang, Sridharan Raghavan,
et al. 2022. A saturated map of common genetic variants associated with human
height. Nature 610, 7933 (2022), 704-712.

Odilia Yim and Kylee T Ramdeen. 2015. Hierarchical cluster analysis: comparison
of three linkage measures and application to psychological data. The Quantitative
Methods for Psychology 11, 1 (2015), 8-21.

Shangdi Yu, Yiqiu Wang, Yan Gu, Laxman Dhulipala, and Julian Shun. 2021.
ParChain: a framework for parallel hierarchical agglomerative clustering using
nearest-neighbor chain. Proc. VLDB Endow. 15, 2 (2021), 285-298.

(35]

[36

[37

[38

[39

(40]

[41

=
)

[43

[44

A RELATED WORK

Single-linkage clustering has been studied for over half a century,
starting with the early work of Gower and Ross [18]. Since then,
it has found widespread application in a variety of scientific disci-
plines and industrial applications [4, 14, 15, 17, 21, 23, 26, 27, 33, 42,
43].

Single-Linkage Dendrogram Algorithms. In the past decade,
due to the importance of single-linkage clustering, serious algorith-
mic consideration of the core problem of computing a single-linkage
dendrogram began. The work of Demaine et al. [12] gives an algo-
rithm showing that if the cost of sorting the edges is “free”, SLD
can be solved in O(n) time. Their algorithm is based on an nice
argument using decremental tree connectivity. Their linear-work
bound is not directly comparable to our results since they assume
the edges are sorted (and thus bypass comparison lower bounds).

In more recent years, different communities have studied the
SLD problem, and other related hierarchical tree building problems.
A large body of work has come out of the image analysis com-
munity, where SLD is studied under the moniker of “alpha-tree”
algorithms [17, 30, 32, 33]. Unfortunately the algorithms are highly
specific to analyzing 2D and 3D data, and parallel algorithms in this
domain [17, 30] are not work-efficient and typically not rigorously
analyzed in parallel models.

The most relevant related work is the paper of Wang et al. [41]
who recently gave the first work-efficient parallel algorithm for SLD.
Their algorithm is randomized and computes the SLD in O(nlog n)
expected work and O(log? nloglog n) depth with high probability
(whp). Although their algorithm is work-efficient with respect to
SeqUF, it relies on applying divide-and-conquer over the weights,

which is implemented using the Euler Tour Technique [24]. Based
on private communication with the authors, we understand that
due to its complicated nature, this algorithm does not consistently
outperform the simple SeqUF algorithm. The authors only released
the code for SeqUF and suggested to always use SeqUF rather than
the theoretically-efficient algorithm. The algorithm is randomized
due to the use of semisort [19, 41], and there is no clear way to
derandomize it to obtain a deterministic parallel algorithm.

Our paper gives two algorithms that have better work than the
algorithm of Wang et al. [41], but have worse depth bounds since
the depth of our tree contraction algorithm is O(log? nlog? h) =
Q(log? n(loglog n)%). However, our third algorithm (RCTT) pro-
vides a strict improvement over their algorithm, while also being
simple and deterministic, since RCTT achieves O(nlog n) work and
O(log? n) depth in the binary-forking model. We note that in the
PRAM model, the RCTT algorithm requires O(nlogn) work and
O(log n) depth. Improving RCTT to obtain O(nlogh) work and

14

O(log n) depth or O(n) work and polylog(n) depth if the edges are
pre-sorted are two interesting directions for future work.

B LOWER BOUND

LEMMA 3.6. For any |logn] < h < n — 1, there is an input that
every comparison-based SLD algorithm requires Q(nlogh) work to
compute the parent of every edge in the output dendrogram.

Proof. For a given value of h, we build a tree with n/h connected
components, each with h elements. The goal of each component is to
solve an independent instance of sorting, which has a comparison-
sorting lower bound of Q(hlog h) work [11] to solve. To create an
input tree for our comparison-based SLD algorithm to solve, we
connect all elements within each component into a star. It is not
hard to see that after solving SLD, the elements in each star will
be totally ordered based on their rank, and so solving SLD on the
aforementioned input tree will solve all of the sorting instances.
Since each sorting instance requires Q(hlog h) comparisons (work),
the n/h instances requires Q(nlog h) work in total to solve. o

