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Abstract. Image based geolocation aims to answer the question: where
was this ground photograph taken? We present an approach to geoloca-
lating a single image based on matching human delineated line segments
in the ground image to automatically detected line segments in ortho
images. Our approach is based on distance transform matching. By ob-
serving that the uncertainty of line segments is non-linearly amplified
by projective transformations, we develop an uncertainty based repre-
sentation and incorporate it into a geometric matching framework. We
show that our approach is able to rule out a considerable portion of false
candidate regions even in a database composed of geographic areas with
similar visual appearances.
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1 Introduction

Given a ground-level photograph, the image geolocation task is to estimate the
geographic location and orientation of the camera. Such systems provide an
alternative way to localize an image or a scene when and where GPS is unavail-
able. Visual based geolocation has wide applications in areas such as robotics,
autonomous driving, news image organization and geographic information sys-
tems. We focus on a single image geolocation task which compares a single
ground-based query image against a database of ortho images over the candi-
date geolocations. Each of the candidate ortho images is evaluated and ranked
according to the query. This task is difficult because (1) significant color discrep-
ancy exists between cameras used for ground and ortho images; (2) the images
taken at different times result in appearance difference even for the same loca-
tions (e.g. a community before and after being developed); (3) the ortho image
databases usually have a very large scale, which requires efficient algorithms.

Due to the difficulty of the geolocation problem, many recent works include
extra data such as georeferenced image databases [9,14], digital elevation models
(DEM) [1], light detection and ranging (LIDAR) data [16], etc. Whenever pho-
tographs need to be geolocated in a new geographic area, this side data has to
be acquired first. This limits the expandability of these geolocation approaches.
One natural question to ask is whether we can localize a ground photograph
using only widely accessible satellite images.
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Fig. 1. Geolocation involves finding the corresponding location of the ground image
(on the left) in ortho images (an example on the right) c©Google

We address this geolocation task with no side data by casting it as an im-
age matching problem. This is challenging because the camera orientation of
a ground image is approximately orthogonal to that of its corresponding ortho
image. Commonly used image features are not invariant to such wide camera
rotation. In addition, considering the presence of color and lighting difference be-
tween ground and ortho images, color-based and intensity-based image features
become unreliable for establishing image correspondence. Therefore, structural
information becomes the most feasible feature for this application. We utilize lin-
ear structures – line segments – as the features to be matched between ground
and ortho images.

Both ground and ortho images are projections of the 3D world. The infor-
mation loss between these two images becomes an obstacle even for matching
binary line segments. Instead of inferring 3D structure, we extract and match the
linear structures that lie on the ground a large subset of which is visible in both
ground and ortho images. The ortho images can be regarded as approximately
2D planes and we use classic line extraction algorithms to locate the extended
linear structures in them. The ground images are more challenging so we ask hu-
mans annotate the ground lines for these images. This is not a burdensome task.
Additionally, the horizon line is annotated by the human so we can construct its
corresponding aerial view with the camera parameters known.

Based on chamfer matching [15], we derive a criterion function for matching
each ortho image with the ortho-rectified view of the ground image. However,
the projection matrix for transforming the ground image to its ortho view is
usually numerically ill-conditioned. Even a small perturbation to the annotated
end points of a line segment may result in significant uncertainty in location
and orientation of the projected line segments, especially those near the hori-
zon line. Therefore, we propose a probablistic representation of line segments
by modeling their uncertainty and introduce a model of geometric uncertainty
into our matching criterion. Within each ortho image, the matching scores for
possible pairs of camera locations and orientations are exhaustively evaluated.
This sliding window search is speeded up by means of distance transforms [7]
and convolution operations.
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Contributions. The main contributions of this paper include (1) an uncertainty
model for line segments under projective transformations (2) a novel distance
transform based matching criterion under uncertainty (3) the application of ge-
ometric matching to single image geolocation with no side data.

2 Related Work

Image Geolocation. Previous work on image geolocation can be classified into two
main streams: geotagged image retrieval and model based matching. Hays et al.
[9] were among the first to treat the image geolocation as a data driven image
retrieval problem. Their approach is based on a large scale geotagged image
database. Those images with similar visual appearance to the query image are
extracted and their GPS tags are collected to generate a confidence map for
possible geolocations. Li et al. [13] devised an algorithm to match low level
features from large scale database to ground image features in a prioritized
order specified by likelihood. Similar approaches improve the image retrieval
algorithms applied to ground level image databases [5,20,24,25]. Generally, data
driven approaches assume all possible views of the ground images are covered in
the database. Otherwise, the system will not return a reasonable geolocation.

