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1 import pipit as ppt

2

3 trace = ppt.Trace.from_otf2('ping -pong')

4 trace.plot_timeline(instant_events =...)

Figure 1: Pipit provides a Python API to read, manipulate, and explore parallel execution traces programmatically (left) and to

visualize them (right).

ABSTRACT

Performance analysis is an important part of the oft-repeated, it-
erative process of performance tuning during the development of
parallel programs. Per-process per-thread traces (detailed logs of
events with timestamps) enable in-depth analysis of parallel pro-
gram execution to identify various kinds of performance issues.
Often times, trace collection tools provide a graphical tool to ana-
lyze the trace output. However, these GUI-based tools only support
speci�c �le formats, are di�cult to scale when the data is large,
limit data exploration to the implemented graphical views, and do
not support automated comparisons of two or more datasets. In this
paper, we present a programmatic approach to analyzing parallel
execution traces by leveraging pandas, a powerful Python-based
data analysis library. We have developed a Python library, Pipit, on
top of pandas that can read traces in di�erent �le formats (OTF2,
HPCToolkit, Projections, Nsight, etc.) and provide a uniform data
structure in the form of a pandas DataFrame. Pipit provides oper-
ations to aggregate, �lter, and transform the events in a trace to
present the data in di�erent ways. We also provide several functions
to quickly identify performance issues in parallel executions.

1 MOTIVATION

Software development in high performance computing (HPC) often
involves an iterative process of writing code, analyzing perfor-
mance, making changes to tune performance, and then doing more
analysis and tuning. Hence, it is important to optimize the process of
performance analysis to reduce developer e�ort as much as possible.
Detailed performance analysis, and speci�cally tasks such as critical
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path detection, message dependency analysis, and root cause anal-
ysis often require the collection and analysis of parallel execution
traces. Execution traces are detailed logs of individual events (com-
pute, communication routines, I/O etc.) with timestamps. Several
performance tools such as Score-P [13], HPCToolkit [2], Nsight Sys-
tems [17], and Projections [11] can collect per-process, per-thread
and even per-GPU traces of parallel programs.

When production scienti�c applications are run with a large
number of processes even for short periods of time, the traces grow
in size and complexity quickly due to the large number of events
logged per process. This often makes the task of trace analysis
unwieldy and challenging. Often, trace collection tools also provide
a corresponding graphical tool for analyzing trace data – some
popular examples are Vampir [12], hpcviewer [2], and Nsight Sys-
tems [17]. However, these GUI-based tools have several limitations.
First, each tool only supports speci�c �le formats, and end users
have to familiarize themselves with the interfaces of multiple tools
to analyze di�erent traces e�ectively. Second, when using GUI-
based tools, end users are constrained in their exploration of the
data by the views provided by each tool. Moreover, in most graphi-
cal tools, repeating the same analysis twice on the same or di�erent
datasets is a manual process, with limited support for saving/au-
tomating analysis. Third, since parallel traces can be large in two
dimensions (time and number of processes/threads), visualizations
often have issues with scalability beyond small datasets. Finally,
while some graphical tools allow loading trace data from two di�er-
ent executions, the exploration is user-driven and manual, and they
do not provide automated comparisons of two or more datasets.

There are several challenges to developing a single tool for trace
analysis that solves all of the issues mentioned above. It should be
able to handle di�erent �le formats for execution traces. It should
allow canned and custom exploration of the data by the end user.
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Table 1: Capabilities in di�erent graphical trace analysis and visualization tools.

Events Metrics Time Outlier Flat Comm. Msg Size Call Pattern Manual Guided
over time over time Pro�le Analysis Pro�le Matrix Histogram Stack Detect. Mult. Run Mult. Run

Vampir ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × ✓ ×

hpcviewer ✓ × ✓ × ✓ × × ✓ × × ×

Projections ✓ ✓ ✓ ✓ × ✓ ✓ × × ✓ ×

Nsight ✓ ✓ × ✓ ✓ × × ✓ × ✓ ×

Perfetto ✓ ✓ × × ✓ × × ✓ × × ×

This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Further, it should allow ease of automating performance analysis for
oft-repeated tasks. And, it should allow comparisons of traces from
multiple executions, hopefully in a somewhat automated manner.

In this paper, we �ll the above mentioned gaps in performance
analysis of parallel execution traces by developing a programmatic
API to analyze them. This API provides full access to the trace data
to the end user so that they can explore the data programmati-
cally instead of having to use a graphical interface. Since traces
essentially represent a time series of events (with categorical and
numerical data per event), we leverage pandas [16], a powerful
Python-based data analysis library for analyzing tabular data. We
have developed a performance analysis library called Pipit (name
anonymized for double-blind review) that can read traces in dif-
ferent �le formats (OTF2 [7], HPCToolkit [2], Projections [11],
Nsight [17], etc.) and provides a uniform data structure in the form
of a pandas DataFrame. Pipit exposes a programmatic API to the
end user with operations to aggregate, �lter, and transform the
events in a trace dataset to explore, manipulate, and visualize the
data in di�erent ways.

