

Performance Comparison of Big-Data Technologies in Locating

Intersections in Satellite Ground Tracks
Khoa Doan1,2, Amidu Oloso2,3, Kwo-Sen Kuo2,4, Thomas L Clune2

University of Maryland, Department of Computer Science1

NASA Goddard Space Flight Center2

Science Systems and Applications, Inc3

Bayesics, LLC4

Email: khoadoan@cs.umd.edu, {amidu.o.oloso, kwo-sen.kuo, Thomas.L.Clune}@nasa.gov

Abstract

The performance and ease of extensibility for two Big-Data technol-

ogies, SciDB and Hadoop/MapReduce (HD/MR), are evaluated on

identical hardware for an Earth science use case of locating intersec-

tions between two NASA remote sensing satellites’ ground tracks.

SciDB is found to be 1.5 to 2.5 times faster than HD/MR. The per-

formance of HD/MR approaches that of SciDB as the data size or the

cluster size increases. Performance in both SciDB and HD/MR is

largely insensitive to the chunk size (i.e., granularity). We have found

that it is easier to extend HD/MR than SciDB at this time.

Keywords: Multidimensional arrays; MapReduce; intersection algo-

rithm; SciDB.

1. Introduction

Several emerging Big-Data technologies offer cautious hope to
scientists facing the daunting challenge of analyzing datasets of
unprecedented volumes in the era of Big Data. While none of
these technologies is yet mature enough for routine operational
use in scientific research, several are sufficiently robust to
warrant further investigation into their potential role in a
typical research environment.

Although most scientists now have access to powerful
computational resources ranging from multi-core laptops to
petascale clusters, their personal data analysis workflows
seldom exploit the full capabilities of these resources.
Performance hence remains largely constrained by serial
processing, because exploiting parallelism generally requires
additional software engineering skills and resources that typical
researchers rarely possess. Further, because the workflows are
often unique to each scientific investigation, generic support
for parallelism is limited to only a handful of very common
analysis patterns.

One of the common processes in a scientific workflow is
“subsetting”, i.e. the extraction of subsets of research interest
from vast volumes of relevant datasets. Parallel database
systems are especially adept in such process. While these
systems, such as Vertica or Oracle, also facilitate various data
analysis tasks, developing analytic capabilities in these systems
is often too arduous for many scientists. More recent
frameworks provide simple, yet powerful, high-level
abstractions and tools that makes it possible for different types
of users to work with data efficiently without detailed
knowledge of the underlying implementation.

Since the publication of MapReduce (MR) [1], data
scientists and technologists have tried to adapt and extend it to
many data analysis applications in various domains. Hadoop
(HD) [2], the open-source version of MapReduce, has thus
become the default choice for almost every Big-Data analysis
application, but its sub-optimal performance has been noted in
a number of scenarios [3, 4].

Recent technological developments, such as SciDB [5],
which specifically target multidimensional arrays, are
providing an attractive alternative to Hadoop/MapReduce
(HD/MR) for scientific data analysis. SciDB, a next-generation
array-model parallel database system, not only indexes the data
it ingests for fast extraction and retrieval, but also provides an
attractive, albeit still basic, mathematical/statistical toolbox for
data analysis. Like HD/MR, SciDB exploits the affinity of
compute and data.

We compare two technologies in this paper, Hadoop and
SciDB, in the aspects of 1) performance and 2) ease of
implementations, using a common use case in Earth science
remote sensing. We first describe our use case scenario in
section 2. We elaborate in Section 3 a few key considerations
regarding processing ground track arrays, then describe the
array data used in Section 4. The Big-Data algorithms used for
our evaluation are introduced in Section 5. In Section 6, we
describe our hardware platform, detail our experiments, and
report results. We conclude the paper with a discussion and our
plan for future works.

2. Use Case Description

The problems we are facing today with our Earth’s future are
complex and carry grave consequences. We need long-term
and comprehensive observations of Earth’s conditions to
understand this complex system of systems. However,
approximately two-thirds of Earth are oceans where direct and
dense measurements are difficult to obtain. Remote sensing
hence becomes the more cost-effective means for obtaining the
measurements required to monitor Earth’s current health and to
provide data for the prediction of its future.

