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Abstract   

The performance and ease of extensibility for two Big-Data technol-

ogies, SciDB and Hadoop/MapReduce (HD/MR), are evaluated on 

identical hardware for an Earth science use case of locating intersec-

tions between two NASA remote sensing satellites’ ground tracks. 

SciDB is found to be 1.5 to 2.5 times faster than HD/MR. The per-

formance of HD/MR approaches that of SciDB as the data size or the 

cluster size increases. Performance in both SciDB and HD/MR is 

largely insensitive to the chunk size (i.e., granularity). We have found 

that it is easier to extend HD/MR than SciDB at this time. 
 

Keywords: Multidimensional arrays; MapReduce; intersection algo-

rithm; SciDB. 

 

1. Introduction 

Several emerging Big-Data technologies offer cautious hope to 
scientists facing the daunting challenge of analyzing datasets of 
unprecedented volumes in the era of Big Data. While none of 
these technologies is yet mature enough for routine operational 
use in scientific research, several are sufficiently robust to 
warrant further investigation into their potential role in a 
typical research environment. 

Although most scientists now have access to powerful 
computational resources ranging from multi-core laptops to 
petascale clusters,  their personal data analysis workflows 
seldom exploit the full capabilities of these resources. 
Performance hence remains largely constrained by serial 
processing, because exploiting parallelism generally requires 
additional software engineering skills and resources that typical 
researchers rarely possess. Further, because the workflows are 
often unique to each scientific investigation, generic support 
for parallelism is limited to only a handful of very common 
analysis patterns. 

One of the common processes in a scientific workflow is 
“subsetting”, i.e. the extraction of subsets of research interest 
from vast volumes of relevant datasets. Parallel database 
systems are especially adept in such process. While these 
systems, such as Vertica or Oracle, also facilitate various data 
analysis tasks, developing analytic capabilities in these systems 
is often too arduous for many scientists. More recent 
frameworks provide simple, yet powerful, high-level 
abstractions and tools that makes it possible for different types 
of users to work with data efficiently without detailed 
knowledge of the underlying implementation. 

Since the publication of MapReduce (MR) [1], data 
scientists and technologists have tried to adapt and extend it to 
many data analysis applications in various domains. Hadoop 
(HD) [2], the open-source version of MapReduce, has thus 
become the default choice for almost every Big-Data analysis 
application, but its sub-optimal performance has been noted in 
a number of scenarios [3, 4]. 

Recent technological developments, such as SciDB [5], 
which specifically target multidimensional arrays, are 
providing an attractive alternative to Hadoop/MapReduce 
(HD/MR) for scientific data analysis. SciDB, a next-generation 
array-model parallel database system, not only indexes the data 
it ingests for fast extraction and retrieval, but also provides an 
attractive, albeit still basic, mathematical/statistical toolbox for 
data analysis. Like HD/MR, SciDB exploits the affinity of 
compute and data. 

We compare two technologies in this paper, Hadoop and 
SciDB, in the aspects of 1) performance and 2) ease of 
implementations, using a common use case in Earth science 
remote sensing. We first describe our use case scenario in 
section 2. We elaborate in Section 3 a few key considerations 
regarding processing ground track arrays, then describe the 
array data used in Section 4. The Big-Data algorithms used for 
our evaluation are introduced in Section 5. In Section 6, we 
describe our hardware platform, detail our experiments, and 
report results. We conclude the paper with a discussion and our 
plan for future works. 

2. Use Case Description 

The problems we are facing today with our Earth’s future are 
complex and carry grave consequences. We need long-term 
and comprehensive observations of Earth’s conditions to 
understand this complex system of systems. However, 
approximately two-thirds of Earth are oceans where direct and 
dense measurements are difficult to obtain. Remote sensing 
hence becomes the more cost-effective means for obtaining the 
measurements required to monitor Earth’s current health and to 
provide data for the prediction of its future. 

