Parallel Algorithms for Graph Problems

Nathaniel Crowell

University of Maryland

ncrowell@cs.umd.edu

Abstract

This work demonstrates good speedups for the Scalable Syn-
thetic Compact Application 2 (SSCA2) and algebraic con-
nectivity for small irregular graphs on the Explicit Multi-
Threading (XMT) many-core architecture. Previous studies
of these algorithms have been focused on using high perfor-
mance computing architectures to solve large instances of
the problems but little work has been done that establishes
performance of these parallel algorithms on problem sizes
solvable on a smaller scale system. Additionally, analysis of
the algorithms is presented that shows how the ease of pro-
gramming approach for XMT creates a clear path for devel-
opers to utilize multi-core resources without having to com-
pletely recreate the algorithm for the specific architecture
by using the well-studied Parallel Random Access Model
(PRAM) of algorithmic thinking. The compiler provided by
the UMD XMT research team further makes it possible to
trivially parallelize many segments of code and achieve ac-
ceptable speedup for the developer time invested. Future in-
novations from the UMD XMT research team will result in
this process becoming even simpler with larger performance
gains provided.

1. Introduction

Processors with multiple cores have become ubiquitous in
desktop machines. Generally, software has failed to keep up
and make use of the additional computing power made avail-
able by these newer processors. As manufactures such as
Intel push to many-core architectures with twenty or more
cores the problem will only get worse. The insufficient so-
lution is that users will simply make use of this additional
processing power by running more processes; however, such
a solution concedes the ability to continue to provide faster
and more powerful applications. In the past such improve-
ments to software performance were free from the perspec-
tive of the software developer who could just wait around for
a processor with a faster clock speed to be released. Examin-
ing the current course catalog and graudation requirements
of many universities provides evidence that many trained
computer scientists leave college without the necessary skills
to efficiently program for a multiple core environment.
Computations on sparse graphs represent a class of algo-
rithms for which the problem is made even more challeng-

ing. Even with proper training to develop parallel applica-
tions, a developer has to overcome the fact the majority of
current computing systems can only manage a fraction of
the computational peak performance on such problems [20].
Sparse graphs consume large amounts of memory and their
memory access patterns exhibit low degrees of spatial and
temporal locality. Additionally, the computation to memory
access ratio is usually low enough that memory becomes
the bounding factor to performance on most systems [20].
Such problems are defined as being irregular and their poor
memory access patterns cause additional problems when try-
ing to develop efficient parallel algorithms. Typically, the
strength of additional cores is a direct improvement in com-
putational capabilities but the additional memory overhead
for synchronization reduces their benefit for these irregular
problems. Most work in the area of parallel graph algorithms
has been focused on computations over very large datasets
[15, 20, 27] which result still in small fractions of peak per-
formance but solve problems that would be otherwise in-
tractable for serial computation.

A research team at UMD has designed and created a pro-
totype of an architecture designed for improving single-task
performance and ease of programming. The Explicit Multi-
Threading (XMT) general-purpose architecture is supported
by a programming model implementation based upon a high
level language extension to standard C. The language exten-
sion adds a small number of primitives to support explicit
parallelism which are very effective in achieving the goal
of providing a good way to implement programs derived
from Parallel Random Access Machine/Model (PRAM) al-
gorithms [32].

This paper contributes to the understanding of parallel
graph algorithm performance on a scale that more closely
resembles a desktop environment. A large body of work ex-
ists which already addresses large scale high performance
computing (HPC) performance of parallel graph algorithms;
however, the majority of programmers are unlikely to be de-
velopers for such systems, so an incentive exists to provide
performance metrics which encourage the use of parallel al-
gorithms in the design of applications intended to run on
systems whose memory capacity and number of cores/pro-
cessors resembles current and not-too-distant-future desktop
environments.

Achieving good speedup on problem which exhibit low
levels of parallelism (compared to that typical for HPC) is
an important goal. Complex applications such as user appli-
cations are likely to provide such levels of parallelism which
should not just simply be ignored. Additionally, the paral-
lelism is likely to vary over time much more than standard
HPC benchmarks. Two very important goals in the current
era of computation are the development of an architecture
which is capable of exploiting these levels of parallelism ef-
feciently and a programming model which simplies the pro-
cess of parallel program design and implementation.

I examined and implemented algorithms for the Scalable
Synthetic Compact Application 2 (SSCA2) benchmark suite
and for the calculation of algebraic connectivity of a graph.
Algebraic connectivity plays an important role in the ideal
bisection and clustering of vertices in a graph [5, 18].

The XMT architecture is defined in Section 2. In sec-
tion 3, I review the SSCA2 benchmarks. Section 4 provides
an overview of algebraic connectivity. The implementation
details of the parallel algorithms are described in Section
5. Benchmark results are provided in Section 6 and related
work is reviewed in Section 7.

2. XMT

The Explicit Multi-Threading (XMT) general-purpose archi-
tecture is designed for improving single-task performance
and ease of programming. The XMT programming model is
implemented by XMTC, a high level language extension to
standard C. The language only adds a small number of primi-
tives to support explicit parallelism [30]. The XMT architec-
ture has been demonstrated to show remarkable speedup [8—
10] in comparison to commodity parallel processors. Addi-
tionally, the programming model has previously been shown
to be much easier to learn and utilize effectively than com-
peting expressions of parallelism [28].

2.1 Architecture

Design of the Explicit Multi-Threading (XMT) on-chip
general-purpose computer architecture has been directed to-
ward improvements in single-task performance. While alter-
native parallel architectures rely on embarrassingly parallel
algorithms in order to achieve expected speedups, XMT was
designed to leverage the vast existing body of knowledge
relating to Parallel Random Access Model (PRAM) algo-
rithms. [19]

A significant component of the XMT architecture (Fig-
ure 1) is an array of thread control units (TCUs), or cores.
A Master TCU exists which has its own cache and is re-
sponsible for execution of serial code. The remaining TCUs
are grouped into clusters that are connected by a high-
throughput interconnect. A methodology called “indepen-
dence of order semantics (IO0S)” is implemented which en-
sures that during execution of parallel code, each thread
advances at its own rate without having to busy-wait for

Global — — o Floating Mult. /D
Register b Freﬁr Surmn Unlt{tF"_-u] | / Poink Unit | Unit
File Cluster Cluster TCO TCO

