Optimized Register Usage for Dynamic Instrumentation

Nick Rutar

December 6, 2005

Abstract

Dynamic instrumentation of programs presents an
interesting problem for register usage. Since pro-
gram functionality can be changed at any given in-
struction in the program, it is imperative that register
state is the same before and after the instrumentation
code. The trivial solution is to spill all registers be-
fore instrumentation code is generated. This paper
discusses more efficient methods for register alloca-
tion and discusses the performance gains on different
architectures when using these methods.

1 Introduction

Dynamic instrumentation of programs involves the
insertion of code into a running program. A primary
concern when doing these operations is that the state
of the registers is the same when you return from
your instrumentation code. Overwriting a register in
your instrumentation that is used within the original
program will change the functionality of the instru-
mented program in unpredictable ways.

This paper examines ways to improve register us-
age for Dyninst[4], an instrumentation tool that pro-
vides a C++ library for dynamic instrumentation.
Currently, Dyninst does a blind spill for all regis-
ters that may be affected by instrumentation. This
includes registers that may be explicitly used by in-
strumentation, but also all caller-saved registers. In

the cases where the instrumentation code is minimal,
this leads to a high number of wasted memory refer-
ences due to the spilling.

The paper is organized in the following matter.
Section 2 gives a short overview of the DyninstAPI.
Section 3 discusses the main method we have used to
make the register usage more efficient, liveness anal-
ysis. Section 4 covers other, often platform specific,
optimizations. Section 5 discusses performance re-
sults from these methods. Section 6 discusses related
work. We summarize our conclusions in Section 7.

2 Dyninst Overview

The DyninstAPI is a means to insert code into a
running program. It does this through an API
that allows platform independent C++ calls that al-
low the programmer to create tools and applica-
tions that use runtime code patching. Implemen-
tations of Dyninst are currently available for Al-
pha (Tru64 UNIX), MIPS (IRIX), Power/PowerPC
(AIX), SPARC (Solaris), x86 (Linux and Windows
NT), AMD64 (Linux), and ia64 (Linux).

Figure 1 shows shows the structure of Dyninst.
A mutator process generates machine code from the
high-level instrumentation code, which was created
by the calls from the API. This machine code is
transferred to the application process. The new code
is inserted by creating dynamic code patches, called
trampolines, at the the point where the new code is



Mulalor Mulatoo

huisar Apgicalion

Application Coda

AP
Mschine
D:',:::ft Dapandant / Snippats
phraoadproots Rurr-fims Library

Figure 1: Structure of Dyninst

to be inserted.

The actual insertion of the code and the trampo-
line structure is shown in Figure 2. When a given in-
struction is to be instrumented, the entire basic block
containing the instruction is moved to a multi-tramp
structure. A basic block is a sequence of consecu-
tive instructions where control enters at the begin-
ning and leaves at the end.

In the original program, the first instruction of the
basic block is replaced by the jump to the multi-
tramp, and all other instructions are replaced by
noops. In the multi-tramp, any instruction within
the basic block that has been instrumented (multiple
instructions may have had instrumentation added)
is contained within a base tramp structure. Thus,
a multi-tramp is a combination of base tramps and
uninstrumented instructions that have been moved
over from the original program’s affected basic
block. A base trampoline contains the relocated in-
struction from the application address space, and has
slots for calling mini-trampolines before and after
the relocated instruction. Before any mini-tramp call
the registers are spilled and after the mini-tramp call
returns the registers are restored. The mini-tramp is
where the actual code generated by the mutator (a
code snippet) is stored.

3 Liveness Analysis

The primary technique we are using to increase the
efficiency of the register usage for Dyninst is live-
ness analysis at the point of instrumentation. Live-
ness analysis is a data flow analysis that has been
used in compilers for register allocation[3]. It calcu-
lates, for a given program point, whether a variable
is read before the next write update. For instance,
given these 3 lines in a program,

1: foo = 1;
2: bar 2;
3: foo = baz + bar;

At the exit of line 1, the set of live variables is {baz}.
This is because bar is updated in line 2. The set of
live variables at exit of line 2 is then {baz, bar} since
there are no writes to baz and bar between lines 2
and 3.