Remote sensing problems, however, are usually under-
constrained. That is, its problem space is often of a higher 
dimensionality than that covered by the observations of the 
instruments. To gain better constraints and to reduce 
ambiguity, scientists strive to obtain as much simultaneous, co-
located and independent information as possible concerning the 
problem space. Our use case is thus to find nearly coincident 
spaceborne radar measurements of two NASA Earth science 
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missions: CloudSat [6] and Tropical Rainfall Measuring 
Mission, or TRMM [7, 8]. 

Both satellite platforms, CloudSat and TRMM, carry radars 
capable of characterizing precipitation vertical profiles, but at 
different microwave frequencies. These radars’ high-resolution 
vertical profiling capabilities are in general superior to other 
instruments for understanding the vertical structure of 
precipitation systems. CloudSat’s W-band (94 GHz) Cloud 
Profiling Radar, CPR, is sensitive to smaller precipitation 
particles or lighter precipitation than TRMM’s Ku-band (13.8 
GHz) Precipitation Radar, PR, but gets attenuated and rendered 
less useful than TRMM’s PR in heavier precipitation. 
Combining near-coincident and complementary measurements 
from both CloudSat CPR and TRMM PR, therefore, has the 
potential to provide a more complete three-dimensional picture 
of precipitation events. 

The complication, however, is that CloudSat and TRMM 
do not fly in formation with similar orbit characteristics. 
CloudSat is in a sun-synchronous orbit with local overpasses 
roughly constant in solar time, while TRMM, is in an orbit 
with approximately 35-degree inclination, designed to attain 
better temporal sampling. As a result, they do not routinely 
observe the same location of Earth at the same time. Thus, to 
obtain nearly coincident observations from both the 94-GHz 
CPR and 13.8-GHz PR, we need to first identify intersections 
of their ground tracks. There are multiple approaches to the 
solution of this problem, but not all of them are appropriate for 
the shared-nothing architecture of the Big-Data technologies 
used in our comparison. 

3. Array Considerations 

The array concept used in the study for the Big-Data 
technologies is slightly more abstract than the typical array 
understood by a science programmer. It is important to 
understand this distinction in order to follow subsequent 
discussions. 

An array here can be thought of as a grid of cells, such as 
that of a numerical weather prediction model, which is often 
multidimensional. Each array cell in this case may contain 
multiple attributes, e.g. pressure, temperature, humidity, etc., 
whereas the typical array concept in a programming language 
like C or Fortran normally contains a single attribute, e.g. p[i, j, 
k] for pressure at location xi, yj, zk. This latter concept is only 
equivalent to the former when it has only one attribute in each 
cell, i.e. pressure. A cell of the more abstract array, hitherto 
referred to simply as “array”, is filled, if all of its attributes are 
present and valid, or empty, if all of it attributes are absent or 
invalid, otherwise it is partially filled. Our discussion below, 
however, involves only filled or empty array cells. 

As mentioned above, most scientists work primarily with 
multidimensional arrays. There have been efforts to build array 
data processing on top of table-based RDBMS, but the process 
of translating array-specific operations to RDBMS’ primitives 
is nontrivial, and such efforts generally fail to exploit effective 
multidimensional partitioning and indexing [9].  In contrast, 
SciDB directly manipulates multidimensional arrays and sup-
ports many array operations out-of-the-box. 

Finding an optimal strategy for indexing arrays has been a 
major focus of existing works on multidimensional array data. 
The standard approach is to partition an array into “chunks”, 
each of which typically resides on a node in a cluster and can 
be considered as a unit of work for parallel processing [9].  
Selection of partitioning, or chunking, heuristics is important 
as they affect the efficiency of the storage system. 

There are two basic chunking approaches: regular and ir-
regular [9]. Regular chunking (REG) partitions the array cells 
into uniform chunks regardless whether they are filled or emp-
ty, whereas irregular chunking (IRR) may partition them into 
different sizes, where each chunk often holds roughly the same 
number of filled array cells to even the workload of an opera-
tion over nodes and achieve better overall performance. One 
advantage of REG is its amortization of seek times and any 
fixed-costs associated with processing a chunk, but IRR can 
avoid straddling over skewed data, which occurs often with 
sparse arrays [9]. 

