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Abstract. Markowitz’s portfolio selection problem chooses weights for stocks in a portfolio
based on a covariance matrix of stock returns. Our study proposes to reduce noise in the estimated
covariance matrix using a Tikhonov filter function. In addition, we propose a new strategy to resolve
the rank deficiency of the covariance matrix, and a method to choose a Tikhonov parameter which
determines a filtering intensity. We put the previous estimators into a common framework and
compare their filtering functions for eigenvalues of the correlation matrix. Experiments using the
daily return data of the most frequently traded stocks in NYSE, AMEX, and NASDAQ show that
Tikhonov filtering estimates the covariance matrix better than methods of Sharpe who applies a
market-index model, Ledoit et al. who shrink the sample covariance matrix to the market-index
covariance matrix, Elton and Gruber, who suggest truncating the smallest eigenvalues, Bengtsson
and Holst, who decrease small eigenvalues at a single rate, and Plerou et al. and Laloux et al., who
use a random matrix approach.
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1. Introduction. A stock investor might want to construct a portfolio of stocks
whose return has a small variance, because large variance implies high risk. Given
a target portfolio return q, Markowitz’s portfolio selection problem [22] finds a stock
weight vector w to determine a portfolio that minimizes the expected variance of the
return. Let µ be a vector of expected returns for each of N stocks, and let Σ be
an N ×N covariance matrix for the returns. The portfolio selection problem can be
written as

(1.1) min
w

w
T Σw subject to w

T 1 = 1, w
T

µ = q,

where 1 is a vector of N ones. In order to construct a good portfolio using this for-
mulation, the covariance matrix Σ must be well-estimated. Let R = [r(1), · · · , r(T )]
be an N ×T matrix containing observations on N stocks’ returns for each of T times.
A conventional estimator – a sample covariance matrix Σsample – can be computed
from the stock return matrix R as

(1.2) Σsample =
1

T − 1
R(I− 1

T
11T )RT .

However, since the stock return matrix R contains noise, the sample covariance matrix
Σsample might not estimate the true covariance matrix well. This paper uses principal
component analysis and reduces the noise in the covariance matrix estimate by using a
Tikhonov regularization method. We demonstrate experimentally that this improves
the portfolio weight w obtained from (1.1).

Our study is closely related to factor analysis and principal component analysis,
which were previously applied to explain interdependency of stock returns and classify
the securities into appropriate subgroups. Sharpe [32] first proposed a single-factor
model in this context using market returns. King [17] analyzed stock behaviors with
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both multiple factors and multiple principal components. These factor models estab-
lished a basis for the asset pricing models CAPM [21, 24, 33, 36] and APT [28, 29].

There have been previous efforts to improve the estimate of Σ. Sharpe [32]
proposed a market-index covariance matrix Σmarket derived from a single-factor model
of market returns. Ledoit et al. [20] introduced a shrinkage method that averages
Σsample and Σmarket. Elton and Gruber [6] used a few principal components from
a correlation matrix. More recently, Plerou et al. [27], Laloux et al. [19], Conlon
et al. [4], and Kwapień [18] applied random matrix theory [23] to this problem.
They found that most eigenvalues of correlation matrices from stock return data
lie within the bound for a random correlation matrix and hypothesized that eigen-
components (principal components) outside this interval contain true information.
Bengtsson and Holst [2] generalized the approach of Ledoit et al. by damping all but
the k largest eigenvalues by a single rate. In summary, the estimator of Sharpe [32]
uses Σmarket, the estimator of Ledoit et al. [20] takes the weighted average of Σmarket

and Σsample, the estimator of Elton and Gruber [6] truncates the smallest eigenvalues,
the estimators of Plerou et al. [27], Laloux et al. [19], Conlon et al. [4], and Kwapień
[18] adjust principal components in some interval, and the estimator of Bengtsson and
Holst [2] attenuates the smallest eigenvalues by a single rate.

We propose to decrease the contribution of the smaller eigenvalues gradually by
using a Tikhonov filtering function. In addition, the covariance matrix is usually rank
deficient due to the lack of the trading price data, which causes non-unique solutions
for the Markowitz portfolio selection problem. Most other estimators resolve this
issue by replacing the diagonal elements of the estimated covariance matrix with the
diagonal elements of the sample covariance matrix. We explain why this replacement
is not desirable from the viewpoint of noise filtering and propose a new strategy to
fix the rank deficiency.

This paper is organized as follows. In Section 2, we introduce Tikhonov regular-
ization to reduce noise in the stock return data. In Section 3, we show that applying
Tikhonov regularization results in filtering the eigenvalues of the correlation matrix
for the stock returns. We also propose a new method to resolve the rank deficiency of
the covariance matrix, and verify its reasonableness. In Section 4, we discuss how we
can choose a Tikhonov parameter that determines the intensity of Tikhonov filtering.
In Section 5, we put all of the estimators into a common framework, and compare the
characteristics of their filtering functions for the eigenvalues of the correlation matrix.
In Section 6, we show the results of numerical experiments of Markowitz portfolio
construction comparing different covariance estimators, using the daily return data of
the most frequently traded 112 stocks in NYSE, AMEX, and NASDAQ. In Section
7, based on the result of the experiments, we conclude that gradual attenuation by
Tikhonov filtering outperforms shrinkage, truncation, single-rate attenuation, and the
random matrix approach.

2. Tikhonov filtering. We apply a principal component analysis to find an
orthogonal basis that maximizes the variance of the projected data into the basis.
Based on the analysis, we use the Tikhonov regularization method to filter out the
noise from the data. Next, we explain the feature of gradual down-weighting, which
is the key difference between Tikhonov filtering and other methods.
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2.1. Principal component analysis. First, we establish some notation. We
use a 2-norm || · || for vectors, and a Frobenius norm || · ||F for matrices, defined as

||a||2 = a
T
a for a given vector a,

||A||2F =




M∑

i=1

N∑

j=1

a2
ij



 for a given M ×N matrix A,

where aij is the (i, j) element of A.
Define a collection of observations X = [x(1), . . . ,x(T )] for N objects during

T times where x(t) = [x1(t), . . . , xN (t)]T . Let E(xi(t)) and Var(xi(t)) denote the
expected value and the variance of xi(t) for a given time T , defined so that

E(xi(t)) =
1

T

T∑

t=1

xi(t),

Var(xi(t)) =
1

T − 1

T∑

t=1

( xi(t)− E(xi(t)))
2

=
1

T − 1

(
T∑

t=1

x2
i (t)

)
− E(xi(t))

2.