Apart from the retrieval-style geolocation, the other track is to match the
image geometry with 3D models to estimate the camera pose. Battz et al. [1]
proposed a solution to address the geolocation in mountainous terrain area by
extracting skyline contours from ground images and matching them to the digital
elevation models. From the 3D reconstruction viewpoint, some other approaches
estimate the camera pose by matching images with 3D point cloud [10,12,19].

Few works make use of the satellite images in the geolocation task. Bansal
et al. [2] match the satellite images and aerial images by finding the facade
of the building and rectifying the facade for matching with the query ground
images. Lin et al. [14] address the out-of-sample generalization problem suffered
by data-driven methods. The core of their method is learning a cross-view feature
correspondence between ground and ortho images. However, their approach still
requires a considerable amount of geo-tagged image data for learning.

Our work differs from all of the above work in that our approach casts the
geolocation task as a linear geometric matching problem instead of reconstruct-
ing the 3D world, and it is relatively “low-cost” using only the satellite images
without the need for large labeled training sets or machine learning.

Geometric Matching. In the geometric matching domain, our approach is re-
lated to line matching and shape matching. Matching line segments has been
an important problem in geometric modeling. Schmid et al. [21] proposed a line
matching approach based on cross correlation of neighborhood intensity. This
approach is limited by its requirement on prior knowledge of the epipolar geom-
etry. Bay et al. [4] match line segments using color histograms and remove false
correspondences by topological filtering. In recent years, line segments have been
shown to be robust to matching images in poorly textured scenes [11,23]. Most
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of the existing works rely on local appearance-based features while our approach
is completely based on matching the binary linear structures.

Our approach is motivated by chamfer matching [3], which has been widely
applied in shape matching. Chamfer matching involves finding for each feature
in an image its nearest feature in the other image. The computation can be effi-
ciently achieved via distance transforms. A natural extension of chamfer match-
ing is to incorporate the point orientation as an additional feature. Shotton et
al. [22] proposed oriented chamfer matching by adding an angle difference term
into their formulation and applied this technique in matching contour fragments
for general object recognition. Another method for encoding the orientation is
the fast directional chamfer matching proposed by Liu et al. [15]. They gen-
eralize the original chamfer matching approach by seeing each point as a 3D
feature which is composed of both location and orientation. Efficient algorithms
are employed for computing the 3D distance transform based on [7]. However,
for geolocation, our problem is to match a small linear structures to fairly large
structures that contain much noise, especially in ortho images. Our approach is
carefully designed specifically for the needs of geolocation: it takes into account
the projective transformations and line segments with uncertain end points as
part of the matching criterion function.

Uncertainty Modeling. Uncertainty is often involved in various computer vision
problems. Olson [17] proposed a probabilistic formulation for Hausdorff match-
ing. Similar to Olsons work, Elgammal et al. [6] extended Chamfer matching
to a probabilistic formulation. Both approaches consider only the problem of
matching an exact model to uncertain image features, while our work handles
the situation when the model is uncertain. An uncertainty model is proposed in
[18] for projective transformations in multi-camera object tracking. They consid-
ered the case where the imaged point is sufficiently far from the line at infinity
and provided an approximation method to compute the uncertainty under pro-
jective transformation. Our work differs in that (1) we provide an exact solution
for projective uncertainty of line segments, and (2) we do not assume that line
segments are far from the horizon line. To our knowledge, none of the previous
work in geolocation were incorporated with uncertainty models.