Remote sensing problems, however, are usually under-
constrained. That is, its problem space is often of a higher
dimensionality than that covered by the observations of the
instruments. To gain better constraints and to reduce
ambiguity, scientists strive to obtain as much simultaneous, co-
located and independent information as possible concerning the
problem space. Our use case is thus to find nearly coincident
spaceborne radar measurements of two NASA Earth science

2014 ASE BigData/SocialInformatics/PASSAT/BioMedCom 2014 Conference, Harvard University, December 14-16, 2014

©ASE 2014 ISBN: 978-1-62561-003-4 1

missions: CloudSat [6] and Tropical Rainfall Measuring
Mission, or TRMM [7, 8].

Both satellite platforms, CloudSat and TRMM, carry radars
capable of characterizing precipitation vertical profiles, but at
different microwave frequencies. These radars’ high-resolution
vertical profiling capabilities are in general superior to other
instruments for understanding the vertical structure of
precipitation systems. CloudSat’s W-band (94 GHz) Cloud
Profiling Radar, CPR, is sensitive to smaller precipitation
particles or lighter precipitation than TRMM’s Ku-band (13.8
GHz) Precipitation Radar, PR, but gets attenuated and rendered
less useful than TRMM’s PR in heavier precipitation.
Combining near-coincident and complementary measurements
from both CloudSat CPR and TRMM PR, therefore, has the
potential to provide a more complete three-dimensional picture
of precipitation events.

The complication, however, is that CloudSat and TRMM
do not fly in formation with similar orbit characteristics.
CloudSat is in a sun-synchronous orbit with local overpasses
roughly constant in solar time, while TRMM, is in an orbit
with approximately 35-degree inclination, designed to attain
better temporal sampling. As a result, they do not routinely
observe the same location of Earth at the same time. Thus, to
obtain nearly coincident observations from both the 94-GHz
CPR and 13.8-GHz PR, we need to first identify intersections
of their ground tracks. There are multiple approaches to the
solution of this problem, but not all of them are appropriate for
the shared-nothing architecture of the Big-Data technologies
used in our comparison.

3. Array Considerations

The array concept used in the study for the Big-Data
technologies is slightly more abstract than the typical array
understood by a science programmer. It is important to
understand this distinction in order to follow subsequent
discussions.

An array here can be thought of as a grid of cells, such as
that of a numerical weather prediction model, which is often
multidimensional. Each array cell in this case may contain
multiple attributes, e.g. pressure, temperature, humidity, etc.,
whereas the typical array concept in a programming language
like C or Fortran normally contains a single attribute, e.g. p[i, j,
k] for pressure at location xi, yj, zk. This latter concept is only
equivalent to the former when it has only one attribute in each
cell, i.e. pressure. A cell of the more abstract array, hitherto
referred to simply as “array”, is filled, if all of its attributes are
present and valid, or empty, if all of it attributes are absent or
invalid, otherwise it is partially filled. Our discussion below,
however, involves only filled or empty array cells.

As mentioned above, most scientists work primarily with
multidimensional arrays. There have been efforts to build array
data processing on top of table-based RDBMS, but the process
of translating array-specific operations to RDBMS’ primitives
is nontrivial, and such efforts generally fail to exploit effective
multidimensional partitioning and indexing [9]. In contrast,
SciDB directly manipulates multidimensional arrays and sup-
ports many array operations out-of-the-box.

Finding an optimal strategy for indexing arrays has been a
major focus of existing works on multidimensional array data.
The standard approach is to partition an array into “chunks”,
each of which typically resides on a node in a cluster and can
be considered as a unit of work for parallel processing [9].
Selection of partitioning, or chunking, heuristics is important
as they affect the efficiency of the storage system.