There are several common data exploration/manipulation tasks
that end users perform when analyzing parallel traces. Some ex-
amples are – analyzing a heat map or matrix of communication
between MPI processes, detecting load imbalance across threads or
processes, detecting a critical path in the execution, identifying the
most time consuming functions etc. We have designed and imple-
mented many of these operations in the Pipit API to reduce end user
e�ort in such performance analysis related tasks. We also present
several case studies that demonstrate the utility and capabilities of
Pipit.

The paper makes the following important contributions:

• A uni�ed interface to read traces generated in di�erent for-
mats by di�erent trace measurement tools.

• An open-source library, Pipit, that provides a Programmatic
interface to perform common performance analysis tasks
using implemented functions.

• Basic visualization support with tens of views to complement
the Pipit API in assisting with performance analysis.

• Demonstration of the utility of Pipit in identifying perfor-
mance issues in several HPC applications.

2 BACKGROUND AND RELATED WORK

A parallel execution trace of a process or thread is essentially time
series data, and includes individual events (representing functions,
loops, and potentially other code blocks) and their start and end

timestamps, along with other optional metrics such as hardware
counters. A trace for a parallel program contains this information
for multiple processes or threads or both executing within a pro-
gram execution.

There are many popular trace collection tools such as Score-
P [13], HPCToolkit [2], TAU [19], Nsight systems [17], and Pro-
jections [11]. Score-P, TAU, and HPCToolkit are general purpose
tracing tools, which can collect trace data for any C/C++/Fortran
program. Nsight and Projections, however, are more specialized for
certain parallel programs. Nsight can be used for CUDA-enabled
programs running on NVIDIA GPUs, and Projections can be used
for Charm++ programs.

2.1 Overview of Trace Visualization Tools

The tracing tools mention above are developed by di�erent research
groups, and they use di�erent �le formats and serialization tech-
niques to store the parallel trace data. They also have their own com-
plimentary visualization tool to be able to view the traces. Score-P
generates traces in the OTF2 open trace format, which can be visu-
alized using Vampir [12], and ParaProf [3]. HPCToolkit produces
custom database �les that are viewable with hpcviewer. Nsight
produces proprietary .qdrep �les, viewable with Nsight Graphics.
The projections tracing library in Charm++ [10] produces custom
log �les viewable with a graphical tool, also called Projections.

Before starting the development of Pipit, we conducted a survey
of existing trace analysis/visualization tools, and their strengths
and weaknesses. Table 1 provides a summary of our study. For each
tool in consideration, we evaluated if a certain graphical view that
represents a certain kind of analysis of trace data was available or
not. Below, we provide a high-level overview of each of the tools
we considered.

Vampir is a closed-source GUI-based framework that can be used
to to visualize and analyze traces in the OTF2 format. The user
interface is comprised of a variety of charts, each designed to pro-
cess and display a di�erent aspect of the trace. The charts are
grouped into three categories: timeline charts, which show events
and metrics over time; statistical charts, which display aggregated
information about functions, communication, processes, and I/O;
and informational charts, which show additional details such as the
chart legend and the currently selected item. The tool also o�ers
some �ltering capabilities so that users can view charts for certain
regions of interest. Finally, Vampir allows opening multiple traces
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at once and viewing their respective charts side-by-side, enabling
manual comparison.

Hpcviewer, used for reading traces generated by HPCToolkit, pro-
vides a fairly simple graphical user interface. Hpcviewer provides
two main view tabs for analyzing the trace data: a pro�le view tab
and a trace view tab. Hpcviewer’s pro�le view tab provides three
distinct views of the calling context tree aggregated over time and
processes: a top-down view, a a bottom-up view and a �at view
(similar to gprof’s �at pro�le). The three views allow users to create
derived metrics and �lter by any available metrics. Additionally,
the top down view also allows users to �lter based on the node,
rank, and thread. The trace view tab provides �ve more views for
the trace data: the timeline view, the call stack, statistics, depth
view, and summary view. The user can also subselect a part of the
timeline to zoom in.

Nsight Systems, is a performance analysis tool developed by
NVIDIA for CUDA-enabled programs. It supports pro�ling and
tracing, as well as visualization tools to analyze the output. The
available views include a timeline view that provides a graphical
overview of the events that occurred during the execution of the
application. It also provides a top-down view, bottom-up view, and
�at view similar to that of hpcviewer which can be �ltered by pro-
cess, functions, etc. These allow the user to analyze the calling
contexts of the call sites. Nsight Systems can also generate various
di�erent trace and summary reports as part of the stats system
view. Finally, Nsight Systems also empowers the user to manually
view and inspect multiple datasets at once.

Projections, is the name of both a library to gather performance
data of Charm++ programs, and a graphical tool for analyzing sum-
mary reports and traces generated by the former. The Projections
visualization tool supports several views such as timeline, time
pro�le, and various histograms for communication data and outlier
analysis. It is limited to analyzing traces generated from programs
written using Charm++, a task-based programming model and run-
time. However, it can provide object-speci�c information about
tasks in a Charm++ program.

Perfetto [1] is a collection of tools used for both collecting and
analyzing traces. It is the successor to Chrome’s built-in tracing
tool, which featured a front-end visualization interface called Trace

Viewer.While Trace Viewerwas developed for analyzing the Chrome
browser itself, its ease-of-use has prompted developers in di�er-
ent domains, including HPC developers, to use it for general trace
visualization. The newer Perfetto supports more trace formats, in-
cluding a native Protobuf format and the Linux Ftrace format. Its
front-end consists of four primary views: an interactive timeline
view, customizable pivot tables (containing data aggregates), a SQL
engine for querying and processing trace data, and a set of templates
for computing metrics and summaries using the SQL engine.