The above example performs liveness analysis on
a series of instructions that would be present in one
basic block. However, liveness analysis on a full pro-
gram involves multiple basic blocks with registers
that are live across basic block boundaries. There-
fore, you need a control flow graph to look at which
registers are live out for each basic block. One of the
reasons that liveness analysis is an attractive choice
for Dyninst, is that control flow graphs are already
generated for the instrumented program for other
features of Dyninst. This allows liveness analysis to
be done with minimal additional overhead.

The primary task that needed to be implemented
for liveness analysis to work for these platforms
was the parsing and interpretation of the instructions
in the program. Specifically, each instruction that
reads or writes to a register needed to be correctly
parsed and information about whether a register is
read or written, needed to be recorded for that in-
struction. Limited parsing had already been estab-
lished in Dyninst to handle loads, stores, and control



Program Hulb-tramp Mini - anp
- re L —]
Uninstrumented Zave Registers Lot up Args fool)
Inskrockion Snippat —
t—
B T Faziore Ragistars -
el o Tnstrurmented
Basic T : Instruchion
Block Uninstrumented ToTT

Imnstruction

Save Beqisters

Base Tramp

Fertore Reqisters

Base Tramp

.

Figure 2: Instrumentation Code Insertion into a Program

instructions such as jump and branch. However, all
potential instructions in the ISA (Instruction Set Ar-
chitecture) needed to be successfully parsed to assure
correctness for liveness analysis.

We examine the point of instrumentation and de-
termine the registers that are live going out of the
instruction(live out). If a register is dead at the in-
strumentation point then we know we do not have to
save that register in the base trampoline. Our analy-
sis assumes that the compiler follows the platform
ABI (Application Binary Interface). The ABI for
a given hardware platform is a specification for the
low-level elements of the application program. It
specifies such things as calling convention rules and
system call details.

An important caveat to only saving live registers at
the instrumentation point is that this only applies to
registers that are caller saved registers. This means
that the ABI for that architecture requires that when
making a function call that if the register informa-
tion should be maintained when the function returns,
the caller of the function (as opposed to the callee)
needs to spill those registers before the function call.

Callee saved registers, on the other hand, are the re-
sponsibility of the called functions and any register
used must be saved by the called function.

The callee saved registers, unfortunately, cannot
use the liveness information at the instrumentation
point to determine whether or not they need to be
spilled. This is simply because, short of doing a
whole program analysis, we cannot be sure of the
register state of every function that calls the function
that contains the instrumentation. For this reason,
we must always save any callee saved register that is
potentially used in our code generation.

It should be noted that every platform has a differ-
ent subset of their general purpose registers available
for use in the code generation of the snippet. For
most platforms, this includes all of the caller saved
registers, and in some cases some callee saved reg-
isters as well. The x86 architecture, for instance,
has only eight GPRs (general purpose registers) so
all of these registers must be available to potentially
be used in code generation.

Instructions using FPRs(floating point registers)
and SPRs (special purpose registers) are not explic-



itly generated by Dyninst at this point. However,
due to the nature of instrumentation, it is possible to
generate a snippet of code that calls a function that
does clobber the values from floating point and spe-
cial purpose registers. For this reason, all non-GPR
caller saved registers must be saved on a given plat-
form. This means that they are also available to be
examined by liveness analysis.

Liveness analysis can obviously be used on any of
the platforms that Dyninst currently supports. Cer-
tain architectures see more of an immediate gain than
others. We’ve already discussed the limited number
of GPRs for x86, which means that for any given
instrumentation point the number of dead registers
is minimal. Among the Dyninst supported archi-
tectures, Power and AMD64 made the most sense
to be the first choices for the improved register use
because they have relatively standard spilling proce-
dures, and a solid number of caller saved GPRs that
could be more efficiently managed in our code gen-
eration.

3.1 Power

Power was the first platform liveness was imple-
mented on, and it was done for both the GPRs
and the FPRs. The set of caller saved GPRs are
{r0,r3 — r12} and {r0 — 13} for the FPRs[8].