Ma?_-..'ber N

uffer

== —

B 1
| Inisrcannection Metwork | Frefetch Frefetch
Buffer Eutfer

FSTUCE.
Buffer

i
Shared
Cache

{
Shared
Cache

Shared
Cache

.| Shan=d
Cache

\|[Read Only Cache :R-::n:]|

1_|_T 1—|—1I M@F‘r&ﬂxfﬁum|

Figure 1. XMT Architecture.

other threads. Thus the programming model is PRAM-like
with arbitrary concurrent read and concurrent write (PRAM-
CRCW). An atomic prefix-sum primitive is provided and is
implemented in hardware. This low overhead primitive is
essential to the inter-thread coordination required to imple-
ment some algorithms that leverage irregular parallelism.
(19]

The XMT architecture has been prototyped using FPGA
technology. The prototype Paraleap runs a 64-core con-
figuration running at 7SMHz and shows the feasibility of
PRAM-On-Chip as an architecture. The total silicon area is
equivalent to that of approximately one or two current com-
mercial processor cores. Additionally, a simulator XMTSim
can provide cycle accurate simulation of software running
on a variety of architecture configurations. [19]

2.2 Programming Model

The XMT programming model provides fine-grained control
over parallelism in a single program, multiple data execu-
tion model. The programming model adds three basic prim-
itives to facilitate expressing parallelism: spawn, join, and
prefix-sum. Spawn starts a parallel section of a program. Join
indicates the point of termination for a thread. Prefix-sum
defines an atomic operation that enables threads to coordi-
nate computation while respecting the arbitrary concurrent-
write PRAM model. Figure 2 shows the generic switching
between serial and parallel modes of execution that could
occur during a program. [29]

Spawn Toin Spawn Join

Figure 2. Program with serial and parallel execution modes.

XMTC is an implementation of the XMT programming
model as an extension to the C programming language.
XMTC adds a small number of instructions: spawn and
prefix-sum. Additionally, standard libraries are being de-

veloped for commonly needed functions. The join command
of the XMT programming model is implicit in XMTC. A
spawn instruction indicates the beginning of a code block
requiring parallel execution. The end of this code block im-
plicitly functions as a join. Prefix-sum utilizes a hardware
implemented mechanism for atomically adding a value to
another already in register memory. The extension also de-
fines a prefix-sum to memory operation which is more flex-
ible but less efficient. By convention, threads in XMTC can
refer to their own thread ID using the $ character. The spawn
instruction takes arguments indicating the lowest thread ID
and the highest thread ID to be spawned for the parallel
code block. In following the ease of programming philos-
ophy, variable declarations within a spawn code block are
assumed to be thread local variables. [29]

Figure 3 demonstrates the simplicity of XMTC through
an example that swaps values in arrays of length n. The XMT
research team at University of Maryland has developed a
compiler for programs written using XMTC. The compiled
programs can be executed on their publicly available simula-
tor (and can be implemented on their FPGA implementation
of the XMT architecture). [32]

spawn (0, n—1) {

int x;

x = A[$];
A[$] = B[$1;
B[$] = x;

Figure 3. Parallel array swap.

3. SSCA2 Benchmark

The first Scalable Synthetic Compact Application 2 (SSCA2)
benchmark suite was a product of the DARPA High Produc-
tivity Computing Systems (HPCS) program. The motivation
for a separate benchmark directed at sparse graph analysis
is in large part due to these algorithms being highly memory
intensive (i.e., large memory footprint, low degree of local-
ity in memory access patterns, and a low computation to
memory access ratio). Sparse graph analysis performance
strongly correlates with memory subsystem performance
rather than processor clock frequency or availability of arith-
metic logic units. Parallel design of such algorithms is con-
sidered challenging as the partitioning over processors is
often difficult without imposing large overhead latencies.
[20]

The SSCA2 benchmark suite represents key components
of graph analysis algorithms that occur in applications such
as social network analysis, epidemiological studies, and net-
work analysis in systems biology. It was developed with the
intent to become a compact application that uses multiple
analysis techniques all accessing a single data structure rep-
resenting a weighted, directed graph. The intention is to pro-

vide a fair benchmark of graph analysis techniques in the
general case, as modifying the data structure to optimize one
kernel might negatively impact another analysis kernel. [20]

Version two of the benchmark specification was orig-
inally released in August 2006 [20]. SSCA2 consists of
four kernels (analysis techniques) that operate on a synthetic
graph (generated using the Recursive MATrix random graph
generation algorithm). The kernels represent common irreg-
ular problems on graphs. The most complex kernel of the
four is commonly considered the evaluation of betweenness
centrality (kernel 4) and has been the focus of many recent
papers [15, 20, 27]. [3]

3.1 Scalable Data Generator

The scalable data generator constructs power-law graphs us-
ing an algorithm based on the Recursive MATrix (R-MAT)
scale-free graph generation algorithm. The algorithm pro-
vides a repeatable, verifiable mechanism for graph genera-
tion. Additionally, the graphs generated are understood to be
representative of commonly analyzed real-world networks
[20]. The input to the data generator is the graph scale. From
the scale, the total number of vertices, the total number of
edges, and the maximum (integer) value of an edge weight
is determined in the following way. The number of vertices is
n = 2¢4¢_The number of edges is m = 8n. The maximum
edge weight is simply mazWeight = n. Internal parame-
ters are used to ensure that the output graph is a power-law
graph. The output of the data generator is a list of edge tuples
containing start vertex, end vertex, and edge weight. [3]

3.2 Kernel 1 - Graph Construction

This kernel establishes the graph representation that will
be used for the remaining three kernels. In the reference
implementation, graph construction consists of processing
the edge list from the data generator and storing the graph
as an incidence list. A key detail of SSCA2 is that this data
structure cannot be modified after the completion of kernel
one (i.e., the same representation must be used for kernels
two through four). [3]

3.3 Kernel 2 - Classify Large Sets

This kernel determines the set of edges which have the
largest weight (i.e., if there are 8 edges of equal weight and
no edges with more weight then the set would contain these 8
edges). The output from this kernel is an edge list containing
the determined set of edges to be used by the following
kernel. [3]