2.2 Other Related Analysis Tools

Other analysis tools have been developed that provide a command
line or scripting interface. Extra-P [5] provides GUI and a command
line interface that can be used for identifying scalability bugs. Simi-
larly, Scalasca [8], a toolset that leverages Score-P for performance

measurement and Cube [18] for performance analysis provides
command line interface in addition to its GUI. In addition to its
command line interface, Cube also enables users to develop plug-
ins for the GUI. Another performance analysis tool, Hatchet [4],
provides a Python interface that enables programmatic analysis.
However, it only supports aggregate pro�les and not detailed exe-
cution traces.

3 THE PIPIT LIBRARY

We present Pipit, a Python-based library for analyzing parallel exe-
cution traces programmatically. Our goals in developing this library
were the following: (1) Support several �le formats in which execu-
tion traces are collected to provide users with a uni�ed interface
that works with outputs of many di�erent tracing tools. (2) Provide
a programmatic API, which allows users to write simple code for
trace analysis and provides several bene�ts such as �exibility of
exploration, scalability, reproducibility, and automation/saving of
work�ows. And (3) Automate certain common performance anal-
ysis tasks for analyzing single and multiple executions. We now
describe the considerations in designing and implementing Pipit.

3.1 The trace as a pandas DataFrame

As described in Section 2, a trace contains events with time stamps
per process and thread for a parallel program. This data is inher-
ently high-dimensional because we have (events, timestamps) ×
(processes, threads, GPUs) × (performance metrics). We determined
that we can treat this data as two-dimensional if we consider event
× timestamp × process ID (rank) as one axis and all the data col-
lected per event, both numeric and categorical as the other axis. This
allows use to use pandas DataFrames as the primary data structure
for organizing trace data. A pandas DataFrame is a two-dimensional
tabular data structure that allows storing both heterogeneous and
sparse data.

Pipit reads an execution trace into a Trace object, which contains
an events DataFrame that stores the actual data in a trace. The left
gray box in Figure 2 shows a portion of a sample 2-process input
trace in CSV format. Most tools record functions as a pair of events
(Enter and Leave) – one representing the start of a function and the
other the end of the function. Each row has a timestamp for when
that event was recorded on a given process. The image to the right
of it shows the corresponding events DataFrame created by Pipit.
The Python code used to generate a Trace object, foo_bar from an
input CSV �le is shown at the bottom.

3.2 Generating a call graph

Calling contexts can be useful to identify the root causes of per-
formance issues. While some tracing tools such as HPCToolkit
explicitly record the call stack for each function call, most tools do
not. However, by virtue of having timestamps for each function
call, we can use the nesting of these calls to extract caller-callee
relationships from the data. We use this information to reconstruct
the calling context or call stack for each function call. Given the
call stack for each event in the trace, we have several options on
how to organize this data. If we create a pre�x tree from all the
call stacks, we can generate a call context tree at every instant in
time and for every process or thread. However, this data would
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1 import pipit as ppt

2

3 foo_bar = ppt.Trace.from_csv('foo -bar.csv')

4 display(foo_bar.events)

Figure 2: A sample trace �le in CSV format (left), and the

corresponding events DataFrame generated by Pipit after

reading it (right) using the code snippet at the bottom.

grow extremely quickly for complex applications running on large
numbers of processes. As a result, we made a decision to aggregate
the call graph along two dimensions – over time and across all the
processes and threads. We keep this call graph in tree data structure
that is a union of all the call graphs in these two dimensions.

3.3 Reading a dataset

One of the main considerations in developing Pipit was to sup-
port various �le formats that represent di�erent tracing tools. In
order to do this, we implemented readers for various �le formats.
In some cases, we were able to use Python libraries provided by
some tools for reading their data. We currently support OTF2 traces,
HPCToolkit traces, Projections logs, and Nsight data. When Pipit
reads a trace in one of these �le formats, it returns a Trace ob-
ject with an events DataFrame. In some cases, it also contains a
definitions DataFrame that has various dictionaries that contain
metadata information.

4 THE PIPIT API

We now describe various operations supported by Pipit that enable
the end user to dissect trace data in various ways. We also provide
some support for some visualizations that can be used in a Jupyter
notebook to compliment our programmatic API (more details in
Section 5). However, it should be noted that the main strength
of Pipit is the ability to analyze traces programmatically. Various
operations in the Pipit API are meant to assist the end user in
performance analysis by making it easier, quicker, and automated
to a certain degree.

As mentioned in Section 2, we studied the capabilities of GUI-
based tools to better understand the common performance analysis
tasks performed by HPC users. Below, we provide details of various
functions that have been implemented in the Pipit API to enable
similar analysis by simply making Python function calls on the
Trace object.

4.1 Extracting calling relationships

Raw traces are organized in the form of enter, leave or instant
events and their timestamps. We need to traverse and manipulate
the DataFrame in the Trace object to match rows that represent the
start and end of a function or to identify parent-child relationships
using the nesting of events. These functions are necessary in order
to start making sense of trace data in terms of user functions and
their calling contexts. These functions are described below.