3 Our Approach

A query consists of a single ground image with unknown location and orientation
is provided. This ground image is then matched exhaustively to each candidate
ortho images, and ortho images are ranked according to their matching scores.
The ortho images are densely sampled by overlapped sliding windows over the
candidate geographic areas. The scale of each ortho image can be around 10
centimeters per pixel. The ground images could be taken at any location within
ortho images. Even in a 640×640 ortho image, there are over millions of possible
discretized camera poses. The geolocation task is to localize the ground image
into the ortho images, not necessarily the camera pose.
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Fig. 2. Examples of line segments annotated in ground images c©Google

We have two assumptions here to simplify this problem. First, the camera
parameter (focal length) for ground images is known, a reasonable assumption,
since modern cameras store this information as part of the image metadata. Sec-
ond, we assume the photographer holds the camera horizontally, i.e. the camera
optical axis is approximately parallel to the ground. Camera rotation around the
optical axis may happen and is handled by our solution. No restrictions assumed
for the satellite cameras as long as satellite imagery is rectified to ensure linear
structures remain linear, which is generally true.

3.1 Preprocessing

We reconstruct the aerial view of the ground image by estimating the perspec-
tive camera model from the manually annotated horizon line. In our matching
approach, line segments are matched between ground and ortho images. Lines
on the ground are most likely to be viewed in both ground and ortho images
– most other lines are on the vertical surfaces that are not visible in satellite
imagery – so we ask users to annotate only line segments on the ground plane in
query images. Once the projection matrix is known, the problem becomes one
of geometric matching between two planes.

Line segment labeling. Line segments in ground images are annotated by human
users clicking pairs of ending points. It is affordable to incorporate such human
labeling process into our geolocation solution since the annotation is inexpensive
and each query image needs to be labeled only once. A person can typically
annotate a query image in at most two minutes. Fig. 2 shows four ground image
samples with superimposed annotated line segments.

Line segments in the ortho images are automatically detected using the ap-
proach of [8]. The detected line segments lie mostly on either the ground plane
or some plane parallel to the ground, such as the roof of a building. We do
not attempt to remove these non-ground lines. In fact, some of the non-ground
plane lines prove useful for matching. For example, the rooflines of many build-
ings have the same geometry as their ground footprints. Human annotators label
linear features around the bottoms of these buildings. Thus, the line segments
lying on the edges of a building roof still contribute to the structure matching.
Our geometric matching algorithm assumes a high level of outliers, so even if
the rooflines and footprints are different the matching can still be successful.
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Fig. 3. Examples of line segments detected in ortho images c©Google

Aerial view recovery. Using the computed perspective camera model, we trans-
form the delineated ground photo line segments to an overhead view. Two as-
sumptions are made for recovering the aerial view from ground images: (1) the
camera focal length f is known, and (2) the optical axis of camera is parallel to
the ground plane, i.e. the camera is held horizontally. These assumptions are not
sufficient for reconstructing a complete 3D model but is sufficient for recovering
the ground plane given the human annotated horizon line. The horizon line is
located by finding two vanishing points, i.e. intersections of lines parallel in the
real world.

Assuming the horizon line has slope angle θ, the ground image can be rotated
clockwise by θ so that the horizon line becomes horizontal (the y-coordinate of
rotated horizon line y′0). The rotated coordinates are (x′, y′)> = Rθ(xg, yg)

> for
every pixel (xg, yg) in the original ground image. In the world coordinate system
(X,Y, Z), the camera is at the origin, facing the positive direction of the Y-axis,
and the ground plane is Z = −Z0. If we know pixel (x′, y′) is on the ground,
then its corresponding world location can be computed by

x′ = fX/Y, y′ − y′0 = fZ0/Y ⇒ X = x′Z0/(y
′ − y′0), Y = fZ0/(y

′ − y′0) (1)

For the ortho image, a pixel location (xo, yo) can be converted to world coor-
dinates by (X,Y ) = (xo/s, yo/s) where s is a scale factor with unit 1/meter
relating the pixel distance to real world distance.