For two variables xi(t) and xj(t), let Cov(xi(t), xj(t)) and Corr(xi(t), xj(t)) be the
covariance and correlation coefficient for them, defined so that

Cov (xi(t), xj(t)) =
1

T − 1

(
T∑

t=1

xi(t)xj(t)

)
− E(xi(t)) E(xj(t)),

Corr (xi(t), xj(t)) = Var(xi(t))
− 1

2 Cov(xi(t), xj(t)) Var(xj(t))
− 1

2 .

In order to distinguish multivariate statistics from single-variate statistics, we use
square brackets like E[x(t)] , Var[x(t)], Cov[x(t)], and Corr[x(t)]. We define the ex-
pected value E[x(t)] and the variance Var[x(t)] by

E[x(t)] =




E(x1(t))
...

E(xN (t))


 =

1

T

T∑

t=1

x(t),

Var[x(t)] =




Var(x1(t))
...

Var(xN (t))


 =

1

T − 1

T∑

t=1

(x(t)− E[x(t)])
2
.

Cov[x(t)] will be an N ×N matrix whose (i, j) element is Cov(xi(t), xj(t)). Cov[x(t)]
can be computed from the N × T observation matrix X as

Cov[x(t)] =
1

T − 1
X(I− 1

T
11T )XT .

Corr[x(t)] will be an N×N matrix whose (i, j) element is Corr(xi(t), xj(t)). Corr[x(t)]
can be computed from Cov[x(t)] and Var[x(t)] as

Corr[x(t)] = diag(Var[x(t)])−
1

2 Cov[x(t)] diag(Var[x(t)])−
1

2 .
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Now we apply principal component analysis (PCA) to the stock return data R.
Let Z = [z(1), . . . , z(T )] be an N × T matrix of a normalized stock returns derived
from R, defined so that

(2.1) E[z(t)] = 0, Var[z(t)] = 1,

where 0 is a vector of N zeros. We can compute Z as

(2.2) Z = D
− 1

2

Var[r(t)]
(R− 1

T
R11T ),

where DVar[r(t)] = diag(Var[r(t)]) is an N × N diagonal matrix containing the N

variances for the N stock returns. The covariance matrix for the normalized stock
return z(t) is equal to the correlation matrix for r(t). Thus, Cov[r(t)] can be calculated
from Cov[z(t)] as

Cov[r(t)] = D
1

2

Var[r(t)]
Corr[r(t)]D

1

2

Var[r(t)]

= D
1

2

Var[r(t)]Cov[z(t)]D
1

2

Var[r(t)] .(2.3)

Therefore, we can transfer the problem of improving our estimate of Cov[r(t)] into
the problem of improving our estimate of Cov[z(t)]. By using the normalized stock
return matrix Z rather than R, we can make the PCA independent of the different
variance of each stock return [16, pp.64-66].

PCA finds an orthogonal basis U = [u1, . . . ,uk] ∈ R
N×k for Z where k = rank(Z).

Each basis vector ui maximizes the variance of the projected data uT
i Z, while main-

taining orthogonality to all the preceding basis vectors uj (j < i). By PCA, we can
represent the given data Z = [z(1), . . . , z(T )] as

Z = [u1, . . . ,uk] X = UX,(2.4)

z(t) = U x(t) = [u1, . . . ,uk] x(t) =

k∑

i=1

xi(t)ui,(2.5)

where x(t) = [x1(t), . . . , xk(t)]T is the projected data at time t, and Var(x1(t)) ≥
Var(x2(t)) ≥ · · · ≥ Var(xk(t)). From now on, we call the projected data xi(t) the
i-th principal component at time t. Larger Var(xi(t)) implies that the corresponding
ui plays a more important role in representing Z. The orthogonal basis U and the
projected data X can be obtained by the singular value decomposition (SVD) of Z,

(2.6) Z = Uk S k V
T
k ,

where k is the rank of Z,
Uk = [u1, . . . ,uk] ∈ R

N×k is a matrix of left singular vectors,
S k = diag(s1, . . . , sk) ∈ R

k×k is a diagonal matrix of singular values si,
and Vk = [v1, . . . , vk] ∈ R

T×k is a matrix of right singular vectors.
The left and right singular vector matrices Uk and Vk are orthonormal :

(2.7) U
T
k Uk = Ik , and V

T
k Vk = Ik,

where Ik is a k × k identity matrix.
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In PCA, the orthogonal basis matrix U corresponds to Uk, and the projected data X

corresponds to (S kV
T
k ) [16, p.193]. Moreover, the standard deviation of the projected

data xi(t) is proportional to the square of singular value s2
i as we now show. Since

z(t) = U x(t) and the normalized data z(t) has zero-mean,

0 = E[z(t)] = E[Ux(t)] = U E[x(t)].

Because U is a full rank matrix,

(2.8) E[x(t)] = 0.

By the definition of Var(xi(t)),

Var(xi(t)) =
1

T − 1

T∑

t=1

(xi(t)− E(xi(t)))
2 =

1

T − 1

T∑

t=1

x2
i (t).

Since X is equal to S kV
T
k ,

(2.9) xi(t) = sivi(t)

where vi(t) is the (t, i) element of Vk. Thus,

(2.10) Var(xi(t)) =
1

T − 1

T∑

t=1

(sivi(t))
2 =

1

T − 1
s2

i (v
T
i vi) =

s2
i

T − 1
,

by the orthonormality of vi. Thus, the singular value si determines the magnitude of
Var(xi(t)), so it measures the contribution of the projected data xi(t) to z(t).

2.2. Tikhonov regularization. U and x(t) in (2.5) form a linear model with a
k–dimensional orthogonal basis for the normalized stock return Z, where k = rank(Z).
As mentioned in the previous section, the singular value si determines how much the
principal component xi(t) contributes to z(t). However, since noise is included in
z(t), the k–dimensional model is overfitted, containing unimportant principal compo-
nents possibly corresponding to the noise. We use a Tikhonov regularization method
[25, 35, 38], sometimes called ridge regression [14, 15], to reduce the contribution of
unimportant principal components to the normalized stock return Z. Eventually, we
construct a filtered principal component x̃ (t) and a filtered market return Z̃.