3.4 Kernel 3 - Graph Extraction

This kernel performs the following set of operations: for
each edge e in the set produced by kernel 2 create a subgraph
consisting of all paths of a defined length (i.e., it is a kernel
parameter) starting with that edge e. This is with no regard
to the actual weights of the edges. For this kernel, breadth
first search is the typical solution. [3]

3.5 Kernel 4 — Graph Analysis Algorithm

This kernel computes betweenness centrality. Betweenness
Centrality is a centrality metric based on an enumeration of
all shortest paths in the graph. The betweenness centrality
score of any given vertex in a graph is defined as

BC(v) = ¥ 72

where o, denotes the number of shortest paths between
vertices s and ¢, and o4 (v) is the number of those paths
that pass through vertex v. The summation is taken over all
values of ‘750'7(:’) for which all three vertices are distinct. [3]

An efficient serial algorithm was proposed by Brandes [7]
which computes exact betweenness centrality for all vertices
in a unweighted graph in O(nm) time and O(n + m) space.
Brandes notes a recursive relationship in betweenness cen-
trality scores that can be exploited by a modification to Dijk-
stra’s single-source shortest paths algorithm in which prede-
cessor sets are formed as the graph is traversed. Betweenness
centrality scores can be calculated using dependency rela-
tionships which correlate directly with the predecessor sets.
[20]

Although the complexity is polynomial in time, comput-
ing the exact betweenness centrality of networks with mil-
lions of nodes and edges can be intractable. Thus, a com-
monly accepted approximation uses the “Brandes’ Algo-
rithm” to perform a constant number of breadth-first search
expansions from a random sample of starting nodes instead
of all of the nodes thus bounding the time complexity by the
number of edges. [15]

Obviously, betweenness centrality provides a measure of
the control a vertex has over communication in the network.
Also it can be used to identify the most critical vertices in
the network as well as the least important. High betweenness
centrality indicates that relatively short paths exist between
the vertex and other vertices in the graph. Betweenness cen-
trality has been used in a variety of applications including
routing in road networks [15], terrorist networks [20], and
the study of sexual networks and AIDS. [20]

The design of this kernel makes the choice that all edges
with a weight evenly divisible by eight are not considered in
calculating betweenness centrality. Despite this restriction,
the edges are otherwise considered without regard to weight
during the computation. Evaluation of the kernel requires an
all-pairs shortest paths analysis over the graph which finds
all of the shortest-paths between each pair of vertices when
many exist (as opposed to some algorithms which report
only one such path when many exist). In fact, there is no
known algorithm for computing exact betweenness central-
ity of a vertex without solving an all-pairs shortest paths
problem on the graph [20]. Approximate implementations
are permitted for this kernel. Performance computing be-
tweenness centrality correlates strongly with performance
computing related properties such as stress centrality and
other metrics based on counting shortest paths [15]. [3]

4. Algebraic Connectivity and the Fiedler
Vector

The Laplacian matrix of an undirected graph is defined in the
following way. Let G = (V, E)) be an undirected weighted
graph with positive weights {w;; }. The weighted Laplacian
L(G)is defined to be the n x n symmetric matrix

L(G)=D—W.

W has entries

(W)ij = {wij if (vi, vj)eE

0 otherwise

D is the diagonal matrix with entries (D);; =), W;;. [17]

In 1975, Fiedler discovered that the eigenvector corre-
sponding to second smallest eigenvalue Ay of the weighted
Laplacian of a graph has special properties related to the
connectivity of the corresponding graph [14]. His initial
work on what is now referred to as algebraic connectivity
provided the theoretical justification to use this eigenvector
to partition graphs. As a result, the eigenvector of the sec-
ond smallest eigenvalue of the Laplacian of a graph is called
the Fiedler vector. The Fiedler vector is all real-valued and
ordering its components monotonically (increasing or de-
creasing) can be used to induce a permutation of the ver-
tices known as a spectral ordering. The important property
of this ordering is that it relates to connectivity properties
of the graph. Any component of the ordering x; is con-
nected to both its set of predecessors and set of successors if
(xj—1 < z; < xj+1) (i.e., the value is distinct in the sorted
Fiedler vector). [17]

Algebraic connectivity and the induced spectral order-
ing has a number of applications. Algebraic connectivity has
been used to obtain an upper-bound on the max-cut problem
(a well known NP-hard problem in combinatorial optimiza-
tion) [1]. Fiedler vectors have found uses in analysis of RNA
structures [4] and in decomposition of large scale finite el-
ement models found in the field of mechanical engineering
[18]. Additionally, the Fiedler vector has been used in graph
bisection algorithms [5].

5. Implementation Details
5.1 SSCA2

The first three kernels of the SSCA2 benchmark are rela-
tively trivial to parallelize efficiently. Kernel 1 (Algorithm
1) is embarrassingly parallel after computation of a prefix
sum over the degree of each vertex in the graph. Kernel 2
(Algorithm 2) is similarly trivial requiring only a max op-
eration over the set of edge weights and then some coor-
dination for each edge having this maximum weight being
added to a queue. Kernel 3 (Algorithm 3) is a simple par-
allel breath-first search which has been studied previously

on the XMT [29]. The only addition here is that for Ker-
nel 3, multiple breadth-first search expansions are performed
in parallel as memory allows. Additionally, subroutines for
prefix-sum, sum and max are all implemented using k-ary
tree algorithms which have previously shown good results
[29].

Algorithm 1 SSCA2 Kernel 1
Input: F the set of edges tuples for the graph of the form
< start, end, weight >. n is the number of vertices in
the graph. m is the number of edges in the graph.
Output: The graph G(V, E) stored as an incidence list
structure containing the arrays numedges, endVertex,
and weight.
d < n element array initialized to all zeros.
for i < 1 to m in parallel do
u <E;.start
t < fetch_and_add(&d,,, 1)
position; <t
end for
numedges < [0,prefix_sum(d)]
for : < 1 to m in parallel do
u +E,;.start
v <E;.end
w <E;.weight
12: t <—numedges, + position;
13: endVertex; < v
14: weight; + w
15: end for

R A A R ol e

..
= @

Algorithm 2 SSCA2 Kernel 2

Input: The graph G(V, E) stored as an incidence list struc-
ture containing the arrays numedges, endVertex, and
weight.

Output: An array S of < start,end,weight > tuples
containing the determined start points.