There are two basic chunking approaches: regular and ir-
regular [9]. Regular chunking (REG) partitions the array cells
into uniform chunks regardless whether they are filled or emp-
ty, whereas irregular chunking (IRR) may partition them into
different sizes, where each chunk often holds roughly the same
number of filled array cells to even the workload of an opera-
tion over nodes and achieve better overall performance. One
advantage of REG is its amortization of seek times and any
fixed-costs associated with processing a chunk, but IRR can
avoid straddling over skewed data, which occurs often with
sparse arrays [9].

More complex chunking approaches can be derived from
these basic ones, such as REG-REG, where each chunk of the
array is subdivided into smaller regular chunks that can be used
to efficiently determine the relevant set of data for an opera-
tion, or IRR-REG where each chunk of roughly the same data
volume of the array is partitioned into smaller, equally spaced
chunks to take advantages of the regular chunking scheme.

Sparse arrays, often unevenly distributed in their coordinate
space and thus poorly skewed, are particularly hard to partition
for efficient parallel processing. Most satellite ground tracks,
where the natural dimensions are time, latitude, and longitude,
are sparse arrays in the spatiotemporal coordinate space. More-
over, a satellite ground track often exhibits irregular spatial
pattern over time, further complicating the situation. Although
it is possible to create a denser array for a satellite ground track
by using only the temporal dimension for indexing, this causes
inefficiency in other array operations, such as aggregation op-
erations over spatial areas (aggregate value grouped by spatial
dimensions).

Upon consideration, we choose the REG-REG chunking
scheme for HD/MR in this study, because it has been reported
to be optimal for various types of array processing workload
[8]. For fairness sake, a similar regular chunking scheme is
also used in SciDB.

4. Ground-track Data

In our study, we use data from CloudSat, which has sun-
synchronous orbits and whose mission is to measure the
vertical structure of clouds from space [6], and TRMM, whose
mission is to understand tropical rainfall and its feedback with
the global climate [7, 8]. Our multidimensional arrays are
created using CloudSat’s 2B-GEOPROF product, which
contains cloud mask and reflectivities data, and TRMM’s 1C21
product, which contains TRMM PR 3-D reflectivity. Although
these missions are not the most data-intensive ones launched
by NASA, they still generate considerable amounts of data
while orbiting Earth; for example, TRMM 1C21 product holds
~270GB of data per year in compressed format. Our study
employs 1-, 2-, or 4-year temporal subsets of both data
products. For intersection identification, we search for matches

2014 ASE BigData/SocialInformatics/PASSAT/BioMedCom 2014 Conference, Harvard University, December 14-16, 2014

©ASE 2014 ISBN: 978-1-62561-003-4 2

between ~5×105 geolocations per day from CloudSat and
~1.5×105 from TRMM.

5. Intersect Algorithm

Our challenge is to identify all locations where the ground

tracks of two satellites intersect. An intersection, in our case, is

defined as a pair of geolocations (each a 2-tuple of latitude and

longitude) corresponding to the two tracks, whose spatial

distance is within half of the spatial resolution of either

instrument (i.e. CloudSat CPR or TRMM PR), and whose

temporal difference is within a predefined time window, as

following:

Given s1 and s2 as half of the spatial spacings of the neigh-
boring data points in the 2 respective ground tracks, and Δt
as the temporal constraint, the intersection of each orbit of
the first ground track, 𝑖(𝑝1,

∗ , 𝑝2
∗), where 𝑝1,

∗ and 𝑝2,
∗ are data

points of the 2 tracks, is defined as:

𝑖(𝑝1,
∗ , 𝑝2

∗) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝1,𝑝2
𝑑𝑖𝑠𝑡(𝑝1, 𝑝2),

𝑤ℎ𝑒𝑟𝑒 |𝑡1 − 𝑡2| ≤ Δ𝑡 𝑎𝑛𝑑 𝑑𝑖𝑠𝑡(𝑝1, 𝑝2) ≤ max(𝑠1, 𝑠2)

Intersections so identified, in turn, can serve as the centers
around which adjacent observations of a predefined neighbor-
hood area can be extracted from respective datasets to be used
for Earth science remote sensing applications.