Originally, regularization methods were developed to reduce the influence of noise
when solving a discrete ill-posed problem b ≈ Ax, where the M × N matrix A has
some singular values close to 0 [11, pp.71-86]. If we write the SVD of A as

A = USV
T = [u1, . . . ,uN ]




s1

. . .

sN







vT
1
...

vT
N


 ,

then the minimum norm least square solution xLS to b ≈ Ax is

(2.11) xLS = A
†
b = VS

†
U

T
b =

rank(A)∑

i=1

u
T
i b

si

vi.

If A has some small singular values, then xLS is dominated by the corresponding
singular vectors vi. Two popular methods are used for regularization to reduce the
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influence of components vi corresponding to small singular values: a truncated SVD
method (TSVD) [7, 13] and a Tikhonov method [35]. Briefly speaking, the TSVD sim-
ply truncates terms in (2.11) corresponding to singular values close to 0. In contrast,
Tikhonov regularization solves the least squares problem

(2.12) min
x
||b−Ax||2 + α2||Lx||2,

where α and L are predetermined. The penalty term ||Lx||2 restricts the magnitude
of the solution x so that the effects of small singular values are reduced.

Returning to our original problem, we use regularization in order to filter out the
noise from the principal component x(t). We formulate the linear problem to find a
filtered x̃ (t) as

z̃(t) = U x̃ (t),(2.13)

z(t) = z̃(t) + ǫ(t) = U x̃ (t) + ǫ(t),(2.14)

where x̃ (t) is the filtered principal component,
z̃(t) is the resulting filtered data,
ǫ(t) is the extracted noise.

x(t) in (2.5) is the exact solution of (2.14) when ǫ(t) = 0. By (2.9), we can express
x(t) as

x(t) =




x1(t)
...

xk(t)


 =




s1 v1(t)
...

skvk(t)


 =

k∑

i=1

(sivi(t))ei,

where ei is the i-th column of the identity matrix. Since we expect that the unim-
portant principal components xi(t) are more contaminated by the noise, we reduce
the contribution of these principal components. We apply a filtering matrix Φ =
diag(φ1, . . . , φk) to x(t) with each φi ∈ [0, 1] so that

x̃ (t) = Φ x(t).

The element φi should be small when si is small. The resulting filtered data are

(2.15) z̃(t) = U Φ x(t),

(2.16) Z̃ = U ΦX.

We introduce two different filtering matrices, Φtrun(p) and Φtikh(α), which corre-
spond to truncated SVD and Tikhonov regularization.

First, we can simply truncate all but p most important components as Elton and
Gruber [6] did by using a filtering matrix of Φtrun(p) = diag(1, . . . , 1︸ ︷︷ ︸

p

, 0, . . . , 0︸ ︷︷ ︸
k−p

), so the

truncated principal component x̃ trun(t) is

x̃ trun(t) = Φtrun(p)x(t).

By (2.15) and (2.16), the resulting filtered data are z̃trun(t) = UΦtrun(p)x(t) and

Z̃trun = U Φtrun(p)X. Since X = S kV
T
k , we can rewrite Z̃trun as

(2.17) Z̃trun = U Φtrun(p)(S kV
T
k ) =

p∑

i=1

siuiv
T
i .
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Fig. 2.1. Tikhonov filtering as a function of si for various values of α

From (2.17), we can see that this truncation method corresponds to the truncated
SVD regularization (TSVD) [7, 13].

Second, we can apply the Tikhonov method, and this is our approach to estimating
the covariance matrix. We formulate the regularized least squares problem to solve
(2.12) as

(2.18) min
x̃ (t)

M(x̃ (t))

with

M(x̃ (t)) = ||z(t)−Ux̃ (t)||2 + α2||Lx̃ (t)||2,

where α2 is a penalty parameter and L is a penalty matrix. The first term ||z(t) −
Ux̃ (t)||2 forces x̃ (t) to be close to the exact solution x(t). The second term ||Lx̃ (t)||2
controls the size of x̃ (t). We can choose, for example,

L = diag(s−1
1 , . . . , s−1

k ).

Let x̃i(t) denote the i-th element of x̃ (t). The matrix L scales each x̃i(t) by s−1
i , so

the unimportant principal components corresponding to small si are penalized more
than the more important principal components, since we expect that the unimportant
principal components xi(t) are more contaminated by the noise. Thus, the penalty
term prevents x̃ (t) from containing large amounts of unimportant principal compo-
nents. As we showed before, si is proportional to the standard deviation of the i-th
principal component xi(t). Therefore, this penalty matrix L is statistically meaningful
considering that the values of x̃i(t)/si are in proportion to the normalized principal
components x̃i(t)/std(xi(t)).

The penalty parameter α balances the minimization between the error term
||z(t) − Ux̃ (t)||2 and the penalty term ||Lx̃ (t)||2. Therefore, as α increases, the
regularized solution x̃ (t) moves away from the exact solution x(t), but should discard
more of x(t) as noise. We can quantify this property by determining the solution to
(2.18). At the minimizer of (2.18), the gradient of M(x̃ (t)) with respect to each x̃i(t)
becomes zero, so

∇M(x̃ (t)) = 2UT
Ux̃ (t)− 2UT

z(t) + 2α2
L

T
L x̃ (t) = 0,
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and thus

(UT
U + α2

L
T
L) x̃ (t) = U

T
z(t).

Since U
T
U = Ik, L = diag(s−1

1 , . . . , s−1
k ), and z(t) = Ux(t), this becomes

(
I
2
k + α2 diag(s−2

1 , . . . , s−2
k )
)
x̃ (t) = U

T (Ux(t)).

Therefore,

diag

(
s2
1 + α2

s2
1

, . . . ,
s2

k + α2

s2
k

)
x̃ (t) = x(t),

and

x̃ (t) = diag

(
s2
1

s2
1 + α2

, . . . ,
s2

k

s2
k + α2

)
x(t).

So, our Tikhonov estimate is

x̃ tikh(t) = Φtikh(α)x(t),

where Φtikh(α), called the Tikhonov filtering matrix, denotes (S 2
k+α2

Ik)−1
S

2
k. Thus,

we can see that the regularized principal component x̃ tikh(t) is the result after filtering
the original principal component x(t) with the diagonal matrix Φtikh(α), whose diago-

nal elements φtikh
i (α) =

s2
i

s2
i + α2

lie in [0, 1]. By (2.15) and (2.16), the resulting filtered

data become z̃tikh(t) = UΦtikh(α)x(t) and Z̃tikh = UΦtikh(α)X . Let us see how
φtikh

i (α) changes as α and si vary. First, as α increases, φtikh
i (α) decreases, as illus-

trated in Fig. 2.1. This is reasonable since α balances the error term and the penalty
term. Second, φtikh

i (α) monotonically increases as si increases, so the Tikhonov filter
matrix reduces the less important principal components more intensely. The main
difference between the Tikhonov method and TSVD is that Tikhonov preserves some
information from the least important principal components while TSVD discards all
of it.