1: m < max(weight)
2: 140
3: for i <— 1 to m in parallel do
4: w < weight;
if w = m then
u < searchEdgeListL(z)
v < endVertex;
p « fetch_and_add(&t, 1)
Sy —<u,v,w >
10: end if
11: end for

R A

In the algorithm listings, an assumption is made regarding
the existence of atomic memory operations. For example,
line 8 of Algorithm 2 performs fetch_and_add which atom-
ically fetches the value from the specified memory address,
adds 1 to the value and stores the result back in memory. Ad-
ditionally, the original value is returned to the local thread.

Algorithm 3 SSCA2 Kernel 3

Input: G(V, E), S output from Kernel 2, and an indication
of the maximum depth to explore, maxdepth.
Output: L which is a list of < vertez, depth >-tuple lists.
One edge list per breath-first search expansion.
1: @ <empty stack
2: depth <+ 1
3: count <+ 0
4: for all < p,q,w >€ S in parallel do
. Ly < empty stack

5
6: push <p,—1>— Ly,
7. push< q,1>— Ly,
8: pushqg — @

9: count < count + 1

10: while count > 0 and depth < maxzdepth do

11: for all v € Q in parallel do

12: remove v from)

13: count < 0

14: for each neighbor w of v in parallel do
15: if wisnotin L,, then

16: push < w, depth >— L,

17: pushw — Q

18: count < count + 1

19: end if

20: end for

21: end for

22: one thread performs: depth < depth + 1
23: end while

24: end for

Instances such as line 18 of Algorithm 3 which increment a
value by one do so atomically. For the algorithms which per-
form a breadth-first search (Algorithm 3 and Algorithm 4),
the algorithms need to be able to check if a node has been
visited then perform some operations if it has not (such as
lines 15-18 of Algorithm 3). In these cases, only one thread
should execute the portion of the algorithm protected by the
conditional so it is appropriate to think of the entire condi-
tional and code block as atomic. The XMTC implementation
utilizes locks and atomic memory primitives in order to en-
sure that no two threads will enter the code block protected
by the conditional.

The betweenness centrality computation of Kernel 4
presents the most challenging algorithm to efficiently par-
allelize and there have been many attempts to do so [2, 15,
20, 27]. My XMTC implementation (Algorithm 4) closely
resembles that presented in [20]. The algorithm is split in
to three phases which are performed once for each vertex in
the graph (or some subset of the vertices when performing
an approximation instead of exact analysis). The first phase
(lines 5 to 16) is the initialization which establishes that no
vertex is currently on any shortest paths for the current iter-
ation.

The second phase (lines 17 to 35) is the graph traversal.
The algorithm proceeds in a similar manner to breadth-first
search; however, for betweenness centrality a node can be
visited from multiple predecessors instead of just one as
is typical for breath-first search. The first time a node is
visited (lines 22-25) establishes the depth of that node for the
current iteration. Multiple visitations may occur if the node
is found to exist on additional shortest paths. During each
visitation, the node and its predecessor (the “predecessor
edge”) are added to the set of predecessors for the current
depth (“phase”) of the traversal. Additionally, the o value
is incremented. ¢ indicates how many shortest paths the
particular node was found to be on.

The third phase (lines 36 to 46) exploits the recursive re-
lationship of betweenness centrality by examining the set of
predecessor edges collected during phase three in reverse or-
der. As there are no dependency relationships among edges
collected during the same phase, this computation can be
performed in parallel over all edges found in one phase at a
time.

The set of predecessor edges is where my implementation
varies the most from that presented in other work. The algo-
rithm presented in[20] builds predecessor sets for each node
in the graph as it is traversed and requires a separate list for
every node in the graph in order to do. Synchronized access
to all of the lists was identified as a potential challenge to
performance. Due to the availability of the prefix-sum prim-
itive in XMTC, the algorithm can efficiently be implemented
using one list which all threads can easily synchronize their
accesses to.

5.2 Parallel Davidson Eigensolver

To compute the Fiedler vector of graphs, I implemented
a parallel Davidson eigensolver as described in [6]. The
Davidson for Several Eigenvalues algorithm iteratively finds
each eigenvalue and eigenvector of the graph Laplacian fo-
cusing on one eigenpair at a time beginning with the small-
est. This approach to finding the Fiedler vector is attractive
as it only requires finding the first two eigenpairs of the
Laplacian without concern for the remaining eigenpairs. In
fact the loop can be designed such that the first eigenpair is
ignored and computation just focuses on finding the Fiedler
vector. The pseudocode for the serial algorithm is shown in
Algorithm 5. The loop is partially unrolled so that the termi-
nation condition is on the loop condition instead of buried
in the middle of the loop as it has previously appeared in
literature [6].

The algorithm utilizes the matrix slice operator in order
to simplify instances where only portions of the matrix are
used in a calculation. The slice operator [a, b] when applied
to a matrix extracts the range of rows indicated by a and
their respective columns indicated by b. Ranges are of the
form start : end. Omitting the start indicates including
all rows (or columns) to the left (or above) of the end (and
similarly omitting the end indicates the same but in the

opposite direction). Thus, omitting both indicates using all
of the rows or columns (depending upon which range is
being specified).

The Davidson method is generally easy to understand.
The strategy is to build up an approximation of the orthonor-
mal basis of the graph Laplacian. At each iteration, an ap-
proximation to the desired eigenvalue is calculated along
with its corresponding approximate eigenvector. The resid-
ual of the approximation is calculated based on the definition
of an eigenpair. The residual provides an indication of how
well the eigenpair approximates an actual eigenpair of the
Laplacian. If the residual is small enough then the result is
considered to have converged and the resulting eigenpair is
returned. If it is has not converged then the orthonormal basis
is expanded by adding another column called the correction
vector and proceeding to the next iteration. The challenges
are to perform each step as efficiently as possible and to do
so in a stable way. Stability is maintained by using a stable
eigensolver to calculate the estimate in each iteration and ob-
taining the correction vector by applying a preconditioner to
the residual. [12]

The algorithm requires an initial guess = which is a nor-
malized randomly generated (from a normal distribution)
column vector. Algorithm 5 is partially unrolled such that
the first trivial iteration is mostly outside of the loop (lines 3
to 10). Iterations of the general algorithm begin on line 18,
progress to the end of the loop, and possibly terminate after
calculation of the residual.