3.2 AMDo4

Liveness analysis was also performed on AMDG64.
For this platform, it was only performed on
the GPRs. The set of caller saved GPRs is
{rax,rcx,rdz,rsi,rdi,r8 —r11}[1]. The handling
of FPRs is handled a little differently than Power,
and calculating liveness for FPRs wasn’t as advan-
tageous. On AMDG64, there are eight 64-bit MMX
registers and sixteen 64-bit XMM registers, all of
which are caller save registers. However, Dyninst

does not spill each of these registers individually but
instead uses the FXSAVE and FXRSTOR instruc-
tions. FXRSTOR Instructions These instructions are
used to save and restore the entire 128-bit media, 64-
bit media, and x87 instruction-set environment. [2]
Because of this, it does not make sense to look at the
individual FPRs to try to determine their liveness in-
formation. However, looking at the group as a whole
and only calling the FXSAVE/FXSTOR instruction
if a floating point operation occurs is an acceptable
alternative as we will discuss in the next section.

4 Further Optimizations

There were other optimizations besides liveness
analysis that were performed for Dyninst. Some of
these are in place now and will be included in the per-
formance results. Other features have the core func-
tionality in place, but cannot be utilized until funda-
mental changes in Dyninst are implemented.

4.1 Usage based spilling

One of the more intuitive optimizations for register
usage is only spilling those registers that are actu-
ally used during our code generation. Those registers
that weren’t clobbered during the execution of the in-
strumentation code would be guaranteed to have the
same value as they did before the call to the trampo-
lines.

The reason this functionality isn’t already in place
has to do with the way instrumentation is handled
in Dyninst. Dyninst allows multiple snippets to be
placed for any given instrumentation point. This is
implemented by having a linked list of mini-tramps,
one for every inserted snippet. The problem with this
implementation from a register standpoint is that the
base tramp (where the spilling takes place) is gener-
ated before the mini-tramps, so the ability to gener-



ate code on the fly multiple times at one instrumen-
tation point limits the plasticity of the base trampo-
line. One option to alleviate this problem is to place
the saves and restores in each mini-tramp, but in the
cases where there are multiple mini-tramps linked
together, the instrumentation code is going to have
many redundant spills.

The next version of Dyninst is moving to an inline
tramp model. Under this model, the mini-tramp(s)
are going to be inlined within the base tramp as op-
posed to the current model which has the base tramp
jump to the first mini-tramp in the linked list. With
the inline model, any new snippet insertion to a point
that already contains instrumentation will mean that
the entire tramp structure will have to be regener-
ated. Since regeneration is going to occur anyway,
the information about which registers were used in
the code generation can be utilized by the regener-
ated base trampoline to only spill those necessary
registers. This model trades a cleaner code gener-
ation with fewer jumps for ease of multiple instru-
mentation changes to the program on the fly.

The register allocation scheme for the Dyninst
code generation didn’t need to concern itself with
which registers were allocated first when all the reg-
isters were being spilled. Spilling only the registers
that are used is optimized by allocating the dead reg-
isters for the code generation first. Therefore, it is
more correct to say that with this model the registers
we need to spill are the union of the live caller saved
registers that are clobbered, and all callee saved reg-
isters that are clobbered.

It is important to define what it exactly means for
a register to be clobbered for Dyninst. The most ob-
vious case, and the one that we have been discussing
the most is the case where the code generated for a
snippet explicitly uses a register. There is also the
indirect case where a snippet calls a function. In that
case, if we do not examine the called function all
caller saved registers must be assumed to have been

clobbered. Our current implementation does a linear
scan of any called functions from a snippet to learn
which registers have been clobbered. In the case that
the called function makes another function call, we
then take the conservative approach and declare all of
the caller saved registers have been clobbered. The
final case we have to look at for clobbering registers
is internal code generated for managing the tramps.
For instance, in base tramps for multithreaded ap-
plications a function call is made to assign a thread
index to that trampoline. This call, thought not in
a user defined snippet, has to be treated similarly to
a function call from a snippet that we have just dis-
cussed.