3. Estimate of the covariance matrix Σ̃. Now, we study how Cov[z̃(t)] differs
from Cov[z(t)] after filtering noise, how we can derive a covariance matrix estimate

Σ̃ of stock returns from Cov[z̃(t)], and what changes must be applied to make it full
rank.

3.1. A covariance estimate. Because z(t) is normalized, the covariance matrix
of z(t) is

Cov[z(t)] =
1

T − 1
Z(I− 1

T
11T )ZT =

1

T − 1
ZZ

T .
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Since Z = UX and X = S kV
T
k ,

Cov[z(t)] =
1

T − 1
(UX) (UX)T

=
1

T − 1
UXX

T
U

T

=
1

T − 1
U(S kV

T
k )(S kV

T
k )T

U
T

=
1

T − 1
US kV

T
k VkS

T
k U

T

=
1

T − 1
US

2
kU

T .(3.1)

Now, we calculate the covariance matrices of the filtered data z̃(t). First, we compute
E[z̃(t)]. Since z̃(t) = UΦx(t) in (2.15) and E[x(t)] = 0 in (2.8), the mean of z̃(t) is

E[z̃(t)] = E[UΦx(t)] = UΦ E[x(t)] = 0,

so the covariance matrix of z̃(t) is

Cov[z̃(t)] =
1

T − 1
Z̃(I− 1

T
11T )Z̃

T
=

1

T − 1
Z̃Z̃

T
.

Moreover, since Z̃ = UΦX ,

Cov[z̃(t)] =
1

T − 1
(UΦX) (UΦX)

T

=
1

T − 1
UΦXX

T ΦT
U

T

=
1

T − 1
UΦ(S kV

T
k )(S kV

T
k )T ΦT

U
T

=
1

T − 1
UΦS kS

T
k ΦT

U
T .

Since Φ and S k commute (because they are diagonal),

(3.2) Cov[z̃(t)] =
1

T − 1
U
(
Φ2

S
2
k

)
U

T .

Comparing Cov[z(t)] in (3.1) and Cov[z̃(t)] in (3.2), we can see that Cov[z̃(t)] is the
result of applying the filtering matrix Φ2 to S 2

k in Cov[z(t)]. Considering that each
diagonal element of S 2

k corresponds to an eigenvalue of Cov[z(t)], the filtering matrix
Φ2 results in attenuating the eigenvalues of Cov[z(t)]. In the previous section, we
introduced two filtering matrices :

Φtrun(p) = diag(1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
k−p

),

and Φtikh(α) = diag(
s2
1

s2
1 + α2

, . . . ,
s2

k

s2
k + α2

).

Therefore, Φ2
trun(p) truncates the eigen-components corresponding to the (k − p)

smallest eigenvalues, and Φ2
tikh(α) down-weights all the eigenvalues at a rate

(
s2

i

s2
i + α2

)2

=
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(
λi

λi + α2

)2

where λi is the i-th largest eigenvalue of Cov[z(t)]. Hence, the truncated

SVD filtering functions φ2
trun(λi) for eigenvalues λi become

φ2
trun(λi) =

{
1, if i ≤ p,
0, otherwise,

and the Tikhonov filtering functions φ2
tikh(λi) are

φ2
tikh(λi) =

(
λi

λi + α2

)2

.

Now we estimate the filtered covariance matrix Σ̃ of stock returns by replacing
Cov[z(t)] in (2.3) with Cov[z̃(t)], so that

(3.3) Σ̃ = D
1

2

Var[r(t)]
Cov[z̃(t)]D

1

2

Var[r(t)]
.

In addition, by substituting Cov[̃z(t)] in (3.2) into (3.3), we have

(3.4) Σ̃ =
1

T − 1

(
D

1

2

Var[r(t)] U
(
Φ2

S
2
k

)
U

T
D

1

2

Var[r(t)]

)
.

From now on, we let Σtrun and Σtikh denote the estimates resulting from applying
Φ2

trun(p) and Φ2
tikh(α) to (3.4).

We show the reasonableness of our estimate (3.3) by analyzing how the noise in
r(t) affects the covariance estimates. Let ri(t) denote the observed return of the i-th
stock return containing noise. We formulate a noise model for ri(t) as

ri(t) = rtrue
i (t) + νi(t),

where rtrue
i (t) is the true i-th stock return, and νi(t) is the noise contained in ri(t).

We assume that νi(t) has zero-mean and is uncorrelated with rtrue
i (t). With this

assumption,

E(rtrue
i (t)) = µrtrue

i
, Var(rtrue

i (t)) = σ2
rtrue

i

,

E(νi(t)) = 0, Var(νi(t)) = σ2
νi

,

so

E(ri(t)) = µrtrue
i

, Var(ri(t)) = σ2
rtrue

i

+ σ2
νi

.

With the notation above, the normalized data zi(t) become

zi(t) =
ri(t)− E(ri(t))

V ar[ri(t)]
1

2

=
(rtrue

i (t) + νi(t))− µrtrue
i√

σ2
rtrue

i

+ σ2
νi

=
rtrue
i (t)− µrtrue

i√
σ2

rtrue
i

+ σ2
νi

+
νi(t)√

σ2
rtrue

i

+ σ2
νi

.(3.5)

The first term in (3.5) corresponds to the filtered data z̃i
true(t) we want to obtain,

and the second term in (3.5) corresponds to a noise ǫi(t) we want to remove. Thus,
we can define z̃i

true(t) and ǫi(t) as

(3.6) z̃i
true(t) =

rtrue
i (t)− µrtrue

i√
σ2

rtrue
i

+ σ2
νi

and ǫi(t) =
νi(t)√

σ2
rtrue

i

+ σ2
νi

,
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with zi(t) = z̃i
true(t)+ǫi(t). Because νi(t) and zi(t) have zero-mean, ǫi(t) and z̃i

true(t)
in (3.6) also have zero-mean. Hence, Cov

(
z̃i

true(t), z̃j
true(t)