_match_events As mentioned in Section 3, the start and end of a
function are typically represented by two separate events, one of
type Enter and the other of type Leave. As a result, in the Trace
DataFrame, each function invocation appears in two rows with
separate timestamps. The Enter row marks the beginning of the
function’s execution and the leave rowmarks the end, always occur-
ring in pairs. In order to calculate the time spent in a function and
its children (the function called it), we need to match corresponding
enter and leave rows for each function invocation.

Th _match_events function matches the enter and leave rows of
each function invocation by adding two columns in the DataFrame
that store the row index and timestamp of the corresponding enter
or leave. This is done per process and per thread in the case of a
parallel trace. To identify matching enter/leave rows, we iterate
over the rows in the DataFrame, and every time an enter row is
encountered, we pushes its row index and timestamp to a stack.
Every time a leave row is encountered, we pops the top of the
stack, which is the matching enter row index and timestamp for
these leave row. These are added to the the appropriate rows in the
DataFrame to form two new columns.

_match_caller_callee The calling stack or calling context of a
function invocation can be extremely useful in context-aware per-
formance analysis. It can be helpful for the user to see which call
paths are responsible for most of of the performance issues in the
application. These relationships are also necessary for calculating
the exclusive time spent in each function (time spent in a function
minus the time spent in all its descendants/callees in the calling
context tree). The _match_caller_callee identi�es parent child
relationships by traversing the DataFrame and creating three new
columns in the DataFrame: row index of a function invocation’s
parent, list of row indices of all its children, and its depth in the
calling context tree.

Similar to _match_events, the DataFrame is �ltered to enter/leave
events for the current process and thread being iterated over. Using
a stack of DataFrame indices, it keeps track of the parent index. For
enter rows, it peeks the stack to get the parent index which is used
to modify the current event’s parent and the parent’s children. The
current depth in the call tree is also incremented. When a leave row
is encountered, an element is popped from the stack and the current
depth is decremented. Three new lists are added to the DataFrame
to store this data, which allows for additional high-level operations
to be performed with them.

_create_cct As discussed in Section 3, when Pipit reads in a trace,
it creates a calling context tree (CCT) aggregated over time, threads
and processes. The CCT is stored as a separate object in the Trace
object. Each event in the DataFrame corresponds to some node
in the CCT and stores a reference to that node. Similar to the
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_match_caller_callee, the _create_cct traverses the entire DataFrame
but in this case, computes the call stack for each function invocation,
and adds nodes for every function in the call stack to the CCT object.
The CCT is updated on the �y as we go through the DataFrame.
The CCT is generated by default in all of the data readers before
the Trace object is created. Since there is a uni�ed CCT across
processes and threads, it can be used to analyze discrepancies in
same call paths across di�erent processes and help uncover any
related performance issues.

4.2 Analyzing overall performance

Next, we discuss API functions that help analyze the time spent in
di�erent parts of the code.

calc_inc_metrics and calc_exc_metrics We need to know the
inclusive and exclusive time and other metrics associated with each
function invocation prior to commencing any performance anal-
ysis. Since the events DataFrame originally contains records of
timestamps and other hardware counter readings for Enter/Leave
of each function invocation, we need to derive the inclusive and
exclusive values for each metric (including execution time). The
calc_inc_metrics and calc_exc_metrics functions use _match_events
to match indices of enter and leave rows. Once events are matched,
corresponding pairs of events can be used to calculate the inclu-
sive metrics associated with each function and the parent-child
relationships obtained from _match_caller_callee can be used
to subtract the children’s metrics to get the exclusive metrics.

�at_pro�le A �at pro�le is often used to get a high-level overview
of the most time consuming functions in an execution. Once we cal-
culate the inclusive and exclusive metrics per function invocation,
we can use the power of pandas and operations such as groupby
to easily calculate the total time spent in each function. We can
use the output of this function to focus on a subset of functions in
downstream tasks.

time_pro�leManually inspecting a timeline of a program execu-
tion with a large number of events and processes is a scalability
challenge. Instead, we can look at the activity or utilization of all
the processes over time. We call this a time pro�le, which provides a
succinct view of the total time spent in di�erent functions across all
processes. The time period in the trace is divided into bins, and for
each bin, the time_profile function computes the total amount
of time spent in di�erent functions (added across all threads and
processes). One can think of this as a �at pro�le over time.

4.3 Analyzing communication performance

Communication is often a scalability bottleneck in MPI programs.
Below, we discuss various communication related functionality
available in Pipit.

comm_matrix This function computes the data exchanged be-
tween pairs of processes and outputs that information as a two-
dimensional (2D) numpy array. Note that this information is not
available in all trace formats. It requires that each send and receive
event have the destination and source process respectively, and
the size of the message exchanged. The user can choose to analyze
the total number of messages or total volume of communication

between each process pair. Analyzing the communication matrix
can be challenging when there are a large number of processes. The
next few functions compute aggregated communication statistics.

message_size_histogram returns a distribution of the sizes of
all messages encountered in the trace. This can help answer ques-
tions such as – are there a large number of small messages, or low
numbers of large messages.

comm_by_process We can also analyze the amount of communi-
cation data sent and received by each process irrespective of the
receiver and sender respectively. Similar to comm_matrix, we can
choose to look at number of messages or communication volume.

comm_over_time The previous operations generate statistics for
communication that are aggregated over time. However, since we
have a trace over time, we can also analyze the messaging behavior
of programs over time. The comm_over_time operation can calcu-
late both the number of messages, and the total message volume,
sent over di�erent time bins.