More complex chunking approaches can be derived from 
these basic ones, such as REG-REG, where each chunk of the 
array is subdivided into smaller regular chunks that can be used 
to efficiently determine the relevant set of data for an opera-
tion, or IRR-REG where each chunk of roughly the same data 
volume of the array is partitioned into smaller, equally spaced 
chunks to take advantages of the regular chunking scheme.  

Sparse arrays, often unevenly distributed in their coordinate 
space and thus poorly skewed, are particularly hard to partition 
for efficient parallel processing. Most satellite ground tracks, 
where the natural dimensions are time, latitude, and longitude, 
are sparse arrays in the spatiotemporal coordinate space. More-
over, a satellite ground track often exhibits irregular spatial 
pattern over time, further complicating the situation. Although 
it is possible to create a denser array for a satellite ground track 
by using only the temporal dimension for indexing, this causes 
inefficiency in other array operations, such as aggregation op-
erations over spatial areas (aggregate value grouped by spatial 
dimensions). 

Upon consideration, we choose the REG-REG chunking 
scheme for HD/MR in this study, because it has been reported 
to be optimal for various types of array processing workload 
[8]. For fairness sake, a similar regular chunking scheme is 
also used in SciDB. 

4. Ground-track Data  

In our study, we use data from CloudSat, which has sun-
synchronous orbits and whose mission is to measure the 
vertical structure of clouds from space [6], and TRMM, whose 
mission is to understand tropical rainfall and its feedback with 
the global climate [7, 8]. Our multidimensional arrays are 
created using CloudSat’s 2B-GEOPROF product, which 
contains cloud mask and reflectivities data, and TRMM’s 1C21 
product, which contains TRMM PR 3-D reflectivity. Although 
these missions are not the most data-intensive ones launched 
by NASA, they still generate considerable amounts of data 
while orbiting Earth; for example, TRMM 1C21 product holds 
~270GB of data per year in compressed format. Our study 
employs 1-, 2-, or 4-year temporal subsets of both data 
products. For intersection identification, we search for matches 
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between ~5×105 geolocations per day from CloudSat and 
~1.5×105 from TRMM. 

5. Intersect Algorithm 

Our challenge is to identify all locations where the ground 

tracks of two satellites intersect. An intersection, in our case, is 

defined as a pair of geolocations (each a 2-tuple of latitude and 

longitude) corresponding to the two tracks, whose spatial 

distance is within half of the spatial resolution of either 

instrument (i.e. CloudSat CPR or TRMM PR), and whose 

temporal difference is within a predefined time window, as 

following: 

 
Given s1 and s2 as half of the spatial spacings of the neigh-
boring data points in the 2 respective ground tracks, and Δt 
as the temporal constraint, the intersection of each orbit of 
the first ground track, 𝑖(𝑝1,

∗ , 𝑝2
∗), where 𝑝1,

∗  and 𝑝2,
∗ are data 

points of the 2 tracks, is defined as: 

𝑖(𝑝1,
∗ , 𝑝2

∗) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝1,𝑝2
𝑑𝑖𝑠𝑡(𝑝1, 𝑝2),  

𝑤ℎ𝑒𝑟𝑒 |𝑡1 − 𝑡2| ≤ Δ𝑡 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡(𝑝1, 𝑝2) ≤ max(𝑠1, 𝑠2) 

Intersections so identified, in turn, can serve as the centers 
around which adjacent observations of a predefined neighbor-
hood area can be extracted from respective datasets to be used 
for Earth science remote sensing applications. 

For finding intersections between the ground tracks of 
CloudSat and TRMM, we first transform the latitude-longitude 
geolocations to [x, y, z] of a Cartesian coordinate system, yield-
ing two ground-track arrays of data points with dimensions [x, 
y, z, t], where t is for time. Although each data point can be 
uniquely identified with t, having [x, y, z] as dimensions (in-
stead of as attributes) generally allows more efficient pro-
cessing of the arrays in systems such as SciDB because dimen-
sions are faster in look-up as a result of their column storage 
system, and more amenable to partitioning strategies.  