)
becomes

Cov
(
z̃i

true(t), z̃j
true(t)

)
=

1

T − 1

T∑

t=1

z̃i
true(t)z̃j

true(t)

=
1

T − 1

T∑

t=1



rtrue
i (t)− µrtrue

i√
σ2

rtrue
i

+ σ2
νi







rtrue
j (t)− µrtrue

j√
σ2

rtrue
j

+ σ2
νj





=
Cov(rtrue

i (t), rtrue
j (t))

√
σ2

rtrue
i

+ σ2
νi

√
σ2

rtrue
j

+ σ2
νj

,

for i, j = 1, . . . , N . Thus, we can compute Cov(rtrue
i (t), rtrue

j (t)) as

Cov
(
rtrue
i (t), rtrue

j (t)
)

= (σ2
rtrue

i
+ σ2

νi
)

1

2 Cov
(
z̃i

true(t), z̃j
true(t)

)
(σ2

rtrue
j

+ σ2
νj

)
1

2

= Var(ri(t))
1

2 Cov
(
z̃i

true(t), z̃j
true(t)

)
Var(rj(t))

1

2 .

This is the same equation used to compute each element of Σ̃ in (3.3). Therefore,

Σ̃ from (3.3) should be a good estimator for true stock returns once we successfully
filter the noise term ǫi(t) out of zi(t).

3.2. Rank deficiency of the covariance matrix. Since the covariance matrix
is positive semi-definite, the Markowitz portfolio selection problem (1.1) always has a
minimizer w. However, when the covariance matrix is rank deficient, the minimizer
w is not unique, which might not be desirable for investors who want to choose one
portfolio. The sample covariance matrix Σsample from (1.2) has rank (T −1) at most.
Therefore, whenever the number of observations T is less than or equal to the number
of stocks N , Σsample is rank deficient. To insure full rank and high quality estimate,
we must have at least N +1 recent observations of returns, derived from at least N +1
recent trades, and this is not always possible.

The covariance matrix estimate Σ̃ in (3.4) has the same problem. Throughout
the normalization, the rank k of the normalized data Z is at most (T − 1). By (3.2),
the rank of Cov[z̃(t)] is also less than or equal to (T − 1) because the filtering matrix

Φ2 only decreases the eigenvalues of Cov[z̃(t)], so Σ̃ is also rank deficient by (3.3).
Therefore, we may need to modify the filtered covariance matrix to have a unique
solution for the Markowitz problem. Prior to resolving this problem, we introduce a
perturbation theorem for symmetric matrices.

Theorem 3.1 (Perturbation theorem). If A and A + E are n × n symmetric
matrices, then

λk(A) + λn(E) ≤ λk(A + E) ≤ λk(A) + λ1(E) for k = 1, . . . , n,

where λk(X) is the k-th largest eigenvalue of a given matrix X.
Proof. See Stewart and Sun [34, p.203].

Sharpe [32], Ledoit et al. [20], Bengtsson and Holst [2], and Plerou et al. [27]
overcome this rank-deficiency problem by replacing the diagonal elements of their
modified covariance matrices Σ̃ with the diagonal elements of the sample covariance
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matrix Σsample. Let Σ̂ denote the modified covariance matrix after replacing the
diagonal elements with the diagonal elements of Σsample. This replacement can be

thought of as adding a diagonal matrix D to Σ̃,

(3.7) Σ̂ = Σ̃ + D.

If each diagonal element of Σ̃ is less than the corresponding diagonal element of
Σsample, then D has all positive diagonal elements and Σ̂ has full rank by Theorem 3.1.
This strategy assumes that the variances Var[r(t)] of the stock returns, the diagonal
elements of Σsample, are estimated well enough. However, from the viewpoint of noise
filtering, Var[r(t)] is also contaminated by noise if r(t) contains noise. Rather than
following this strategy, we propose a different strategy to overcome the rank deficiency.

From (3.6), Var(z̃i(t)) is

Var(z̃i(t)) = Var


rtrue

i (t)− µrtrue
i√

σ2
rtrue

i

+ σ2
νi


 =

σ2
rtrue

i

σ2
rtrue

i

+ σ2
νi

≤ 1.(3.8)

By (3.3), we see that the diagonal entries of Σ̃ are equal to those of Cov[r(t)] (=
Σsample) as assumed in [2, 20, 27, 32], only when the diagonal entries of Cov[z̃(t)] are
equal to one. This implies that all σ2

νi
in (3.8) are zeros. Rather than ignoring the

existence of noise in Var[r(t)], We propose modifying Cov[z̃(t)] as follows :

(3.9) (the i-th diagonal of Cov[z̃(t)])← Var(z̃i(t)) + δi,

for i = 1, . . . , N , where δi is a small positive number.

Theorem 3.2 (Rank modification). If Var[r(t)] > 0, then replacing the main
diagonal of the filtered covariance matrix Cov[z̃(t)] as specified in (3.9) guarantees

that the resulting estimate Σ̃ has full rank.
Proof. This is a direct consequence of Theorem 3.1 and (3.3).

As a specific example, we might set

(3.10) (the i-th diagonal of Cov[z̃(t)])← (1 + δ) max
i

[Var(z̃i(t))] ,

for each i = 1, . . . , N , where δ ≪ 1. This modification makes Σ̃ have full rank while
better conserving the filtered variances.

4. Choice of Tikhonov parameter α. So far, we have seen how to filter noise
from the covariance matrix using regularization and how to fix the rank deficiency
of the resulting covariance matrix. In order to use Tikhonov regularization, we need
to determine the Tikhonov parameter α. In regularization methods for discrete ill-
posed problems, there are intensive studies about choosing α using methods such as
Generalized Cross Validation [8], L-curves [10, 12], and residual periodograms [30, 31].

In factor analysis and principal component analysis, there are analogous studies
to determine the number of factors such as Bartlett’s test [1], SCREE test [3], average
root [9], partial correlation procedure [39], and cross-validation [40]. More recently,
Plerou et al.[26, 27] applied random matrix theory, which will be described in Sec-
tion 5.6. In the context of arbitrage pricing theory, some different approaches were
proposed to determine the number of factors: Trzcinka [37] studied the behavior of



13

0 10 20 30 40 50
11

12

13

14

15

16

17

18

19

50 log
s

max

 α

|| 
C

or
r[

ε(
t)

] −
 I 

||  F

Fig. 4.1. The difference ||Corr[ǫ(t)] − IN ||F as a function of log-scaled α

eigenvalues as the number of assets increases, and Connor and Korajczyk [5] studied
the probabilistic behavior of noise factors.