4.4 Identifying performance issues

Next, we now discuss some advanced operations that attempt to
simplify the identi�cation of performance issues.

load_imbalance When parallelizing an application over a large
number of MPI processes, load imbalance across processes can lead
to worse performance and limit the highest speedup possible by
using more cores. To help analyze this in a quick and easy fashion,
Pipit provides the user with a load_imbalance function that takes
as input a single metric such as exclusive time and the number
of processes to output per function that have the highest “load”
for that metric. The list of ranks and the imbalance (maximum
time across all processes / mean time per process) are provided
per function, which makes it easy for the user to identify which
functions are especially critical for relieving scaling bottlenecks.

idle_time Processes in a parallel program often wait for messages
to arrive, either in a blocking MPI_Recv or MPI_Wait operation.
This can be referred to as idle time and can indicate a number of
performance issues such as load imbalance, network congestion is
system noise (OS jitter). Reducing idle time can improve the scaling
of parallel applications. The idle_time operation returns a pandas
DataFrame containing the idle times per process. This DataFrame
can be sorted by idle time to identify the most or least idle processes.

outlier_detectionWe also provides an outlier_detection oper-
ation that builds upon the idle_time function. Using idle_time

to calculate the idle time per process, outlier_detection sorts
the resulting DataFrame and returns two lists as a tuple. The �rst
list contains the top : ranks which spent the most time idling, while
the second list contains the bottom : ranks which spent the least
time idling.

pattern_detection One of the most challenging aspects of trace
analysis is identifying a portion of the trace to focus on. Automatic
pattern detection can help us �nd repeating patterns which can
either signal performance issues or help us �nd the start and end of
a loop in an iterative program. Such pattern detection can be used
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to �lter a portion of the time series and focus on that for visualiza-
tion or other downstream tasks. However, detecting patterns is a
challenging task if attempted manually. To simplify this task, Pipit
provides the pattern_detection function. We utilize the STUMPY
library [15], which can detect similar repeated subsequences in
time series data using matrix pro�les [20].

The pattern_detection operation takes a window size (i.e. length
of a subsequence), the number of iterations, and a metric as in-
puts. This function creates a time series by using all the events of
one process. Then, it passes this data to the stump function in the
STUMPY library, which calculates a matrix pro�le given a time
series and a window size. Then, we pass the matrix pro�le to the
motifs function in the STUMPY library. The motifs function re-
quires setting the number of motifs (i.e. the number of most similar
subsequences) expected to be in the data. We use the number of
iterations for which the traces were collected for this. Then, we use
the indices of these motifs and identify the timestamps at which
they occur. We �lter out the events that happen outside of these
timestamps and output a new DataFrame that contains only the
pattern along with the starting indices of the other subsequences
identi�ed as motifs.

Since the user has to set the number of iterations and window
size, we do not claim that this function fully automates pattern
detection. However, it signi�cantly simpli�es the task by enabling
detecting and analyzing patterns using a few lines of Python code.

multi_run_analysis Another di�cult challenge in performance
analysis is the comparison of traces from multiple executions. For
example, a user might be interested in analyzing how their applica-
tion scales with di�erent numbers of processes. We provide a simple
multi_run_analysis function that takes multiple trace datasets as
input and computes �at pro�les for each of them given a metric.
If the datasets were gathered on di�erent numbers of processes,
the output DataFrame, which is indexed by the di�erent setups can
help compare performance of di�erent functions across the runs.

4.5 Data Reduction

Finally, Pipit also supports �ltering the DataFrame by di�erent
parameters to reduce the amount of data to analyze at a time. A
user might be interested in analyzing the traces for a subset of
processes or for a time period smaller than the entire execution.

�lter The �lter operation allows users to �lter the trace events
by di�erent features such as name, timestamp, and process. Users
can also instantiate Filter objects, and apply the =>C , 0=3 , and >A
logical operators to create compound �lters for speci�c cases. The
operation returns a new Trace object containing a reduced events
DataFrame. Any of Pipit’s analysis and plotting functions can be
applied to the reduced trace.

5 VISUALIZATION SUPPORT

While Pipit has been primarily designed as a Python library for
programmatic analysis, we also provide a basic visual interface to
complement the Pipit API. These plotting operations or “views”
in Pipit can be used for both exploratory, as well as explanatory,
analyses of traces. They have been designed to be fast and scalable
for medium-sized traces, while supporting natural user interactions

such as hovering, panning, and zooming. The interactive views are
generated using Bokeh, a visualization library based on Python and
JavaScript. They can be displayed in a Jupyter notebook output cell
or a new browser tab, and can be exported as images.

plot_timeline displays the events in a trace over time (see Figure 1).
Instant events are represented as diamonds, where its G-position
represents the event’s timestamp. Function invocations are repre-
sented as horizontal boxes, where the left and right G-positions
represent the start and end of the function. Each process is shown
at a unique ~-position. Finally, MPI messages are represented as
arrows pointing from a send event to the corresponding receive
event. To avoid visual clutter, these arrows are drawn only when
the user clicks on a send or receive event.