A simple algorithm is to partition the coordinate space into 
a regular mesh of subspaces, i.e. partition the corresponding 
arrays into subarrays. This configuration enables efficient 
“join” operation within each subspace and hence subarray. This 
algorithm, henceforth referred to as the Baseline algorithm, 
essentially consists of two steps. First, identify potential inter-
sections by cross-comparing all possible data points within the 
corresponding subarrays to locate the pair with closest spatial 
distance. Because the two ground tracks can only intersect with 
each other at most two times per orbit, the actual intersection 
can thus be found by choosing the closest pair among the po-
tential intersections identified in the first step for each half of 
its orbit. It is possible for the pair of ground track positions of 
the actual intersection to fall in neighboring subspaces rather 
than the same subspace. This complication is easily addressed 
by a slight modification to use an overlapping mesh system. 

The Baseline algorithm utilizes all dimensions, i.e. x, y, z, 
and t, of the ground track to allow for easier parallel computa-
tion of intersections within each partition of the data. One of its 
advantages is that it does not require pre-partition or pre-
indexing of the original data. However, the cross-matching step 

takes a considerable amount of computation to examine all 
possible pairs of points in a subspace. 

On a database system like SciDB, indexing is performed at 
the ingestion time of the data. For SciDB, we partition the ar-
rays according to one of the chunking schemes introduced 
above. Two arrays with the same schema, i.e. the same coordi-
nate space and chunk size for each of its dimensions, are parti-
tioned into two similar sets of chunks. Corresponding chunk 
pairs of the two arrays are thus located on the same physical 
node. In other words, each corresponding pair of chunks on a 
given node is contained by the same subspace, like in the Base-
line algorithm. This partitioning and co-location allow each 
pair of corresponding chunks to be processed locally, inde-
pendently, and efficiently, often without necessitating any 
cross-node communication. 

Our SciDB’s “bestMatch” operator implements exactly this 
idea, as in Figure 1. The implementation allows for the ability 
to constrain the search radius in each dimension, thus permit-
ting more flexible search of the potential intersections. We use 
k-d tree to find the best match in the second array for each 
point in the first array.  

In Hadoop file system (HDFS), there is no such notion of 
co-location. The storage system automatically determines the 
physical placements of the HDFS blocks of a file. Therefore, in 
order to have a fairer evaluation of these two dissimilar analyt-
ic systems, we first generate a sequence file for the pair of 
ground-track arrays, a step that resembles the re-dimensioning 
and chunking operation in SciDB. A “chunk” so-emulated is 
represented as a key-value pair, where its key is the coordinate 
space of the chunk and its value holds the data inside each 
chunk of the compatible arrays. This endows Hadoop with the 
similar advantage of chunk co-location as that in SciDB. 

1) bestMatch step - finding the probable 

pairs of intersection 

1.1) for a pair of corresponding chunks of 
CloudSat and TRMM build a k-d tree for 

TRMM-chunk 

1.2) for each data point in CloudSat 
1.2.1) find the best match in TRMM that 

satisfies the dimension constraints. 

if there is a match 

1.2.1.1) output the pair, re-dimensioned 

by CloudSat’s orbit’s ID 

 

2) aggregate step - finding the actual 

pairs of intersection 

2.1) for each CloudSat’s orbit 
2.1.1) find the 2 pairs of data points that 

are spatially closest, one on each 

half side of the earth 

2.1.2) this is the center of intersection 

that satisfies the problem’s con-

straints 

Figure 1. Algorithm for bestMatch. 
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6. Experiment Description and Results 