Currently, everything discussed in this section has
been implemented on both platforms we discussed
for liveness analysis, and is just awaiting the inlined
tramp model in the next release so the base tramp can
have the appropriate information to spill the needed
registers. For Power, this affects the GPR and FPR
registers. For AMD64, this affects the GPR regis-
ters. Additionally, x86 (32 bit) and AMD64 will use
information about the use of floating points to de-
termine whether the FXSAVE operation is needed in
the base tramp. The other platforms will follow as
they are considered for developing improved register
usage.

4.2 Special Purpose Registers

We touched on the fact that sometimes SPRs (Special
Purpose Registers) can be caller-saved. These regis-
ters, and their usage, are often even less frequent than
the floating point operations and have more complex
rules involving them since there can be many instruc-
tions that implicitly affect the state of these regis-
ters. For this reason, many times Dyninst will take
these registers on a case-by-case basis and develop
solutions for those whose spilling can cause severe
penalties.



Platform | Mutator Time | Mutator Time || Mutatee Time | Mutatee Mutatee
not Optimized | Optimized no Inst. not Optimized | Optimized

Power 4.38 4.38 1.17 94.95 7.62

AMD64 | 0.74 0.73 0.25 6.69 5.85

Table 1: Performance Results (in seconds)

One special purpose register which Dyninst ex-
plicitly addresses is the MQ register for Power (also
referred to in documentation as SPRO). It mainly
deals with multiply and division operations. For
multiply, it stores bits 32 — 63 of the result. For divi-
sion, the MQ register is used to store the remainder
from the operation[8]. There are additional opera-
tions that use the MQ register explicitly but they are
rarely used. Each spill of this register can take mul-
tiple cycles so it was important to only spill it when
necessary.

We didn’t perform full liveness to determine the
use of this register since its use is fairly rare in stan-
dard applications. Instead, we examine the basic
block that contains the instrumentation point to see
if there are any instructions that modify the MQ reg-
ister. If one of these instructions are present, we save
the state of the register prior to instrumentation.

5 Performance Results

For the Power results, the experiments were per-
formed on an IBM p670 with 8 POWER4 proces-
sors, running AIX 5.2 with 8.0 gigabytes of mem-
ory. For the AMD64 results, the experiments were
ran on dual AMD Opteron processors running Linux
2.4 with 2.0 gigabytes of memory.

These tests were ran on a small program that cal-
culates a sum based on the control flow path that was
dependent on the loop index. The instrumentation
was placed in the first instruction from each basic

block in the control flow graph of the program. This
means literally every instruction in the program is re-
located to respective multitramps even though there
are not representative base tramps for every instruc-
tion. The snippets for each instrumentation point
were a few instructions each, and had the function-
ality of incrementing a global variable found in the
mutatee program.

The instrumented portion of the small program we
tested against is listed below.

int a, x 0;
for (int a = 0;

{

a < Oxffffff; a++)

X = X +a;
x += 5 % a;
if (x > 6000)
X /= 2;
else
X *x= 4;

}

The small program above is meant to be simple dis-
play of the amount of time that can be saved in a pro-
gram with a majority of its instructions instrumented.
Obviously, larger programs with less instrumentation
might see less of a percentage improvement in time
because the uninstrumented portions of the mutatee
could outweigh the instrumented portions (and over-
shadow any improvement).

Table 1 displays the results of the test. For Power,
the optimized results include using liveness analy-
sis for GPRs, FPRs, and limited usage of the MQ



SPR. For AMD64, the optimized results include us-
ing liveness analysis for the GPRs.

The mutator time is the amount of time it takes for
Dyninst to load the run-time library and do the actual
instrumentation on the original program. The mu-
tator time is relatively unchanged regardless of the
implementation. This is because Dyninst has always
calculated the control flow information that liveness
takes advantage of so most of the work has already
been done for us.

The mutatee time is the length of time the instru-
mented program takes to run. We have given the run-
ning time of the program before instrumentation and
the time after instrumentation with the optimized and
unoptimized approaches. The mutatee time sees a
significant speedup for Power because of all the dif-
ferent types of registers that are examined. Much of
the speedup can be attributed to the use of the MQ
register sparingly. AMDG64 also sees a noticeable
speed up even though it is only examining GPRs.