The basis for this implementation of the Davidson method
relies upon solving an easier eigenvalue problem. The Lapla-
cian of the graph is approximated by an arrowhead matrix
for which a solution can more easily be found. An arrow-
head matrix is one which contains zeros everywhere except
for the main diagonal, the last row, and the last column . Ad-
ditionally, the transpose of the last row is equivalent to the
last column and the main diagonal contains values that are
monotonically increasing [23]. After finding the eigenpairs
of the arrowhead matrix (line 26), the results are used to
calculate an approximate eigenvector of the graph Laplacian
(line 32) for which a residual is calculated and convergence
is tested. If convergence fails then a preconditioner matrix
is calculated (line 14), the preconditioner is applied to the
residual to find the correction vector, and then the correction
vector is orthonormalized using the Modified Gram-Schmidt
method (MGS) (line16). MGS is a very simple but effective
method to orthonormalize a vector relative to a set of ba-
sis vectors (Algorithm 7). After adding the orthonormalized
correction vector to the basis approximation, the next itera-
tion begins.

For the arrowhead matrix eigenproblem, the stable algo-
rithm identified in [23] is utilized (Algorithm 6). The algo-
rithm utilizes a property of arrowhead matrices which states
that each eigenvalue of the matrix has a defined upper and
lower bound based upon the contents of the main diagonal.

Algorithm 5 Davidson for Several Eigenvalues

Algorithm 6 Arrowhead Matrix Eigensolver

Input: A is the nzn Laplacian of the graph G(V, E) , z is
the initial guess of the eigenvector, and € is the termina-
tion threshold.

Output: eigenpair(\, u)

I v«

2 k+1
3w+ Av
4 W—w
5: A1

6: A< A
7.z + vlw
8: Y +— 2z

9: u<+ VY

10 7+ Wy — du

11: // End of initialization. Risidual is exceedingly unlikely
to converge at this point.

12: while ||r|| > ¢ do

13: // Calculate correction vector and update orthnormal

basis.

4. M+ A-)\,

15 v+ Mr

16: v < mgs(V,v)

17V« [V 9]

18: // Start of iteration.

19: // Expand Arrowhead approximation of A based on

updated orthonormal basis.

200 k<« k+1

21: w <+ Av

22: W+ [W,w]

23: Skk = vTw

24 sy =YIV[,1:(k—1)wT

25: // Calculate eigenpairs of the approximation of A.

26: A, Z + arrowheadFEigsolver(A, spk, Ski)

27 Y+« YZ[1: k-1,

28 Y« [YV;Z[k—1,1]]

29: A= A[l]

300 y=Y[,1]

31: // Calculate the approximate eigenvector and its cor-

responding residual.

32z u=Vy

33 r=Wy—Ju

34: end while

This property allows for a zero finding algorithm to be used
to determine each of the eigenvalues (line 5). From these
eigenvalues, the set of corresponding eigenvectors can be
calculated (lines 7 to 11).

Parallelizing this Davidson algorithm was simple due to
the ease of programming model provided by XMTC. All ma-
trix operations were parallelized in the obvious way. Addi-
tionally, the loop which finds an eigenvalue of the arrowhead

Input: The components of an nxn arrowhead matrix. d is
the first n — 1 elements of the main diagonal. e is the
first n — 1 elements of both the last row and last column.
p is the element of the matrix in the lower right corner.

Output: the set of eigenvalues A and the corresponding
eigenvectors as columns of the matrix Z.

1: do < mm(d1 — |€1|, edp_1 — |en_1|,p— E|€i‘)
2. dy + max(dy + |e1|, .-.dn—1 + len—1|,p + Zles|)
3. D < —[do,d,dy]

4: fori =0ton + 1do

5. N\ « findeig(D;, D;y1,d,e,p)

6: end for

7: fori =0ton+ 1 do

8: forj =0tondo

9 Zji = ej/(Ni — dj)

10: end for

11: end for

Algorithm 7 Modified Gram-Schmidt

Input: v is the vector being orthonormalized relative to V.
n is the number of columns in r.

Output: v after orthonormalization.

1: fori < 1tondo

2t (V[o)V, i

3 vé&—v—t

4

5

: end for
s v v/l

matrix during each iteration (Algorithm 6 lines 4 to 6) was
parallelized trivially.

6. Results

My implementations of the Scalable Synthetic Compact Ap-
plication 2 (SSCA2) benchmark suite for graph analysis
were benchmarked on the Paraleap 64-core XMT prototype.
The serial implementation was benchmarked using the Mas-
ter TCU. The parallel implementation used the full proto-
type.

The inputs for SSCA2 were generated independently us-
ing Python and included in the binaries at compile time. In
the future, the XMT will have support for file operations al-
lowing for the possibility to load data at run time. Five ran-
dom seeds were used at each graph scale between four and
sixteen. In comparison to other work benchmarking using
SSCAZ2, these are small graphs; however, the current XMT
prototype is limited to 1GB of memory. Additionally, the
programming model for prototype only supports an address
space of 4GB. Therefore I am measuring the amount of par-
allelism the architecture can achieve on small graphs. Small
graphs are often overlooked in the benchmarks of parallel al-
gorithms as for other systems the overhead of parallelism is

often too large to utilize for relatively short tasks; however,
progressing to a paradigm where desktop machines will have
eight or more cores provides an environment where the need
for speedup on such problems becomes more apparent.

19

13

Speedup

4 5 & 7 8 9 10 11 12 13 14 15 18
Graph Scale

Figure 4. SSCA?2 Kernel 1 Speedup

SSCA2 Kernel 1 shows the expected speedup as the only
limiting factor to parallelism is a prefix sum over the degree
of each node in the graph. Figure 4 shows how the speedup
increases with graph size as the XMT is able to gradually
utilize more cores effectively in solving the problem; how-
ever, the speedup peaks at 24.88 with graph scale 13 and
begins to decline. A reason that I expect for this behavior
is the synchronization overhead (from the k-ary tree prefix-
sum subroutine) continues to grow with the size of the graph
while the number of TCUs remains constant. A similar effect
is observed in [26].