For finding intersections between the ground tracks of
CloudSat and TRMM, we first transform the latitude-longitude
geolocations to [x, y, z] of a Cartesian coordinate system, yield-
ing two ground-track arrays of data points with dimensions [x,
y, z, t], where t is for time. Although each data point can be
uniquely identified with t, having [x, y, z] as dimensions (in-
stead of as attributes) generally allows more efficient pro-
cessing of the arrays in systems such as SciDB because dimen-
sions are faster in look-up as a result of their column storage
system, and more amenable to partitioning strategies.

A simple algorithm is to partition the coordinate space into
a regular mesh of subspaces, i.e. partition the corresponding
arrays into subarrays. This configuration enables efficient
“join” operation within each subspace and hence subarray. This
algorithm, henceforth referred to as the Baseline algorithm,
essentially consists of two steps. First, identify potential inter-
sections by cross-comparing all possible data points within the
corresponding subarrays to locate the pair with closest spatial
distance. Because the two ground tracks can only intersect with
each other at most two times per orbit, the actual intersection
can thus be found by choosing the closest pair among the po-
tential intersections identified in the first step for each half of
its orbit. It is possible for the pair of ground track positions of
the actual intersection to fall in neighboring subspaces rather
than the same subspace. This complication is easily addressed
by a slight modification to use an overlapping mesh system.

The Baseline algorithm utilizes all dimensions, i.e. x, y, z,
and t, of the ground track to allow for easier parallel computa-
tion of intersections within each partition of the data. One of its
advantages is that it does not require pre-partition or pre-
indexing of the original data. However, the cross-matching step

takes a considerable amount of computation to examine all
possible pairs of points in a subspace.

On a database system like SciDB, indexing is performed at
the ingestion time of the data. For SciDB, we partition the ar-
rays according to one of the chunking schemes introduced
above. Two arrays with the same schema, i.e. the same coordi-
nate space and chunk size for each of its dimensions, are parti-
tioned into two similar sets of chunks. Corresponding chunk
pairs of the two arrays are thus located on the same physical
node. In other words, each corresponding pair of chunks on a
given node is contained by the same subspace, like in the Base-
line algorithm. This partitioning and co-location allow each
pair of corresponding chunks to be processed locally, inde-
pendently, and efficiently, often without necessitating any
cross-node communication.

Our SciDB’s “bestMatch” operator implements exactly this
idea, as in Figure 1. The implementation allows for the ability
to constrain the search radius in each dimension, thus permit-
ting more flexible search of the potential intersections. We use
k-d tree to find the best match in the second array for each
point in the first array.

In Hadoop file system (HDFS), there is no such notion of
co-location. The storage system automatically determines the
physical placements of the HDFS blocks of a file. Therefore, in
order to have a fairer evaluation of these two dissimilar analyt-
ic systems, we first generate a sequence file for the pair of
ground-track arrays, a step that resembles the re-dimensioning
and chunking operation in SciDB. A “chunk” so-emulated is
represented as a key-value pair, where its key is the coordinate
space of the chunk and its value holds the data inside each
chunk of the compatible arrays. This endows Hadoop with the
similar advantage of chunk co-location as that in SciDB.

1) bestMatch step - finding the probable

pairs of intersection

1.1) for a pair of corresponding chunks of
CloudSat and TRMM build a k-d tree for

TRMM-chunk

1.2) for each data point in CloudSat
1.2.1) find the best match in TRMM that

satisfies the dimension constraints.

if there is a match

1.2.1.1) output the pair, re-dimensioned

by CloudSat’s orbit’s ID

2) aggregate step - finding the actual

pairs of intersection

2.1) for each CloudSat’s orbit
2.1.1) find the 2 pairs of data points that

are spatially closest, one on each

half side of the earth

2.1.2) this is the center of intersection

that satisfies the problem’s con-

straints

Figure 1. Algorithm for bestMatch.