The use of these methods requires various statistical properties for ǫ(t). We note
that since E[x(t)] = 0 by (2.8), the noise ǫ(t) = [ǫ1(t), . . . , ǫN (t)]T in (2.14) has
zero-mean: By (2.14) and (2.15),

ǫ(t) = z(t)−UΦx(t) = Ux(t)−UΦx(t) = U(IN −Φ)x(t).

Thus,

(4.1) E[ǫ(t)] = U(I−Φ) E[x(t)] = 0.

We adopt a mutually uncorrelated noise assumption from a factor analysis [16, pp.388-
392], so Corr[ǫ(t)] ≃ IN . Hence, as a criterion to determine an appropriate parameter
α, we formulate an optimization problem minimizing the correlations among the noise,

(4.2) min
α∈[sk,s1]

|| Corr[ǫ(t)]− IN ||F ,

where s1 and sk are the largest and the smallest singular values of Z as defined in
(2.6). This is similar to Velicer’s partial correlation procedure [39] to determine the
number of principal components. Fig. 4.1 illustrates an example of ||Corr[ǫ(t)]−IN ||F
as a function of α in the range [sk, s1].

5. Comparison to other estimators. In this section, we compare covariance
estimators to our Tikhonov estimator and put them all in a common framework.

5.1. Σsample : Sample covariance matrix. A sample covariance matrix is
an unbiased covariance matrix estimator that can be computed by (1.2). This is the
filtering target of most covariance estimators including our Tikhonov estimator. Thus,
the sample covariance matrix Σsample can be thought of as an unfiltered covariance
matrix, so the filtering function φ2

s(λi) for eigenvalues of Cov[z(t)] is

φ2
s(λi) = 1 for i = 1, . . . , rank(Σsample).

5.2. Σmarket from the single index market model [32]. Sharpe [32] pro-
posed a single index market model

(5.1) r (t) = a + b rm(t) + ǫ(t),
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where r (t) ∈ R
N×1 is stock return at time t,

rm(t) is market return at time t,
ǫ(t) = [ǫ1(t), . . . , ǫN(t)] is zero-mean uncorrelated error at time t,
and a, b ∈ R

N×1.
This model is based on the assumption that the stock returns r(t) are mainly affected
by the market return rm(t). In this model, the errors ǫi(t) are uncorrelated with each
other and with the market return rm(t). The covariance matrix estimator Σmarket

from the market index model is

(5.2) Σmarket = Var(rm(t))bbT + Dǫ,

where Dǫ is a diagonal matrix containing Var[ǫ(t)]. By adding the error matrix Dǫ in
(5.2), Σmarket has the same diagonal elements as Σsample, and it also resolves rank
deficiency issues.

Interestingly, King [17, p.150] and Plerou et al. [27, p.8] observed that the prin-
cipal component corresponding to the largest eigenvalue of the correlation matrix
Corr[r(t)](= Cov[z(t)]) is proportional to the entire market returns. This observation
is natural in that most stocks are highly affected by the market situation. Based on
their observation, we expect that the most important principal component x1(t) in
(2.5) represents the market return rm(t). Thus, we can represent the relation between
x1(t) and rm(t) as

(5.3) x1(t) ≃ C rm(t)

for some constant C. From (2.2), the return data r(t) and the normalized data z(t)
are related by

r(t) = E[r(t)] + DVar[r(t)]z(t).

By (2.5), we can rewrite the equation above as

r(t) = E[r(t)] + DVar[r(t)]

k∑

i=1

xi(t)ui

=

(
E[r(t)] + DVar[r(t)]

k∑

i=2

xi(t)ui

)
+ (DVar[r(t)]u1)x1(t).

By substituting (5.3) into the equation above, we have

(5.4) r(t) ≃
(

E[r(t)] + DVar[r(t)]

k∑

i=2

xi(t)ui

)
+
(
CDVar[r(t)]u1

)
rm(t).

Hence, by comparing (5.1) and (5.4), we can see that a in (5.1) corresponds to the

first term in (5.4) and b in (5.1) corresponds to
(
CDVar[r(t)]u1

)
in (5.4). Moreover,

replacing rm(t) and b in (5.2) with
x1(t)

C
and

(
CDVar[r(t)]u1

)
, we have

Σmarket ≃ Var

(
x1(t)

C

)(
CDVar[r(t)]u1

)(
CDVar[r(t)]u1

)T

+ Dǫ

= Var (x1(t))DVar[r(t)]u1u
T
1 DVar[r(t)] + Dǫ.
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By the relation of Var(xi(t)) and si in (2.10),

Σmarket ≃
s2
1

T − 1
DVar[r(t)]u1u

T
1 DVar[r(t)] + Dǫ

=
1

T − 1

(
DVar[r(t)](s

2
1u1u

T
1 )DVar[r(t)]

)
+ Dǫ.

By comparing the equation above with (3.4), we can think of Σmarket as an implicit
truncation of all but the largest eigen-component of Cov[z(t)]. Therefore, we can
represent the filtering function φ2

m(λi) for Σmarket as

(5.5) φ2
m(λi) ≃

{
1, if i = 1,
0, otherwise.

5.3. Σs→m : Shrinkage toward Σmarket [20]. Ledoit et al. propose a shrinkage
method from Σsample to Σmarket as

(5.6) Σs→m = β Σmarket + (1− β)Σsample,

where 0 ≤ β ≤ 1. Thus, the shrinkage estimator is the weighed average of Σsample and
Σmarket. In order to find an optimal weight β, they minimize the distance between
Σs→m and the true covariance matrix Σtrue:

min
β
||Σs→m −Σtrue||2F .

Since the true covariance matrix Σtrue is unknown, they use an asymptotic variance
to determine an optimal β. (Refer to [20, Section 2.5-6] for a detailed description.)
Considering that Σmarket is the result of the implicit truncation method, we can think
of this shrinkage method as implicitly down-weighting all eigenvalues but the largest
at a rate (1− β). Therefore, we can represent the filtering function φ2

s→m(λi) as

(5.7) φ2
s→m(λi) ≃

{
1, if i = 1,
1− β, where 0 ≤ β ≤ 1 otherwise.

The full rank of Σs→m comes from the full rank of Σmarket in (5.6) which replaces
the diagonal elements with diagonal elements of Σsample.