Speedup
N

(]

4 5 6 7 B 89 10 11 12 13 14 15 16
Graph Scale

Figure 5. SSCA?2 Kernel 2 Speedup

SSCAZ2 Kernel 2 shows performance similar to Kernel 1.
In Kernel 2 the majority of the work is the calculation of the
maximum weight. As in Kernel 1, the overhead induced by
the k-ary tree computation of the primary subroutine (in this
case max) continues to grow and reduces speedup after scale
13 (Figure 5). The speedup for this kernel peaks with a value
of 7.17. One might consider that the k-ary computation is
unnecessary since the maximum possible weight is known a

priori and will be the actual maximum with high probability;
however, the specification of the benchmark requires that the
maximum among the actual edge weight be calculated as
though the maximum weight could be unbounded (i.e., not
known a prior).

Speedup
w

4 5 6 7T 8 9 10 11 12 13 14 15 16
Graph Scale

Figure 6. SSCA2 Kernel 3 Speedup

SSCA2 Kernel 3 shows excellent performance for breadth-
first search on small graphs with limited depth (Figure 6).
The speedup reaches 5.51 at scale 11 and continues to in-
crease. A slight decrease occurs at scales 14 and 15, but
the trend of the speedup is such that with more memory (to
store graphs of a larger size) the speedup could continue
to grow. Previous work with the XMT prototype [29] has
shown greater speedup on the standard parallel breadth-first
search algorithm which explores the entire graph; however,
that work considered graphs with edge factors (ratio of edges
of vertices) that were much larger than the graphs generated
for SSCA2. The reference benchmark sets the maximum
depth at 3 which means that when this kernel executes it will
only perform two iterations of parallel breadth-first search
starting at each start edge supplied as the inputs. With an
edge factor of eight, the amount of parallelism even achiev-
able is severely limited.

28

Speedup
-

4 5 6 7T 8 9 10 11 12 13 14 15 16
Graph Scale

Figure 7. SSCA2 Kernel 4 Speedup

My implementation of betweenness centrality was tuned
to permit the excess memory available when processing

smaller graphs to be used in performing multiple breadth-
first search expansions simultaneously. The decreasing in
speedup going beyond graph scale 13 is directly related to
the graph being large enough to no longer allow more than
one start point during the breadth-first search (Figure 7).
At the peak, the speedup is nearly 28. To my knowledge,
speedup of betweenness centrality for graphs of these scales
has previously never been presented in literature.

I benchmarked the performance of my implementation
of using the Davidson method (Algorithm 5) to calculate
algebraic connectivity of graphs using the XMT simulator
configured to simulate the 64-core FPGA prototype. For
serial executions, I used an algorithm that only utilized the
master TCU. For parallel executions, the algorithm used as
many cores as necessary since the parallelism was expressed
in terms of units of work rather than number of processors.
I verified that the serial algorithm cycle count on the XMT
simulator was similar (within 10 percent) of the cycle count
when executed on an x86 processor.

I focused the benchmarks on examining acceleration of
computing the Fiedler vector of small graphs in order to
show that speedup is possible to achieve even on a small
amount of data unlike related work which requires huge data
sets in order to achieve their stated speedup values. I uti-
lized the same RMAT scalable data generator used to pro-
duce graphs for the SSCA2 benchmarks to produce power
law graphs containing just 16, 32, and 64 vertices. For graphs
with 16 vertices, the simulator results showed a speedup on
average of 7.3. For graphs with 32 vertices, the speedup in-
creased to 14.6. And for 64 vertices the speedup was 27.2.
Any individual parallel section of the algorithm has at most
an amount of parallelism equal to the number of vertices in
the graph processed. Thus for the first two graph sizes, the
speedup is being achieved even when the cores are under-
utilized. At 64 vertices, the cores are being fully utilized for
most of the matrix operations in the algorithm.

7. Related Work

In [2], the first parallel algorithm for betweenness centrality
was introduced. Its implementation based on fine-grained
parallelism is the basis for the reference implementation
included in SSCA2 [20]. The authors later updated their
algorithm [20] in a manner that reduced the amount of global
synchronization of stacks required per iteration of breadth-
first search. The proposed algorithm required maintaining a
separate successor list per vertex to which access could be
synchronized independently of the other successor lists. The
overall memory requirement of the algorithm was increased
but in exchange the algorithm showed a 2.31 speedup over
their previous algorithm benchmarked on a 16-processor 500
MHz Cray XMT with 128 GB memory. Such a machine is
one of a kind and very expensive.

In [15], the authors note that the common Brandes’ algo-
rithm approximation has a tendency to grossly overestimate

the betweenness centrality of unimportant nodes. The effect
is particularly profound on unimportant nodes which hap-
pen to be near one of the randomly selected starting points.
For their applications in routing on road networks, minimiz-
ing the overestimation of unimportant nodes has significant
value. Their algorithm requires having an a priori “start”
and “end” vertex then during each iteration the algorithm
performs one of 2n shortest path calculations in either the
forward direction or the backward direction to another ran-
domly selected node in the graph (hence the 2n possible
shortest path calculations). The presented algorithm is em-
barrassingly parallel at a coarse-grain level, but shows diffi-
culty for fine-grain parallelism. Their serial algorithm in fact
is slower than Brandes algorithm on most data sets; how-
ever, they are primarily concerned with accuracy so they just
restrict their run-time to that of being equal to Brandes al-
gorithm on the same data and present accuracy results rather
than speedup. [15]

In [27], the authors examine an algorithm most closely re-
sembling the algorithm implemented in my work. The algo-
rithm uses a global stack to store predecessor edges but does
not attempt any coarse-grain parallelism choosing to only
perform one breath-first search expansion at a time. The al-
gorithm is benchmarked on two 2-ways, 4-cores SMPs (Intel
Clovertown and AMD Barcelona). The authors do not pro-
vide the total memory available to these systems. Addition-
ally they benchmark the original SSCA?2 parallel implemen-
tation of betweenness centrality. Their results show speedup
over the SSCA?2 default algorithm similar to that achieved by
the algorithm presented in [2] . Additionally, the authors pro-
vided analysis that their algorithm is work optimal CREW
PRAM. [27]

Exact serial solutions to finding Fiedler vectors are often
intractable for the Laplacian of large graphs as they rely on
finding the eigenvalues and eigenvectors of the Laplacian.
Thus approximation algorithms are often used. The fastest
of these algorithms are often defined as multilevel approxi-
mations such as HSL._MC73 [17].