6.1 Computing Environment 

We run both the Hadoop and SciDB experiments on the 
same computing cluster. We ensure that the cluster is “clean” 
for each run. The cluster has a total of 36 compute nodes. Each 
node has the following features: 32GB of main memory, Intel 
E5-2670 Sandy Bridge processors clocked at 2.60 GHz, 2 
sockets with 8 CPU cores per socket for a total of 16 cores, and 
a total of 36 TB of local disks consisted of twelve 3-TB disks. 
The local disks are divided into two equal halves, one half for 
HDFS and the other for SciDB. Each half is configured as 5+1 
RAID5. The whole cluster runs Centos 6.3. The nodes are con-
nected by Infiniband (Mellanox MT27500 FDR IB). We use 
Cloudera 2.0.0-cdh4.1.2 for Hadoop and the open-source ver-
sion 13.12 for SciDB. 

For both Hadoop and SciDB, we conduct our experiments 
using two cluster configurations of 6 and 30 nodes. Hadoop has 
a replication factor of 3. The open-source version of SciDB, 
however, does not support replication. 

Our bestMatch SciDB User Defined Operator (UDO) in-
corporates the KDTreeSingleIndexParams kd-tree implementa-
tion of FLANN [10] for its speed and robustness. In Hadoop, 
we use Rednaxela's Bucket PR kd-tree, as described in [11]. 

6.2 Dataset 

We evaluate the performance of Hadoop and SciDB on a 
pair of satellite ground tracks: those of CloudSat and TRMM. 
TRMM orbits the earth around the equator, between approxi-
mately -35 and 35 degrees latitude, while CloudSat travels up 
and down close to the poles in a sun-synchronous orbit. Both 
satellites complete an orbit around Earth in approximately 100 
minutes and their ground tracks intersect about 30 times a day. 
However, they normally go over an intersection location in 
their respective orbits at different times. 

We extract the ground track geolocations from the HDF4 
files of the dataset for each satellite and convert them into 
comma-separated values (CSV). These are used as input to our 
Baseline algorithm first. The data are indexed into sequence 
files in Hadoop as described above and ingested into the SciDB 
clusters.  

Table 1 summarizes the data point distribution of chunks 
for the best optimal chunking configuration for our algorithm 
in SciDB.  

Table 1. Distribution of the number of data points (non-empty cells) 

per node for 1-year of data in a 30-node cluster. 

Although our array configuration/schema yields approxi-
mately 1016 possible array cells per chunk, the number of filled 
cells for each ground track is considerably smaller, i.e. O(106), 
resulting in very sparse multidimensional arrays. While it is 

convenient in SciDB to distribute actual data evenly over the 
cluster nodes, aiding its parallel performance, the partitioning 
in Hadoop has to be done more laboriously through a sequence 
file. The data distribution over nodes, however, depends on 
HDFS distribution of blocks, which should be reasonably even, 
and the availability of nodes at runtime, which are scheduled 
by Hadoop’s jobtracker. 

A year’s worth of data is approximately 20 GB for Cloud-
Sat and 10 GB1 for TRMM. Evaluations are carried out for 1, 2 
and 4 years of data. 

6.3 Performance Evaluation 

In this section, we present the results of our experiment for 
different cluster configurations and array chunking choices.  

Figure 2 shows the average running time (in log scale) of 
our experiment on a cluster with 30 nodes. The Baseline algo-
rithm takes significantly longer to finish because it includes the 
time to partition our raw data into the cluster’s nodes. In addi-
tion, the Pig Script results in multiple iterations of Hadoop 
jobs, which is a primary disadvantage of Hadoop’s 2-stage 
computation.  

Overall, SciDB performs better than Hadoop by a factor of 
~2.5 in a cluster of 30 nodes, which aligns with our expecta-
tion. As the data volume increases with the number of years, 
this performance advantage diminishes, as shown in Table 2, in 
which the right-half column under each year heading provides 
the Hadoop-to-SciDB timing ratios. As the initial overhead 
cost of Hadoop becomes further amortized, we expect this 
trend to continue, with Hadoop’s performance approaching that 
of SciDB. 