Trace �les can be extremely large and may contain hundreds
of thousands or millions of events. In order to scale the view to
accommodate large traces, we split the events into two groups
depending on their execution time. The �rst group of events, con-
sisting of large events, are directly plotted as interactive glyphs.
The remaining events, which consist of tiny functions and clusters,
are rasterized into an image. Pipit then overlays these individual
glyphs and images into one plot, which is then displayed. This
splitting and rasterization process happens in real-time as the user
interacts, so that individual glyphs will “load in” as the user zooms
in to a particular region of interest. This way, Pipit can generate a
meaningful visual representation of millions of events instantly on
even an entry-level laptop.

plot_time_pro�le provides a view for the output of the time_pro�le
operation described in Section 4. The stacked bars are color-coded
by the function name, and their heights represent the exclusive time
spent in each function in each bin. Figure 10 shows a sample time
pro�le for a Kripke execution on 32 processes (region of interest is
on the right).

Figure 3: Time pro�le view of a Kripke execution on 32 pro-

cesses. On the right, we can see signi�cant time spent in

MPI_Isend and SweepSolver.

plot_comm_matrix visualizes the output of the comm_matrix
operation, as either a heatmap or a scatter plot. If the heatmap
option is speci�ed, the plot displays an image that encodes com-
munication volume as color intensity. On the other hand, if the
scatterplot option is speci�ed, the plot displays circles whose areas
denote the communication volume.
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Figure 4: Performance of the OTF2 Reader and comm_matrix function for various traces of AMG and Laghos (left). We compare

the runtimes with the number of rows in the corresponding events DataFrame. On the right – Breakdown of time spent in

various functions called within calc_exc_metrics when analyzing Tortuga traces.

plot_message_size_histogram displays the output of the mes-
sage_size_histogram operation as a bar graph, where the heights
of the bars represent the frequency of messages for each size bin.

Figure 5: Communication summary view of a Kripke execu-

tion on 32 processes. We observe that each process can be

placed in one of three sets by its communication volume.

plot_comm_summary visualizes the output of the comm_summary
operation as a bar graph, where the heights of the bars represent the
total message volume sent and received by each process. Figure 5
shows this view for a Kripke execution on 32 processes.

plot_comm_over_time displays the output of the comm_over_time
operation as a bar graph, where the heights of the bars represent
the total message volume sent over time.

6 PERFORMANCE OF PIPIT OPERATIONS

In this section, we present the performance of a few hand-picked
Pipit operations to understand their scalability.We have parallelized
the reading of input traces in certain �le formats using Pythonmulti-
processing. Figure 6 shows the time spent by the Pipit OTF2 reader
in reading traces of two di�erent applications, AMG (128 processes)
and Laghos (256 processes). All the experiments in this section were
performed on a single node of an HPC cluster with a dual 64-core
AMD EPYC 7763 processor (2.45 GHz base, 3.5 GHz turbo). The

OTF2 reader performance scales well with the number of cores,
and we get signi�cant speedups from using 64 cores. We plan to
gradually parallelize most readers and operations in Pipit.

1 2 4 8 16 32 64
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102

103

R
un

tim
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(s
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AMG 128

Laghos 256

Strong scaling of OTF2 reader

Figure 6: Strong scaling performance of the OTF2 Reader for

AMG 128 and Laghos 256 traces.

Next, we analyze the scalability of various Pipit operationsw.r.t. in-
creasing trace sizes. For each experiment, we average the times
over 3 trials. Figure 4 (left) shows the time spent in the OTF2 reader
and the comm_matrix function when reading AMG and Laghos
traces of di�erent sizes. We can see that there is a linear relationship
between the number of rows in the DataFrame and the runtime.

After a trace is read, most analysis work�ows begin with calcu-
lating inclusive and exclusive metrics for each function. Hence, we
measure the performance of the calc_exc_metrics function and its
breakdown into three other functions it invokes: _match_events,
calc_inc_metrics, and _match_caller_callee. Figure 4 (right) shows
that _match_events and _match_caller_callee take a bulk of the
runtime as they iterate over the entire trace. Furthermore, the pro-
portions of time taken by each function remains relatively constant
even as the size of the trace increases, showing that these API
functions can be used in an e�cient and scalable manner.
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7 CASE STUDIES

In this section, we demonstrate the power of the Pipit API and
the associated visualizations in making performance analysis of
parallel applications easier. We use execution traces of a variety of
applications, including AMG [9], Laghos [6], Kripke [14], Tortuga (a
CFD code), and Loimos (a Charm++-based epidemiology simulator).

7.1 Analyzing Communication Performance

We begin with using the communication-related operations in Pipit
described in Section 4. In several cases, we demonstrate the results
using the visualization support described in Section 5 but this is
not required. Users of Pipit can use the programmatic API alone to
perform most of the analysis described here. The visual plots are
simply a convenient mechanism for presenting the analyses in a
research publication.

Figure 7 shows the communication matrix of a Laghos execu-
tion on 32 processes, using both a linear colormap (on the left),
and a logarithmic colormap (on the right). The code snippet re-
quired to generate the views is shown in the listing at the bottom.
The heatmap shows the total data exchanged between any two
processes. We observe that the matrix is symmetric, and the com-
munication happens along diagonals. This typically suggests a
near-neighbor communication pattern in an n-dimensional virtual
topology. Switching to logarithmic scale for the colormap makes
additional patterns visible in the data.