5.4. Truncated covariance matrix Σtrun [6]. As mentioned in Section 3.1,
the truncated covariance matrix Σtrun has the filtering function φ2

trun(λi) for the
eigenvalues λi of Cov[z(t)], where

(5.8) φ2
trun(λi) ≃

{
1, if i = 1, . . . , p,
0, otherwise.

Thus, the model of Elton and Gruber [6] truncates all but the p largest eigen-
components of Cov[z(t)]. They did not comment about the rank-deficiency problem.

5.5. Σs→trun : Shrinkage toward Σtrun [2]. Bengtsson and Holst propose a
shrinkage estimator from Σsample to Σtrun as

(5.9) Σs→trun = β Σtrun + (1− β)Σsample,

where 0 ≤ β ≤ 1. They determine the parameter β in a way similar to [20]. (Refer
to [2, Section 4.1-4.2] for detailed description.) Therefore, Σs→trun is a variant of



16

the shrinkage method toward Σtrun. Because Σtrun is the truncated covariance ma-
trix containing the p most significant eigen-components of Cov[z(t)], we can regard
Σs→trun as damping the smallest eigenvalues by (1− β). Thus, the filtering function
corresponding to this approach is

(5.10) φ2
s→trun(λi) =

{
1, if i = 1, . . . , p ,
1− β, where 0 ≤ β ≤ 1, otherwise.

Rather than removing all the least important principal components as Elton and Gru-
ber did, Bengtsson and Holst try to preserve the potential information of unimportant
principal components by this single-rate attenuation. They ensure that Σs→trun has
full rank by replacing the diagonal elements of Σtrun with the diagonal elements of
Σsample [2, p.8]. Bengtsson and Holst conclude that their shrinkage matrix Σs→trun

performed best in the Swedish stock market when the shrinkage target Σtrun takes
only the most significant principal component (p = 1). They also mention that the
result is consistent with RMT because only the largest eigenvalue deviates far from
the range of [λmin, λmax].

5.6. ΣRMT :trun truncation by random matrix theory [27]. Plerou et al.
[27] apply random matrix theory (RMT) [23] which shows that the eigenvalues of a
random correlation matrix have a distribution within an interval determined by the
ratio of N and T . Let Corrrandom be a random correlation matrix

(5.11) Corrrandom =
1

T
AA

T ,

where A ∈ R
N×T contains mutually uncorrelated random elements ai,t with zero-

mean and unit variance. When Q = T/N ≥ 1 is fixed, the eigenvalues λ of Corrrandom

have a limiting distribution (as N →∞)

(5.12) f(λ) =






Q

2πσ2

√
(λmax − λ)(λmin − λ)

λ
, λmin ≤ λ ≤ λmax,

0, otherwise,

where σ2 is the variance of the elements of A, λmin ≤ λ ≤ λmax, and λmax
min =

σ2

(
1 +

1

Q
± 2

√
1

Q

)
. By comparing the eigenvalue distribution of Corr[r(t)] with

f(λ), Plerou et al. show that most eigenvalues are within [λmin, λmax]. They conclude
that only a few large eigenvalues deviating from [λmin, λmax] correspond to eigenval-
ues of the real correlation matrix, so the other eigen-components should be removed
from Corr[r(t)]. Thus, the filtering function φ2

RMT :trun(λi) for the eigenvalue λi of
Corr[r(t)] is

(5.13) φ2
RMT :trun(λi) =

{
1, if λi ≥ λmax ,
0, otherwise.

Therefore, the estimator of Plerou et al. is a truncation method with a criterion to
determine the number of principal components. The covariance matrix after trun-
cation is rank deficient, like Σtrun. They set the diagonal of Cov[z̃(t)] to all ones
after truncating the smallest eigenvalues [27, p.14]. Thus, this modification makes
ΣRMT :trun have the same diagonal elements as Σsample, which is the same strategy
as Sharpe [32], Ledoit et al. [20], and Bengtsson and Holst [2] used.
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Estimator Filtering function φ2(λi)

Σsample φ2
s(λi) = 1

Σmarket[32] φ2
m(λi) ≃

{
1, if i = 1,
0, otherwise.

Σs→m[20] φ2
s→m(λi) ≃

{
1, if i = 1,
1− β, otherwise.

Σtrun[6] φ2
trun(λi) =

{
1, if i = 1, . . . , p,
0, otherwise.

Σs→trun[2] φ2
s→trun(λi) =

{
1, if i = 1, . . . , p,
1− β, otherwise.

ΣRMT :trun[27] φ2
RMT :trun(λi) =

{
1, if λi ≥ λmax ,
0, otherwise.

ΣRMT :repl[19] φ2
RMT :repl(λi) =

{
1, if λi ≥ λmax ,
C
λi

, otherwise.

Σtikh φ2
tikh(λi) =

(
λi

λi + α2

)2

Table 5.1
Definition of the filter function φ2(λi) for each covariance estimator where i = 1, . . . , rank(Σsample).

5.7. ΣRMT :repl replacing the RMT eigenvalues [19]. Laloux et al. apply
RMT to this problem in a way somewhat different from Plerou et al. First, they find
the best fitting σ2 in (5.12) to the eigenvalue distribution of the observed correlation
matrix rather than taking a value of 1. Second, they replace each eigenvalue in the
RMT interval with a constant value C, chosen so that the trace of the matrix is
unchanged. Thus, the filtering function φ2

RMT :repl(λi) for eigenvalues is

(5.14) φ2
RMT :repl(λi) =

{
1, if λi ≥ λmax ,
C
λi

, otherwise.

By this replacement of small eigenvalues with a positive constant, the estimator
ΣRMT :repl avoids the rank-deficiency problem.

5.8. Tikhonov covariance matrix Σtikh. As mentioned at Section 3.1, the
Tikhonov covariance matrix Σtikh has the filtering function φ2

tikh(λi) for the eigen-
values λi of Cov[z(t)], where

(5.15) φ2
tikh(λi) =

(
λi

λi + α2

)2

,

where the parameter α is determined as described in Section 4.

5.9. Comparison. The derivations in Section 5.1–5.8 provide the proof of the
following theorem.
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Theorem 5.1 (Filtering functions). The eight covariance estimators are char-
acterized by the choice of filtering functions specified in Table 5.1.