3.2 Uncertainty Modeling for Line Segments

User annotations on ground images are often noisy. The two hand-selected end
points could easily be misplaced by a few pixels. However, after projective trans-
formation, even a small pertubation of one pixel can result in significant uncer-
tainty in the location and orientation of the line segment, especially if that pixel
is close to the horizon (see Fig. 5(a)). Therefore, before discussing the match-
ing algorithm, we first study the problem of modeling the uncertainty of line
segments under projective transformation to obtain a principled probabilistic
description for ground based line segments. We obtain a closed form solution by
assuming that the error of labeling an end point on ground images be described
by a normal distribution in the original image. We first introduce a lemma which
is essentially the integration of Gaussian density functions over a line segment.
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Fig. 4. Ortho view recovery: (a) the original ground image where the red line is the
horizon line and the blue line is shifted 50 pixels below the red line so that the ortho-
rectified view will not be too large. The blue line corresponds to the top line in the
converted view (c); (b) is the same image with superimposed ground line segments;
(c) is the ortho-rectified view; (d) is the corresponding linear features transformed to
aerial view with field of view shown by dashed lines. The field of view (FOV) is 100
degrees which can be computed according to the focal length. c©Google
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Fig. 5. (a) G is the ground image, O is the ortho-view and C is the camera. The
projection from G to O results in dramatic uncertainty (b) Let a and b are centers of
normal distributions. If pixel location x and the slope angle ϕ of the line it lies on are
known, then the two end points must be on the alternative directions starting from x.

Lemma 1. Let a,b be column vectors in Rn and ‖a‖ = 1, then∫ t2

t1

1√
2πσ2

e−
‖at+b‖2

2σ2 dt

= e−
‖b‖2−(a>b)2

2σ2 · 1

2

(
erf

(
t2 + a>b√

2σ

)
− erf

(
t1 + a>b√

2σ

))
(2)

The proof of this lemma can be found in Appendix. Using this lemma, we derive
our main theorem about uncertainty modeling. A visualization of the high level
idea is shown in Fig. 5(b).

Theorem 1. Let ` be a 2D line segment whose end points are random variables
drawn from normal distributions N(a, σ2) and N(b, σ2) respectively. Then for
any point x, the probability that x lies on ` and ` has slope angle ϕ is

p(x, ϕ|a,b) =e−
‖x−a‖2−|〈x−a,∆ϕ〉|2+‖x−b‖2−|〈x−b,∆ϕ〉|2

2σ2

· 1

2

(
1− erf

(
〈x− a, ∆ϕ〉√

2σ

)
erf

(
〈x− b, ∆ϕ〉√

2σ

))
(3)
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where ∆ϕ = (cosϕ, sinϕ)> is the unit vector with respect to the slope angle ϕ.

Proof. Let pn(x;µ, σ2) be the probability density function for normal distri-
bution N(µ, σ2). The probability that x lies on the line segment equals the
probability that random variables of the two ending points are x + ta∆ϕ and
x + tb∆ϕ for some ta, tb ∈ R and ta · tb ≤ 0, therefore

p(x, ϕ|a,b) =

∫ 0

−∞
pn(x + t∆ϕ;a, σ2)dt

∫ ∞
0

pn(x + t∆ϕ;b, σ2)dt

+

∫ ∞
0

pn(x + t∆ϕ;a, σ2)dt

∫ 0

−∞
pn(x + t∆ϕ;b, σ2)dt (4)

According to Lemma 1, Eq. 4 is equivalent to Eq. 3. ut

Proposition 1. Let `′ be a line segment transformed from line segment ` in 2D
space by nonsingular 3 × 3 projection matrix P. If the two ending points of `
are random variables drawn from normal distributions N(a, σ2) and N(b, σ2)
respectively, then for any x, the probability that x lies on `′ and `′ has slope
angle ϕ is

pproj(x, ϕ|P,a,b) = p((x′, ϕ′) = proj(P−1,x, ϕ)|a,b) (5)

where proj(Q,x, ϕ) is a function returns the corresponding coordinate and slope
angle with respect to x and ϕ after projection transformation Q.

The point coordinate transformed by Q can be obtained by homogeneous co-
ordinate representation. For the slope angle, let qi be the i-th row vector of
projection matrix Q, the transformed slope angle ϕ′ at location x = (x, y)> is

ϕ′ = arctan
f(q2,q3, x, y, ϕ)

f(q1,q3, x, y, ϕ)
(6)

where

f(u,v, x, y, ϕ) =(u2v1 − u1v2)(x sinϕ− y cosϕ)

+ (u1v3 − u3v1) cosϕ+ (u2v3 − u3v2) sinϕ . (7)

According to the above, for each pixel location in the recovered view of a ground
image, the probability that the pixel lies on a line segment given a slope angle can
be computed in closed form. Fig. 6 shows an example probability distribution
for line segments under uncertainty. It can be observed from the plot that more
uncertainty is associated with line segments farther from the camera and is
resulted from a larger σ value.