Table 2. Optimal running time (in seconds) in a 30-node cluster, for 

both Hadoop (HD) and SciDB (Sci). 

Nodes 
 

1 Year 2 Years 4 Years 

30 

HD 65.5 

2.5 

114.9 

2.6 

125.4 

1.5 

Sci 25.6 43.6 83.7 

6 

HD 89.8 

0.7 

155.8 

0.6 

254.9 

0.3 

Sci 112.6 249.0 699.7 

 

Min 

(×106) 

Max 

(×106) 

Mean 

(×106) 

Std. Dev. 

(×103) 

Average Chunks 

Per Node 

TRMM 2.7  2.7 2.7 4.9 47,854 

CloudSat 9.7 9.7 9.7 16.8 44,801 

 

Min 

(×106) 

Max 

(×106) 

Mean 

(×106) 

Std. Dev. 

(×103) 

Average Chunks 

Per Node 

TRMM 2.7  2.7 2.7 4.9 47,854 

CloudSat 9.7 9.7 9.7 16.8 44,801 

Figure 2. Optimal running time on a 30-node cluster. 
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In a smaller cluster of 6 nodes, where resources become 
more limited, SciDB becomes less efficient than Hadoop, as 
exhibited in Table 2. In the same cluster, Hadoop scales out 
better than SciDB as the data volume increases. It is also im-
portant to note that, in our experiments, data handling in SciDB 
becomes difficult when resources are limited, e.g. it takes sev-
eral retries to partition the arrays. This is due to a known 
memory management problem in SciDB version 13.12 and 
earlier; however, it is reported that in its latest version, 14.8, 
SciDB has improved the efficiency of memory management, 
utilizing well-known techniques that are used in the database 
literature, such as memory arenas. 

Table 3 shows the running time of our experiments with vari-
ous chunk size configurations in both SciDB and Hadoop. 
Since the arrays are rather sparse and the distribution of data 
points is far from uniform, it is very difficult to come up with 
an optimal chunk configuration perfectly aligned with the rec-
ommendations by SciDB. Nevertheless, the experiments show 
that all the configurations exhibit similar running times, for 
both SciDB and Hadoop. 

Table 3. Effect of chunk sizes using 1-year data set in Hadoop (HD) 

vs. SciDB (Sci) in 30-node cluster. 

 
22,500 45,000 90,000 720,000 

HD 73.84 

2.50 

65.50 

2.50 

66.50 

2.60 

75.97 

2.52 

Sci 29.51 26.21 25.61 30.10 

7. Discussion and Future Works 

Our experiments have demonstrated the potential of an array 
database system, SciDB, especially for the Earth Science do-
main. SciDB gives us better performance than general analytic 
systems such as Hadoop, but its consistency raises a few con-
cerns. It takes considerable effort to create sparse arrays in 
clusters with limited resources. In addition, we find that the 
ease of writing a SciDB operator depends on adequate docu-
mentation of its C++ class API for developers to reference. 
Presently this documentation exists primarily as comments in 
the source code, examples provided in the SciDB distribution, 
and through responses to developers’ questions by Paradigm4 
[14]. This is insufficient, because it is practically impossible to 
provide a complete set of relevant use cases through examples 
alone for a software as complex as SciDB. It is also worth not-
ing, however, that SciDB is aimed at end users who are inter-
ested in using high-level queries rather than developing com-
plex analytic algorithms. 

For future works, we plan to compare Hadoop and SciDB 
with a broader range of problems, including both single-pass 
and iterative operations, in Earth science domain. Moreover, 
instead of using HDFS as our backend storage system, we plan 
to experiment with ones that have better data organization such 
as Parquet Columnar Store or Cassandra key-value Store. We 
would also like to explore indexing and chunking strategies 
that have promise for better efficiency. In addition, we are 
aware of other Big-Data frameworks such as Spark, which 

allows for multi-stage in-memory computation with similar 
advantage of MapReduce functional features as Hadoop, and 
plan to explore the possibility of array store in these systems. 
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