6 Related Work

Various instrumentation tools have their own meth-
ods for register usage. EEL[6] is a library for build-
ing tools to modify an executable program, and re-
generate a new executable that contains those modi-
fications. EEL differs from Dyninst in the fact that it
does offline instrumentation, while Dyninst attaches
to a running program. Because of these differences,
EEL is able to generate code much like a compiler,
without the issues Dyninst runs into with its dynamic
approach. While designed for multiple platforms,
EEL was never implemented on anything other than
the SPARC architecture. EEL uses liveness analy-
sis and register scavenging[5] to try to utilize unused
registers in the snippets. If no unused registers are
available, it spills the needed number of registers.
Another instrumentation tool is ATOM[9], which

does binary instrumentation on Alpha. ATOM takes
the conservative approach of saving all caller-save
registers at each instrumentation point. At each in-
strumentation point, it makes calls to analysis rou-
tines. However, instead of going straight to the anal-
ysis routine the call goes instead to a wrapper rou-
tine that saves the needed registers, calls the anal-
ysis function, restores the proper registers, and re-
turns back to the instrumentation point in the orig-
inal code. This cuts down on code size added by
instrumentation, but also means that there is no opti-
mizations based on which registers are actually used
since the full set of caller-save registers are always
spilled.

Finally, Etch[7] is an instrumentation tool which
operates on Win32/x86 binaries. The literature on
this tool does not include specifics of the register us-
age in its instrumentation. Etch claims that instru-
mentation “should not change program correctness”
which means at least a conservative spilling would
have to be done, if not a more detailed analysis.

7 Conclusions

Improved register usage is an excellent way to im-
prove performance for instrumentation in programs.
This paper has examined different methods for im-
proving register usage in one such instrumentation
program, Dyninst, which is a platform independent
API for the dynamic instrumentation of running pro-
grams. The primary method examined was using
liveness analysis on architectures where there could
potentially be a number of dead registers that would
not need to be saved. Other methods were exam-
ined based on platform specific register usage, such
as certain special purpose registers that have high
penalties for spilling. Also discussed were features
that would need core changes to the way Dyninst in-
serts instrumentation in order to be integrated.



The preliminary results based on the architectures [8] AIX Assembler Language Reference, Version 4,
that these optimizations have been implemented on October 1996.
have been promising. Architecture specific register
usage improvements will continue to be looked at,
as will the propagation of the techniques discussed
in this paper to the rest of the architectures supported

[9] Amitabh Srivastava and Alan Eustace. Atom:
a system for building customized program anal-
ysis tools. In PLDI ’94: Proceedings of
the ACM SIGPLAN 1994 conference on Pro-

by Dyninst.
gramming language design and implementation,
pages 196-205, New York, NY, USA, 1994.
References ACM Press.

[1] AMDO64 Architecture Programmers Manual Vol-
umel: Application Programming, September
2003.

[2] AMDO64 Architecture Programmers Manual Vol-
ume2: System Programming, September 2003.

[3] Jeffrey D. Ullman Alfred V Aho, Ravi Sethi.
Compilers: Principles, Techniques and Tools.
Addison Wesley, 1986.

[4] Bryan Buck and Jeffrey K. Hollingsworth. An
API for runtime code patching. The Interna-

tional Journal of High Performance Computing
Applications, 14(4):317-329, Winter 2000.

[5] James R. Larus and Thomas Ball. Rewrit-
ing executable files to measure program behav-
ior. Technical Report CS-TR-92-1083, Madison,
WI, USA, 25 March 1992.

[6] James R. Larus and Eric Schnarr.  EEL:
Machine-independent executable editing. In
SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 291—
300, 1995.

[7] Ted Romer, Geoff Voelker Dennis Lee, Alec
Wolman, Wayne Wong, Hank Levy, Brian N.
Bershad, and J. Bradley Chen. Instrumentation
and optimization of Win32/Intel executables us-
ing etch. pages 1-8.