3.3 Geometric Matching Under Uncertainty

Our approach to planar structure matching is motivated by chamfer matching.
Chamfer matching efficiently measure the similarity between two sets of image
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(b) σ = 0.5
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(c) σ = 1
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(d) σ = 2

Fig. 6. Examples of uncertainty modeling: (a) the ortho-rectified line segments (b-d)
the negation of probability log map for points on lines. The probability for each pixel
location is obtained by summing up the probabilities for all discretized orientations.
The camera is located in the image center and faces upward.

features by evaluating the sum of distances between each feature in one image
and its nearest feature in the other image [3]. More formally,

Dc(A,B) =
∑
a∈A

d(a, arg min
b∈B

d(a,b)) (8)

where A,B are two sets of features, and d(·, ·) is the distance measure for a
feature pair. Commonly, feature sets contain only the 2D coordinates of points,
even if those points are sampled from lines that also have an associated orien-
tation. Oriented chamfer matching (OCM) [22] makes use of point orientation
by modifying the distance measure to include the sum of angle differences be-
tween each feature point and its closest point in the other image. Another way
to incorporate orientation is directional chamfer matching (DCM) [15] which
defines features to be, more generally, points in 3D space (x-y coordinates and
orientation angle). This approach uses the same distance function as the original
chamfer matching but has a modified feature distance measure. We follow the
DCM method [15] to define our feature space. In our case, point orientation is
set to the slope angle of the line it lies on.

Notations. All of the points in our formulation are in the 3D space. A point
feature is defined as u = (ul, uφ) where ul represents the 2D coordinates in real
world and uφ is the orientation associated with location ul. Gp is the set of points
{g} in the ground image with uncertainty modeled by probability distribution
p(·). O is the set of points in the ortho image. LG is the set of annotated line
segments in the ground image. A line segment is defined as ` = (a`,b`) where
a` and b` are the end points of `. For any line segment ` and an abitrary line
segment ˆ̀ in the feature space, p(ˆ̀|`) is the confidence of ˆ̀ by observing `.

Distance metric. The feature distance for u,v is defined as

d(u,v) = ‖u− v‖g = ‖ul − vl‖2 + |uφ − vφ|a (9)

where ‖ul−vl‖2 is the Euclidean distance between 2D coordinates in meters and
|uφ−vφ|a = λmin(|uφ−vφ|, π−|uφ−vφ|) is the smallest difference between two
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angles in radians. The parameter λ relates the unit of angle to the unit of world
distance. We choose λ = 1 so that π angle difference is equivalent to around 3.14
meters in the real world. For this feature space definition, the chamfer distance
in Eq. 8 can be efficiently computed by pre-computing the distance transform
for the reference image (refer to [7,15] for more details) and convolving the query
image with the reference distance transform.

Formulation. The distance function for matching ground image Gp to ortho
image O is formulated as

D(Gp,O) = Dm(Gp,O) +D×(Gp,O) (10)

where Dm is the probablistic chamfer matching distance and D× is a term
penalizing line segment crossings. The probablistic chamfer matching distance
is defined as

Dm(Gp,O) =
1

|LG|
∑
`∈LG

∫
p(ˆ̀|`)

∫
p(g|ˆ̀)

(
min
o∈O
‖g − o‖g

)
dgdˆ̀ . (11)

The marginal distribution
∫
p(ˆ̀|`)p(g|ˆ̀)dˆ̀ = p(g|`) is the probability that point

gl lies on line segment ` with slope angle gφ. Eq. 11 is equivalent to

Dm(Gp,O) =
1

|LG|
∑
`∈LG

∫
p(g|`)

(
min
o∈O
‖g − o‖g

)
dg (12)

whose discrete representation is

Dm(Gp,O) =
∑
g

p′(g|LG)

(
min
o∈O
‖g − o‖g

)
(13)

where p′(g|LG) = 1
|LG|

∑
`∈LG

p(g|`)∑
g p(g|`)

is the probability of points lying on the

structure and each line segment equally contributes to the distance value. In fact,
Eq. 12 is equivalent to the original chamfer matching (Eq. 8) if no uncertainty
is present.