The Multilevel Recursive Spectral Bisection (MRBS) al-
gorithm in one such multilevel algorithm which has been
parallelized [5]. MRSB bisects a graph through recursively
finding the Fiedler vector of successively smaller sections of
the graph (the outputs from the previous level). As a multi-
level technique, MRBS uses graph contraction to construct
a set of smaller graphs which are representative of the graph
as a whole. Parallel Multilevel RSB (PMRSB) distributes
these subgraphs over the processing nodes which calculate
the Fiedler vectors of each such subgraph. Then the results
are combined and used to bisect the graph. The algorithm is
then repeated over each bisected component. PMRSB was
benchmarked in 1995 using the Cray T3D which has 256
processors operating at 150 MHz and was found to produce
a speedup of 140 over the serial algorithm performed on a
SGI Indigo workstation (100 MHz processor speed) when

processing a graph that has 262,620 vertices and 764,268
edges. When processing a much smaller graph (16,386 ver-
tices and 49,152 edges—which is still huge compared to the
graphs for which I was able to get even better speedups), the
measured speedup was considerably lower at only 20 over
the serial algorithm performed on the workstation. [5]

More recently, [25] demonstrated a parallel implementa-
tion of the Davidson method for generalized eigenproblems.
Their approach is very similar to the one presented in this pa-
per and shows speedups between approximately 20 and 35
over prior serial implementation when operating on a matrix
containing 66,127 rows and columns. They compared their
parallel implementation against serial algorithms contained
in the Scalable Library for Eigenvalue Problem Computa-
tions (SLEPc). Their parallel implementation is now part of
this library. The parallel implementation was benchmarked
on a cluster of 55 bi-processor nodes with 2.80 GHz Pentium
Xeon processors. The serial implementations were bench-
marked using one node of this cluster. [25]

The parallel Trace Minimization (TraceMin) algorithm
was able to show speedups on the order of 200 over the
HSL_MCT73 algorithm for computing Fiedler vectors [21].
The TraceMin algorithm is iterative like many other algo-
rithms with its most time consuming part of each iteration
being a part where it must solve a saddle-point problem. The
results are impressive but the smallest graph considered by
the authors contained 2,000,000 nodes being processed on a
cluster of Intel Xeon CPUs with an unspecified number of
nodes. [21]

8. Conclusion

As the purpose of this work was to evaluate the ability to
achieve parallelism easily, no attention was given to com-
paring the benchmark results on the XMT prototype with
results from a state-of-the-art serial processor. Future work
could be performed to examine such an experiment which
would evaluate the XMT against another architecture.

One goal of this work was to examine the effectiveness
of XMTC at expressing parallelism in a way that is ac-
tually achieved at run time. In this regard, the work was
successful. In all algorithms the majority of the develop-
ment time spent was on the initial serial implementation.
Due to recent improvements in the XMTC compiler’s abil-
ity to exploit nested parallelism, even algorithms like par-
allel breadth-first search achieved excellent speedups (con-
sidering the graph sizes examined) compared to their serial
counterparts. Prior implementations of breadth-first search
required flattening of the parallelism in order to effectively
utilize a many-core architecture, a process which is not nec-
essarily intuitive to a programmer trained only in serial al-
gorithms. Additionally, good speedup was observed when
processing even small graphs using algorithms similar to
those benchmarks on other parallel systems (clusters, etc.)
which require large data sets to achieve good speedup. The

ease of programming model presented by XMTC provides a
clear path for a traditional serial programmer to begin writ-
ing parallel code. Additionally, improvements to the XMT
toolchain continue to automate some of the tuning that a
developer might have previously been expected to perform
themselves. The source code for this project has been made
available in a Google code repository. Information can be
found on http://code.google.com/p/xmtc-benchmarks/ .

Acknowledgments

I want to take a moment to say thank you to the UMD
XMT research team who provided me with feedback during
the research process and allowed me access to the XMT
prototype in order to perform my experiments. In particular,
I would like to thank James Edwards, Alex Tzannes, and Uzi
Vishkin.

References

[1] N.M.M. de Abreu. Old and New Results on Algebriac Con-
nectivity of Graphs. Linear Algebra and its Applications 423
(1), pages 53-73, 2007.

[2] D. Bader and K. Madduri. Parallel Algorithms for Evaluat-
ing Centrality Indices in Real-World Networks. Proceedings
of the 35th International Conference on Parallel Processing
(ICPP), 2006.

[3] D. Bader. HPCS Scalable Synthetic Compact Applications 2
Graph Analysis. www.highproductivity.org/SSCABmks.htm,
2007.

[4] D. Barash. Spectral Decomposition for the Search and Anal-
ysis of RNA Secondary Structure. Journal of Computational
Biology, Vol. 11 (Number 6, 2004), pages 1169-1174, 2004.

[5] S. Barnard. PMRSB: Parallel Multilevel Recursive Specral
Bisection. Proceedings of the 1995 ACM/IEEE Conference
on Supercomputing, 1995.

[6] L. Borges and S. Oliveira. A Parallel Davidson Type Al-
gorithm for Several Eigenvalues. Journal of Computational
Physics, 144 (1998), pages 763-770, 1998.

[7] U. Brandes. A Faster Algorithm for Betweenness Centrality.
Journal of Mathematical Sociology, 25, pages 163-177, 2001.

[8] G. Caragea, B. Saybasili, X. Wen, and U. Vishkin. Perfor-
mance Potential of an Easy-to-Program PRAM-on-Chip Pro-
totype Versus State-of-the-Art Processor. Proceedings of the
21st ACM SPAA Symposium on Parallelism in Algorithm and
Architectures, pages 163-165, 2009.

[9] G. Caragea, F. Keceli, A. Tzannes, and U. Vishkin General-
Purpose vs. GPU: Comparison of Many-Cores on Irregular
Workloads. Proceedings of HotPar 2010, 2010.

[10] G. Caragea and U. Vishkin. Better Speedups for Paralle] Max-
Flow. SPAA 2011, to appear.

[11] M. Crouzeix, B. Philippe, and M. Sadkane. The Davidson
Method. SIAM Journal on Scientific Computing, 15, pages
66-76, 1994.