2014 ASE BigData/SocialInformatics/PASSAT/BioMedCom 2014 Conference, Harvard University, December 14-16, 2014

©ASE 2014 ISBN: 978-1-62561-003-4 3

6. Experiment Description and Results

6.1 Computing Environment

We run both the Hadoop and SciDB experiments on the
same computing cluster. We ensure that the cluster is “clean”
for each run. The cluster has a total of 36 compute nodes. Each
node has the following features: 32GB of main memory, Intel
E5-2670 Sandy Bridge processors clocked at 2.60 GHz, 2
sockets with 8 CPU cores per socket for a total of 16 cores, and
a total of 36 TB of local disks consisted of twelve 3-TB disks.
The local disks are divided into two equal halves, one half for
HDFS and the other for SciDB. Each half is configured as 5+1
RAID5. The whole cluster runs Centos 6.3. The nodes are con-
nected by Infiniband (Mellanox MT27500 FDR IB). We use
Cloudera 2.0.0-cdh4.1.2 for Hadoop and the open-source ver-
sion 13.12 for SciDB.

For both Hadoop and SciDB, we conduct our experiments
using two cluster configurations of 6 and 30 nodes. Hadoop has
a replication factor of 3. The open-source version of SciDB,
however, does not support replication.

Our bestMatch SciDB User Defined Operator (UDO) in-
corporates the KDTreeSingleIndexParams kd-tree implementa-
tion of FLANN [10] for its speed and robustness. In Hadoop,
we use Rednaxela's Bucket PR kd-tree, as described in [11].

6.2 Dataset

We evaluate the performance of Hadoop and SciDB on a
pair of satellite ground tracks: those of CloudSat and TRMM.
TRMM orbits the earth around the equator, between approxi-
mately -35 and 35 degrees latitude, while CloudSat travels up
and down close to the poles in a sun-synchronous orbit. Both
satellites complete an orbit around Earth in approximately 100
minutes and their ground tracks intersect about 30 times a day.
However, they normally go over an intersection location in
their respective orbits at different times.

We extract the ground track geolocations from the HDF4
files of the dataset for each satellite and convert them into
comma-separated values (CSV). These are used as input to our
Baseline algorithm first. The data are indexed into sequence
files in Hadoop as described above and ingested into the SciDB
clusters.

Table 1 summarizes the data point distribution of chunks
for the best optimal chunking configuration for our algorithm
in SciDB.

Table 1. Distribution of the number of data points (non-empty cells)

per node for 1-year of data in a 30-node cluster.

Although our array configuration/schema yields approxi-
mately 1016 possible array cells per chunk, the number of filled
cells for each ground track is considerably smaller, i.e. O(106),
resulting in very sparse multidimensional arrays. While it is

convenient in SciDB to distribute actual data evenly over the
cluster nodes, aiding its parallel performance, the partitioning
in Hadoop has to be done more laboriously through a sequence
file. The data distribution over nodes, however, depends on
HDFS distribution of blocks, which should be reasonably even,
and the availability of nodes at runtime, which are scheduled
by Hadoop’s jobtracker.

A year’s worth of data is approximately 20 GB for Cloud-
Sat and 10 GB1 for TRMM. Evaluations are carried out for 1, 2
and 4 years of data.

6.3 Performance Evaluation

In this section, we present the results of our experiment for
different cluster configurations and array chunking choices.

Figure 2 shows the average running time (in log scale) of
our experiment on a cluster with 30 nodes. The Baseline algo-
rithm takes significantly longer to finish because it includes the
time to partition our raw data into the cluster’s nodes. In addi-
tion, the Pig Script results in multiple iterations of Hadoop
jobs, which is a primary disadvantage of Hadoop’s 2-stage
computation.

Overall, SciDB performs better than Hadoop by a factor of
~2.5 in a cluster of 30 nodes, which aligns with our expecta-
tion. As the data volume increases with the number of years,
this performance advantage diminishes, as shown in Table 2, in
which the right-half column under each year heading provides
the Hadoop-to-SciDB timing ratios. As the initial overhead
cost of Hadoop becomes further amortized, we expect this
trend to continue, with Hadoop’s performance approaching that
of SciDB.