Intersections between ortho line segments and ground line segments indicate
low matching quality. Therefore, we add an additional term into our formulation
to penalize camera poses that result in too many line segment intersections. The
cross penalty for line segments is defined as

D×(Gp,O) =

∑
`∈LG

∫
p(ˆ̀|`)

∑
o∈O

∫
p(g|ˆ̀)|gφ − oφ|aδ(gl − ol)dgdˆ̀∑

`∈LG

∫
p(ˆ̀|`)

∑
o∈O

∫
p(g|ˆ̀)δ(gl − ol)dgdˆ̀

(14)

where δ(·) is the delta function. This function is is a normalized summation
of angle differences for all intersection locations, which are point-wise equally
weighted. Because

∫
p(ˆ̀|`)p(g|ˆ̀)dˆ̀ = p(g|`), the function is equivalent to

D×(Gp,O) =

∑
`∈LG

∫
p(g|`)

∑
o∈O |gφ − oφ|aδ(gl − ol)dg∑

`∈LG

∫
p(g|`)

∑
o∈O δ(gl − ol)dg

(15)
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whose equivalent discrete formulation is

D×(Gp,O) =

∑
g p
′(g|LG)

∑
o∈O |gφ − oφ|aδ[gl − ol]∑

g p
′(g|LG)

∑
o∈O δ[gl − ol]

(16)

where p′(g|LG) is defined in Eq.3.3 and δ[·] is the discrete delta function.

Hypothesis generation. Given a ground image Gp, the score for ortho image Oi

corresponds to one of the candidate geolocations. is evaluated as the minumum
possible distance, so the estimated fine camera pose within ortho image Oi is

x̂i = x̂(Oi,Gp) = arg min
xl,xφ

D(RxφGp + xl,Oi) (17)

where Rα is the rotation matrix corresponded to angle α.

3.4 Implementation Remarks

The two distance functions can be computed efficiently based on distance trans-
forms in which the orientations are projected into 60 uniformly sampled angles
and the location of each point is at the pixel level. Firstly, probability p(g|`)
can be computed in closed form according to Proposition 1. So the distribution
p′(g|LG) can be pre-computed for each ground image. Based on 3D distance
transform [15], Eq. 13 can be computed with a single convolution operation. The
computation of Eq. 16 involves delta functions, which is essentially equivalent
to a binary indicator mask for an ortho image: MO(x) = 1 means there exists
a point o ∈ O located at coordinate x and 0 means there is no feature at this
position. Such indicator mask can be directly obtained. So we compute for every
orientation ϕ and location x a distance transform Aϕ(x) =

∑
o∈O∧ol=x |ϕ−oφ|a.

The denominator of Eq. 16 can be computed directly by convolution, while the
numerator needs to be computed independently for each orientation. For a dis-
cretized orientation θ, a matrix is defined W (g) = p′(g|LG)MO(gl) for all g such
that gφ = θ and otherwise W (g) = 0. Convolving matrix W with the distance
transform Aθ will achieve partial summation of Eq. 16. Summing them up for
all orientations gives the numerator in Eq. 16.

4 Experiment

4.1 Experimental Setup

Dataset. We build a data set from Google Maps with an area of around 1km×
1km. We randomly extract 35 ground images from Google Street View together
with their ground truth locations. Each ground image is a 640×640 color image.
Field of view information is retrieved. A total of 400 satellite images are extracted
using a sliding window within this area. Each ortho photo is also a 640 × 640
color image. The scale of ortho images is 0.1 meters per pixel. We use 10 ground
images for experiments on the uncertainty parameter σ and the remaining 25
ground images are used for testing. Example ground and satellite images are
shown in Fig. 7. Geolocation in this dataset is challenging because most of the
area share highly similar visual appearance.
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Fig. 7. Example ground images (upper) and ortho images (lower) from our dataset.
The ground image can be taken anywhere within one of the satellite images. c©Google

Evaluation Criterion. Three quantitative criteria are employed to evaluate the
experiments. First, we follow previous work [14] by using curves on percentage
of ranked candidate vs. percentage of correctly localized images. By ranking all
the ortho images in descending order of their matching scores, percentage of
ranked candidates is the percentage of top ranked images in all of the ortho
images and percentage of correctly located images is the percentage of all the
queries whose ground truth locations are among the corresponding top ranked
candidate images. Second, we obtain a overall score by counting the area under
this curve (AUC). A higher overall score generally means more robustness in
the algorithm. Third, we look into the percentage of correctly localized images
among 1%, 2%, 5% and 10% top ranked locations.