[12] E. Davidson. The Iterative Calculation of a Few of the Lowest
Eigenvalues and Corresponding Eigenvectors of Large Real-

Symmetric Matrices. Journal of Computational Physics 17,
pages 87-94, 1975.

[13] J. Edwards and U. Vishkin. An Evaluation of Biconnectivity
Algorithms on Many-Core Processors Under Review.

[14] M. Fiedler. A Property of Eigenvectors of Nonnegative
Symmetric Matrices and Its Application to Graph Theory.
Czechoslavok Mathematics Journal, 25, pages 619-633, 1975.

[15] R. Geisberger, P. Sanders, and D. Schultes. Better Approxima-
tion of Betweenness Centrality. Proceedings of the 10th Work-
shop on Algorithm Engineering and Experiments (ALENEX
08). SIAM, 2008.

[16] M. Holzrichter and S. Oliveira. A Graph Based Method for
Generating the Fiedler Vector of Irregular Problems. Parallel
and Distributed Processing, Lecture Notes in Computer Sci-
ence, Volume 1586/1999, pages 978-985, 1999.

[17] Y. Hu and J. Scott. HSL_MC73: A Faster Multilevel Fiedler
and Profile Reduction Code. RAL-TR-2003-36, Numerical
Analysis Group, Computational Science and Engineering De-
partment, Rutherford Appleton Laboratory, 2003.

[18] A. Kaveh, H. Rahimi Bondarabady. Bisection for Parallel
Computing Using Ritz and Fiedler Vectors. Acta Mechanica
167, pages 131-144, 2004.

[19] F. Keceli, A. Tzannes, G. Caragea, R. Barua and U. Vishkin.
Toolchain for Programming, Simulating and Studying the
XMT Many-Core Architecture. Proc. 16th International
Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS 2011), in conjunction with
IPDPS, Anchorage, Alaska, May 20, 2011.

[20] K. Madduri, D. Ediger, K. Jiang, D. Bader, and D. Chavarria-
Miranda. A Faster Parallel Algorithm and Efficient Multi-
threaded Implementations for Evaluating Betweenness Cen-
trality on Massive Datasets. 2009 IEEE International Sympo-
sium on Parallel and Distributed Processing, pages 1-8, 2009.

[21] M. Manguoglu. A Highly Efficient Parallel Algorithm for
Computing the Fiedler Vector. Submitted to ACM TOMS
2010, arXiv:1003.3689v1.

[22] B. Mohar. The Laplacian Spectrum of Graphs. Graph Theory,
Combinatorics, and Applications, Vol. 2 (1991), pages 871-
898, 1991.

[23] D. P. O’Leary and G. W. Stewart. Computing the Eigenvalues
and Eigenvectors of Symmetric Arrowhead Matrices. Journal
of Computational Physics, 90 (1990), pages 497-505, 1990.

[24] E. Romero and J. Roman. A Parallel Implementation of the
Trace Minimization Eigensolver. High Performance Comput-
ing for Computational Science, VECPAR 2008, pages 255-
268, 2008.

[25] E. Romero and J. Roman. A Parallel Implementation of the
Davidson Method for Generalized Eigenproblems. Advances
in Parallel Computing, Vol. 19, pages 133-140, 2010.

[26] A. B. Saybasili, A. Tzannes, B.R Brooks and U. Vishkin.
Highly parallel multi-dimensional fast Fourier transform on
fine- and course-grained many-core approaches. Proc. 21st
Conference on Parallel and Distributed Computing Systems
(PDCS), Cambridge, MA, November 2-4, 2009

[27] G. Tan, D. Tu, and N. Sun. A Parallel Algorithm for Com-
puting Betweenness Centrality. International Conference on
Parallel Processing (2009), pages 340-347, 2009.

[28] S. Torbert, U. Vishkin, R. Tzur and D. Ellison. Is teaching
parallel algorithmic thinking to high-school student possible?
One teacher’s experience. Proceedings of 41st ACM Techni-
cal Symposium on Computer Science Education (SIGCSE),
2010.

[29] U. Vishkin, G. Caragea and B. Lee. Models for Advancing
PRAM and Other Algorithms into Parallel Programs for a
PRAM-On-Chip Platform. Chapter 5, Handbook on Parallel
Computing: Models, Algorithms, and Applications, Editors:
S. Rajasekaran and J. Reif, Chapman and Hall/CRC Press,
2008.

[30] U. Vishkin. Using Simple Abstraction to Reinvent Computing
for Parallelism. Communications of the ACM 54, 1 (January
2011), pages 75-78, 2011.

[31] X. Wen and U. Vishkin. PRAM-On-Chip: First Commitment
to Silicon. Brief announcement in Proc. 19th ACM Sympo-
sium on Parallel Algorithms and Architectures (SPAA), pages
301-302, June 9-11, 2007.

[32] X. Wen and U. Vishkin. FPGA-Based Prototype of a PRAM-
On-Chip Processor. ACM Computing Frontiers, 2008.

Algorithm 4 SSCA2 Kernel 4

Input: G(V, E)

Output: BC|[1..n], where BC|[v] gives the centrality score for vertex v.
1: for all v € V in parallel do
BCw] + 0

end for

: forall s € V do

//'1. Initialization

ols] + 1

d[s] < 0

for all ¢ € V in parallel do
oft] <0
dft] + -1

end for

12: phase <+ 0

13: P[phase] <—empty list

14: S[phase] <—empty stack

15: push s — S[phase]

16: count <1

17: // I1. Graph traversal

18: while count > 0 do

R A o

_ =
= @

19: count < 0

20: for all v € S[phase] in parallel do
21: for each neighbor w of v in parallel do
22 if d{w] < 0 then

23: dlw] < d[v] +1

24: count < count + 1

25: push w — S[phase + 1]

26: end if

27: if d[w] = d[v] + 1 then

28: olw] + olw] + ov]

29: append < v, w >— P[phase]
30: end if

31 end for

32 end for

33: phase < phase + 1

34: end while

35: phase < phase — 1

36: // III. Dependency accumlation by back-progation
37: O]« 0VeieV

38: while phase > 0 do

39: for all < v, w >€ Plphase] in parallel do
o[v]
40:) 1) 149
o] ¢ 0T + 0 (14 dlu)
41: end for
42: phase < phase — 1

43: end while

44: forallv € V do

45: BC[v] + BC[v] + §[v]
46: end for

47: end for