Table 2. Optimal running time (in seconds) in a 30-node cluster, for

both Hadoop (HD) and SciDB (Sci).

Nodes

1 Year 2 Years 4 Years

30

HD 65.5

2.5

114.9

2.6

125.4

1.5

Sci 25.6 43.6 83.7

6

HD 89.8

0.7

155.8

0.6

254.9

0.3

Sci 112.6 249.0 699.7

Min

(×106)

Max

(×106)

Mean

(×106)

Std. Dev.

(×103)

Average Chunks

Per Node

TRMM 2.7 2.7 2.7 4.9 47,854

CloudSat 9.7 9.7 9.7 16.8 44,801

Min

(×106)

Max

(×106)

Mean

(×106)

Std. Dev.

(×103)

Average Chunks

Per Node

TRMM 2.7 2.7 2.7 4.9 47,854

CloudSat 9.7 9.7 9.7 16.8 44,801

Figure 2. Optimal running time on a 30-node cluster.

2014 ASE BigData/SocialInformatics/PASSAT/BioMedCom 2014 Conference, Harvard University, December 14-16, 2014

©ASE 2014 ISBN: 978-1-62561-003-4 4

http://robowiki.net/wiki/User:Rednaxela/kD-Tree

In a smaller cluster of 6 nodes, where resources become
more limited, SciDB becomes less efficient than Hadoop, as
exhibited in Table 2. In the same cluster, Hadoop scales out
better than SciDB as the data volume increases. It is also im-
portant to note that, in our experiments, data handling in SciDB
becomes difficult when resources are limited, e.g. it takes sev-
eral retries to partition the arrays. This is due to a known
memory management problem in SciDB version 13.12 and
earlier; however, it is reported that in its latest version, 14.8,
SciDB has improved the efficiency of memory management,
utilizing well-known techniques that are used in the database
literature, such as memory arenas.

Table 3 shows the running time of our experiments with vari-
ous chunk size configurations in both SciDB and Hadoop.
Since the arrays are rather sparse and the distribution of data
points is far from uniform, it is very difficult to come up with
an optimal chunk configuration perfectly aligned with the rec-
ommendations by SciDB. Nevertheless, the experiments show
that all the configurations exhibit similar running times, for
both SciDB and Hadoop.

Table 3. Effect of chunk sizes using 1-year data set in Hadoop (HD)

vs. SciDB (Sci) in 30-node cluster.

22,500 45,000 90,000 720,000

HD 73.84

2.50

65.50

2.50

66.50

2.60

75.97

2.52

Sci 29.51 26.21 25.61 30.10

7. Discussion and Future Works

Our experiments have demonstrated the potential of an array
database system, SciDB, especially for the Earth Science do-
main. SciDB gives us better performance than general analytic
systems such as Hadoop, but its consistency raises a few con-
cerns. It takes considerable effort to create sparse arrays in
clusters with limited resources. In addition, we find that the
ease of writing a SciDB operator depends on adequate docu-
mentation of its C++ class API for developers to reference.
Presently this documentation exists primarily as comments in
the source code, examples provided in the SciDB distribution,
and through responses to developers’ questions by Paradigm4
[14]. This is insufficient, because it is practically impossible to
provide a complete set of relevant use cases through examples
alone for a software as complex as SciDB. It is also worth not-
ing, however, that SciDB is aimed at end users who are inter-
ested in using high-level queries rather than developing com-
plex analytic algorithms.

For future works, we plan to compare Hadoop and SciDB
with a broader range of problems, including both single-pass
and iterative operations, in Earth science domain. Moreover,
instead of using HDFS as our backend storage system, we plan
to experiment with ones that have better data organization such
as Parquet Columnar Store or Cassandra key-value Store. We
would also like to explore indexing and chunking strategies
that have promise for better efficiency. In addition, we are
aware of other Big-Data frameworks such as Spark, which

allows for multi-stage in-memory computation with similar
advantage of MapReduce functional features as Hadoop, and
plan to explore the possibility of array store in these systems.