1 laghos_32 = pipit.Trace.from_otf2('./ laghos_32 ')

2

3 laghos_32.plot_comm_matrix(mapping='linear ')

4 laghos_32.plot_comm_matrix(mapping='log')

Figure 7: Communication matrix of a Laghos execution on

32 processes, with a linear colormap (left) and logarithmic

colormap (right).

Next, we look at the message size histogram of the same Laghos
execution in Figure 8. The operation returns the message count in
each bin, as well as the edges of the bins of the histogram. In this
execution, we see that the sizes of MPI messages are not distributed
uniformly. They are clustered into three categories: small messages
(between 0 and 1,350 bytes), mediummessages (between 5,400-6,750
bytes), and large messages (12,150 - 13,500 bytes).

Finally, to understand how communication changes over time
during program execution, we can use the comm_over_time op-
eration, as shown in Figure 9. We see that communication begins
at around 12 seconds. The communication volume spikes during
certain time intervals, while remaining at zero during others.

1 laghos_32.message_histogram ()

Figure 8: Message size histogram of a LAGHOS execution on

32 processes

1 laghos_32.plot_comm_over_time ()

Figure 9: Communication over time of a LAGHOS execution

on 32 processes

7.2 Analyzing Overall Performance

7.2.1 Utilization over time. The time_pro�le function provides
an overview of the activity or utilization over time, and allows
the user to identify repeating patterns or functions that might be
a signi�cant portion of the total time. In Figure 10, we show a
time pro�le of a CFD code, Tortuga, running on 64 processes. The
stacked bar chart allows the user to see what functions are taking
up the most amount of time in a speci�c bin. Focusing on the middle
of the time pro�le, we observe that the computeRhs function (in
brown) makes up a signi�cant portion of the total time. We can see
that advanceTimestep_Rk3 and spectralRadius have a pattern
and are called periodically in the middle region. The code at the
bottom shows that using two lines of Python code, a user can glean
signi�cant information from a time pro�le.

1 tortuga_64 = pipit.Trace.from_otf2("tortuga_64")

2 tortuga_64.plot_time_profile(num_bins =100, normalized=

True)

Figure 10: Time pro�le of a Tortuga trace with 64 processes.
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7.2.2 Pattern detection. To identify patterns in a trace, we use
a Score-P user annotated Tortuga execution on 16 processes and
set the number of iterations to three when running the program.
We pass the number of iterations and a window size (calculated by
inspecting the start of each loop iteration) to the pattern_detection
function. The top plot in Figure 11 presents a time series generated
using the exclusive time values of each enter event in the trace. The
bottom plot shows the corresponding matrix pro�le. The lowest
points in the matrix pro�le indicate similar subsequences (vertical
dashed lines). For details about the matrix pro�les, we refer the
reader to the paper by Yeh et al. [20]. As we can see, Pipit can detect
patterns using this approach and identify the start of iterations.

1 tortuga_16 = pipit.Trace.from_otf2('./ tortuga_16 ')

2 matches = tortuga_16.detect_pattern(window_size ,

iterations , metric='time.exc')

3 tortuga_16.plot_timeline ()

Figure 11: Detecting patterns in a trace. The y-axis in the top

plot shows the exclusive time values for each enter event of a

process. The grey boxes represents the patterns detected. The

vertical dashed lines on the bottom plot (minimum values

on the matrix pro�le) point to start indices of the similar

subsequences.

The ability to detect patterns and identify start and end of loop
iterations can be extremely useful. When traces get large, and vi-
sualizing them in a timeline becomes challenging, we can use the
start and end of loop iterations to �lter the trace and visualize a
smaller time range. We demonstrate this in Section 7.4.

7.3 Finding performance issues

7.3.1 Load imbalance analysis. Using the load_imbalance func-
tion, we can expose asymmetry in aggregated runtimes of functions
across processes. The code in Figure 12 demonstrates such an ex-
ample, where a Projections trace of Loimos, an epidemic simulation
framework, is read. After this, with just a few lines of code, the
output of the load_imbalance function is �ltered by the �ve most
time consuming functions to identify the imbalance in them.

We notice some interesting observations in the DataFrame out-
put by the load_imbalance operation. First, computeInteractions(),
which determines which individuals get infected, is the most time

1 loimos_128 = pipit.Trace.from_projections('loimos_128 ')

2

3 loimos_128.calc_exc_metrics ()

4 imbalance_df = loimos_128.load_imbalance(num_processes =5)

5 imbalance_df = imbalance_df.iloc [0:5]. sort_values(by='

time.exc.imbalance ', ascending=False)

Figure 12: Analyzing Load Imbalance for the 5 Most Time

Consuming Functions

consuming function. It also appears to have high load imbalance,
second only to ReceiveVisitMessages(), which is a message pro-
cessing function. Another interesting observation is that the most
overloaded processes are common across the top three functions
(21, 22, 23, 29). On the other hand, idle time, which is also signif-
icant is largest on a completely non-overlapping set of processes.
This could be due to how the application partitions individuals
or geographical locations, suggesting that there is some scope for
optimization there.