Parameter Selection. Intuitively, σ represents the pixelwise variance of the line
segment end points, so it should not be more than several pixels. We randomly
pick 10 ground images and 20 ortho images including all ground-truth locations
to compose training set for tuning σ. The geolocation performance over a set of
σ values ranged from 0 to 3 with a step 0.5 are evaluated and shown in Fig. 8(a)
where σ = 0 means no uncertainty model is used. The peak is reached when the
σ is between 1.5 and 2. Therefore, we fix σ = 2 in all of the following experiment.

4.2 Results

Our geometric matching approach returns distance values densely cover every
pixel and each of the 12 sampled orientations in each ortho image. The minimum
distance is picked as the score of an ortho image. Therefore, our approach not
only produces ranking among hundreds of ortho images but also shows possible
camera locations and orientations.

We compare our approach with two existing matching methods i.e. oriented
chamfer matching [22] and directional chamfer matching [15]. To study the ef-
fectiveness of our uncertainty models, we also evaluate these methods with un-
certainty model embedded. DCM is equivalent to the first term Dm in our for-
mulation. OCM is to find the nearest feature in the other image and compute
the sum of pixel-wise distance and the angle differences to the same pixel. We
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Fig. 8. (a) Geolocation AUC score under different uncertainty variances σ where σ = 0
represents the approach without uncertainty modeling. (b) Performance curve for six
approaches: the ortho images are ranked in ascending order. The x-axis is the number
of selected top ranked ortho images and the y-axis is the total number of ground image
queries whose true locations are among these selected ortho images. The overall AUC
scores are shown in the legend where ”[u]” means ”with uncertainty modeling”. The
black dash-dot line indicates chance performance.

Table 1. Comparison among oriented chamfer matching [22], directional chamfer
matching [15] and our approach. The uncertainty model is evaluated for each method.
For each evaluation criterion, the highest score is highlighted in red and the second one
highlighted in blue. Our uncertainty based formulation is top among all these methods.
Both of the three methods can be improved by our uncertainty model. OCM boosts
its performance when incorporated with our probablistic representation.

w/o uncertainty w/ uncertainty

Method OCM DCM our OCM DCM our

Top 1% 0.08 0.00 0.00 0.04 0.00 0.12

Top 2% 0.08 0.04 0.08 0.04 0.04 0.20

Top 5% 0.16 0.12 0.12 0.20 0.12 0.32

Top 10% 0.24 0.24 0.28 0.28 0.28 0.44

Score(AUC) 0.6814 0.7419 0.7500 0.7688 0.7577 0.8219

apply our uncertainty model into their formulation in a similar way as the prob-
ablistic chamfer matching distance does. Thus, in total we have six approaches
in our comparison. Their performance curves are shown in Fig. 8(b). Over 90%
of the ground queries can be correctly located when half of the ortho images are
rejected. Numerical results are in Table 1. While our approach significantly out-
performs at any percentage of retrieved images, our performance improvement
is particularly large for top ranked images.

Four successfully localized queries are shown in Fig. 9. For these ground
images, the ground truth locations are included in the top 5 ranked candidate
ortho images out of 400. From this visualization, few labeling errors can be
noticed from miss-alignment between ortho images and rectified line segments.
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Fig. 9. Four queries successfully geolocated within top five candidates are shown. The
leftmost column is the ground image with annotated line segments. For each query,
top five scoring ortho images are shown in ascending order of their rank. Ground-
truths are highlighted by green bounding boxes. For each ortho image, blue lines are
automatically detected and red lines are parsed from ortho-rectified ground images.
Green cross indicates the most probable camera location within that ortho image.

Among these top responses, most false alarms are building roofs. A common
property is that they have relatively denser line features. Another issue is the line
detection in ortho images does not handle shadows well. Most linear structures
in these shadow areas are not detected.

5 Conclusion

We investigated the single image geolocation problem by matching human an-
notated line segments in the ground image to automatically detected lines in the
ortho images. An uncertainty model is devised for line segments under projective
transformations. Using this uncertainty model, ortho-rectified ground images are
matched to candidate ortho images by distance transform based methods. The
experiment has shown the effectiveness of our approach in geographic areas with
similar local appearances.
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