Acknowledgement
We are sincerely thankful to the Advanced Information Sys-
tems Technology (AIST) program of the NASA Earth Science
Technology Office (ESTO), which provided the funding for
this study, and the NASA High End Computing (HEC) pro-
gram, which provided the computing resources at the NASA
Center for Climate Simulations (NCCS). We would also like to
express our gratitude to our database administrator Gyorgy
Fekete, and system administrators Hoot Thompson and Scott
Sinno, without whose dedicated effort, we could not have done
the study.

References
[1] Dean, J., Ghemawat, S. (2004). MapReduce: Simplified Data Processing

on Large Clusters. clusters. In Proceedings of Operating Systems Design
and Implementation (OSDI). San Francisco, CA. 137-150.

[2] Apache Hadoop. (2014, September 12). In Wikipedia, The Free
Encyclopedia. Retrieved 03:21, August 23, 2014, from
http://en.wikipedia.org/w/index.php?title=Apache_Hadoop&oldid=6252
39666

[3] Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt, D. J., Madden,
S., & Stonebraker, M. (2009, June). A comparison of approaches to
large-scale data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data (pp. 165-178). ACM.

[4] Stonebraker, M., Abadi, D., DeWitt, D. J., Madden, S., Paulson, E.,
Pavlo, A., Rasin, A. (2010 January). MapReduce and Parallel DBMSs:
Friends or foes? Comm. of the ACM, 53(1), 64-71.

[5] Stonebraker, M., Brown, P., Zhang, D., and Becla, J., (2013 May-June).
SciDB: A Database Management System for Applications with
Complex Analytics. Computing in Science & Engineering, 15(3), 54-62.

[6] Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K.,
Wang, Z., Illingworth, A. J., O’Connor, E. J. Rossow, W. B., Durden, S.
L., Miller, S. D., Austin, R. T., Benedetti, A., Mitrescu, C., and the
CloudSat Science Team (2002 December). The CloudSat mission and
the A-Train: A new dimension of space-based observations of clouds
and precipitation. Bull, Amer. Meteor. Soc., 83(12), 1771-1790

[7] Simpson, J., Adler, R.F., North, G.R. (1988, March). A proposed
Tropical Rainfall Measuring Mission (TRMM) satellite. Bull, Amer.
Meteor. Soc., 69(3), 278-295.

[8] Kummerow, C., Barnes, W., Kozu, T., Shiue, J., Simpson, J. (1998
June). The Tropical Rainfall Measuring Mission (TRMM) sensor
package. J. Atmos. Oceanic Technol. 15, 809-817.

[9] Soroush, E., Balazinska, M., & Wang, D. (2011, June). Arraystore: a
storage manager for complex parallel array processing. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management
of data (pp. 253-264). ACM.

[10] FLANN - Fast Library for Approximate Nearest Neighbors,
http://www.cs.ubc.ca/research/flann/

[11] kd-tree. (n.d.). - RoboWiki. Retrieved May 12, 2014, from
http://robowiki.net/wiki/Kd-tree

[12] Stonebraker, M. (1986). The case for shared nothing. IEEE Database
Eng. Bull., 9(1), 4-9.

[13] Stonebraker, M., Brown, P., Poliakov, A., & Raman, S. (2011, January).
The architecture of SciDB. In Scientific and Statistical Database
Management (pp. 1-16). Springer Berlin Heidelberg.

[14] Paradigm4, Inc. | Big Analytics. (n.d.). Paradigm4 Inc. Retrieved May
12, 2014, from http://www.paradigm4.com

2014 ASE BigData/SocialInformatics/PASSAT/BioMedCom 2014 Conference, Harvard University, December 14-16, 2014

©ASE 2014 ISBN: 978-1-62561-003-4 5

http://en.wikipedia.org/w/index.php?title=Apache_Hadoop&oldid=625239666
http://en.wikipedia.org/w/index.php?title=Apache_Hadoop&oldid=625239666