7.3.2 Idle time analysis. We use a 64-process Loimos trace and
a 32-process Kripke trace to highlight the utility of the idle_time
function in Pipit. Idle_time allows users to quickly and easily iden-
tify which processes are waiting for others and are the most idle
while which other processes are always busy. Figure 14 shows the
code for calculating idle time for the Loimos trace, and the output
of the operation for both Loimos (top left) and Kripke (top right).
The dataframes show processes sorted from most idle time to least
idle time.

Similar to pattern_detection, the output of idle time can be used
to �lter the trace by speci�c ranks, and then visualize a subset of
ranks in the timeline. We demonstrate this in Section 7.4.

7.3.3 Multi-run analysis. We can use the multi_run_analysis
function to identify which functions scale poorly as we run on more
processes. Such analysis is painstakingly di�cult to do with tradi-
tional GUI-based performance analysis tools. With just a few lines
of code, we can use the multi_run_analysis function to compute �at
pro�les over several datasets, resulting in a DataFrame as shown
in Figure 13 (left). This analysis is done using traces collected from
�ve Tortuga executions on 16 to 256 processes.

We can also plot the output of the multi_run_analysis function
using matplotlib, as shown in Figure 13 (right). It is evident that
when scaling Tortuga from 32 to 64 processes, which corresponds to
moving from one node to two nodes, the average time per process
increases substantially. The functions responsible for this can be
seen in the plot: the average times for computeRhs and gradC2C,
which account for a signi�cant portion of the program’s time, in-
crease the most and are most likely the scalability bottlenecks.
Both of these functions are computationally heavy as they compute
time-derivatives (computeRhs) and gradients (gradC2C) on a three-
dimensional tensor. We can see that with a few lines of Python
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1 sizes = [16, 32, 64, 128, 256]

2 traces = [pipit.Trace.from_otf2('./tortuga -' + str(size))

for size in sizes]

3 multirun_df = pipit.Trace.multirun_analysis(traces)
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Number of Processes
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ex
cl

us
iv

e 
T

im
e 

(s
)

Multi-Run Analysis of Tortuga Traces
computeRhs

gradC2C

MPI_Wait

setGhostCvsInterfaces

endGhostCvsInterfaces

MPI_Bcast

run

advanceTimestep_RK3

spectralRadius

MPI_Reduce

MPI_Isend

computeVelocityGradient

MPI_Irecv

MPI_Barrier

MPI_Allreduce

time-loop

Figure 13: First �ve columns of the DataFrame returned by the multirun_analysis function for Tortuga traces (left), and plotting

this DataFrame as a stacked bar chart (right)

1 loimos_64 = pipit.Trace.from_projections('./ loimos_64 ')

2

3 idle_times = loimos_64.idle_time ()

4 idle_times = idle_times.sort_values(by=['Idle Time'],

ascending=False)

5 display(idle_times)

Figure 14: Idle time computation for Loimos and Kripke.

code, a user can easily and quickly compare di�erent traces with
Pipit to help them narrow down which functions to focus on when
optimizing their application for performance improvements.

7.4 Data Reduction for Timeline

One of the biggest challenges in trace analysis are visualizing and
exploring large traces. Pipit provides a �lter operation to trim the
DataFrame. We can use Pipit functions such as pattern_detection
and idle_time to �lter the events DataFrame by time and processes
respectively. Figure 15 shows that we can use idle_time to sub-select

eight out of 64 interesting processes and �lter the trace by them
to only visualize them in the timeline. As we can see, this helps us
easily compare the outlier processes, and clearly see the di�erences
in activity between processes that are idling and those that aren’t.

1 bad_procs = idle_times["Process"].head (4)

2 good_procs = idle_times["Process"].tail (4)

3

4 loimos_64.filter("Process", "in", bad_procs + good_procs)

.plot_timeline ()

Figure 15: Timeline view of a 64-process Loimos trace �ltered

to the most and least idling processes.

1 tortuga_16 = pipit.Trace.from_otf2('./ tortuga_16 ')

2 matches = tortuga_16.detect_pattern(window_size ,

iterations , metric='time.exc')

3 tortuga_16.plot_timeline ()

Figure 16: Timeline view of a Tortuga trace after detecting

patterns and �ltering by time.

Similarly, in Figure 16, we use the output of the pattern_detection
function to �lter the timeline by a time range, which allows us to
focus on one iteration of Tortuga.
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8 CONCLUSION

In this paper, we present a new Python-based performance analysis
tool called Pipit for analyzing parallel execution traces. Through
Pipit’s design and implementation, we sought to solve the follow-
ing challenges: (1) Support several �le formats in which execution
traces are collected to provide users with a uni�ed interface that
works with outputs of many di�erent tracing tools. (2) Provide a
programmatic API, which allows users to write simple code for
trace analysis and provides several bene�ts such as �exibility of
exploration, scalability, reproducibility, and automation/saving of
work�ows. And (3) Automate certain common performance analy-
sis tasks for analyzing single and multiple executions. To the best
of our knowledge, Pipit is unique in its capabilities in terms of
supporting several �le formats and providing a programmatic API
to analyze traces. We believe that Pipit can revolutionize how HPC
developers and performance engineers analyze the performance of
their codes, and improve the e�ciency of both parallel programs
and HPC programmers.
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