Tikhonov filtering preserves potential information from unimportant principal
components corresponding to small eigenvalues, rather than truncating them all like
Σmarket, Σtrun, and ΣRMT :trun. In contrast to the single-rate attenuation of Σs→m

and Σs→trun and the constant value replacement of ΣRMT :repl, Tikhonov filtering
reduces the effect of the smallest eigenvalues more intensely. This gradual down-
weighting with respect to the magnitude of eigenvalues is the key difference between
the Tikhonov method and other estimators.

All the estimators proposed by [2, 20, 27, 32] overcome the rank deficiency of their
covariance estimator by replacing the diagonal elements with the diagonal elements
of Σsample. In contrast to these estimators, our Tikhonov estimator uses the novel
strategy described in Section 3.2.

6. Experiment. In this section, we evaluate the covariance estimators using the
daily return data of the most frequently traded 112 stocks in the NYSE, AMEX, and
NASDAQ. We collect the daily return data from 2006 January 3 to 2007 December
31 from the CRSP database (the Center for Research in Security Prices). (There are
502 trading days in the 2 years.) In order to test the performance of the Markowitz
portfolio derived from each covariance estimator, we simulate portfolio construction
under the following scenario. Using daily return data from the previous 112 days,
which is the in-sample period, we estimate the covariance matrix. Thus, we use the
112× 112 stock return data R to estimate a covariance matrix. With the estimated
covariance matrix, we solve the Markowitz portfolio selection problem in (5.1) to
construct a portfolio, and we hold the portfolio for 10 days, which is the out-of-sample
period. We repeat this process, starting the experiments at days 1, 11, 21, . . . , 381, so
we re-balance the portfolio 39 times. We compute the portfolio returns for each out-
of-sample period, and calculate the standard deviation of these portfolio returns. A
smaller standard deviation indicates a better covariance estimator which decreases the
risk of the portfolio. In this experiment, we set the target portfolio return q in (5.1)
to zero because the standard deviation of the portfolio return is generally minimized
for q = 0.

6.1. Covariance estimators in experiments. We repeat the experiment above
for each covariance estimator in Table 5.1 plus two diagonal matrices, Σvar and ΣI,
for a total of 10 estimators. Σvar is a diagonal matrix whose diagonal elements are
equal to Var[r(t)]. Thus, Σvar only contains variance information for each stock re-
turn, and assumes that the stock returns are uncorrelated with each other. ΣI is an
N×N identity matrix. Since Σsample is rank deficient, we modify it by adding a small
diagonal matrix D, as in (3.9). To compute Σmarket and Σs→m, we need the daily
market return data rm(t) in (5.1). In this experiment, we adopt equally-weighted
market portfolio returns including distributions from CRSP database as rm(t). Ac-
cording to Ledoit et al. [20, p.607], an equally-weighted market portfolio is better
than a value-weighted market portfolio for explaining stock market variances.

The parameters of p for Σtrun and Σs→trun are static, which means the parameter
value remains constant over all time periods. However, in order to find a statically
optimal value p, we perform the experiments varying these p in (5.8) and (5.10) from 1
to 20. In contrast, the parameters of β for Σs→m and Σs→trun, p for ΣRMT :trun and
ΣRMT :repl, and α for Σtikh have their own parameter-choosing methods as described
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Estimators Standard deviation Annual % optimal p

Σsample 1.147× 10−2 18.17% –

ΣI 2.494× 10−3 3.95% –

Σvar 1.949× 10−3 3.09% –

Σmarket 1.793× 10−3 2.84% –

ΣRMT :repl 1.710× 10−3 2.71% p = 2 or 3

ΣRMT :trun 1.701× 10−3 2.69% p = 2 or 3

Σtrun 1.656× 10−3 2.62% p = 9

Σs→m 1.604× 10−3 2.54% –

Σs→trun 1.580× 10−3 2.50% p = 1

Σtikh 1.564× 10−3 2.48% –

Table 6.1
The standard deviation of portfolio returns and its annualized value for each covariance matrix

estimator.

in Section 5, so we dynamically determine these parameters each time the portfolio
is re-balanced.

6.2. Results.

6.2.1. Standard deviation of portfolio returns. The standard deviation
from each covariance estimator is summarized in Table 6.1. We annualize the standard
deviations by multiplying by

√
201, since there were 201 trading days per year.

Surprisingly, ΣI and Σvar work better than Σsample in our experiment, which
shows the seriousness of noise contamination in Σsample. Σtrun is best when the
parameter p = 9. The estimators of ΣRMT :trun and ΣRMT :repl choose p = 2 or
p = 3, which shows that these estimators based on RMT trust a relatively small
number of principal components compared to the statically optimal p = 9 for Σtrun.
In contrast, Σs→trun is best when the parameter p = 1, which is the same result
as Bengtsson and Holst [2] obtained using Swedish stock return data. The shrink-
age estimators Σs→m and Σs→trun outperform the corresponding target estimators
Σmarket and Σtrun, which implies that down-weighting less important principal com-
ponents is better than completely truncating them. Our Tikhonov estimator Σtikh

outperforms the shrinkage estimators, which shows that a gradual down-weighting
reduces noise better than a single-rate down-weighting. Experiments with other time
periods showed similar results, except that the RMT estimators cannot be used when
the number of time periods is less than the number of stocks.

6.2.2. Stability of Tikhonov parameter choice. In this section, we evaluate
the stability of our parameter choice method from Section 4. Fig. 6.1(a) illustrates
the change of the ratio of the dynamically chosen Tikhonov parameter αD to the
largest singular value s1 of Cov[z(t)]. The ratio of αD/s1 is bounded in a range of
[0.0781, 0.1222] during the experiment, and has a standard deviation of 0.0127. Thus,
the parameter choice method was quite stable during the whole experiment.
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Fig. 6.1. Performance of static αS and dynamically chosen αD.

We repeated our numerical experiment keeping the ratio α/s1 constant over all
time periods. (We use the notation αS for this statically determined parameter.)
This statical parameter choice may not be practical in real market trading, since we
cannot access the future return information when we construct a portfolio. However,
we can find a statically optimal ratio from this experiment for a comparison to αD/s1.
Fig. 6.1(b) shows how the standard deviation of portfolio returns changes as the ratio
increases. The optimal ratio α∗

S/s1 was 0.28 whose resulting standard deviation of
portfolio returns was 1.561 × 10−3 (annual 2.47%). The dynamically chosen ratios
αD/s1 are relatively small compared to the statically optimal ratio α∗

S/s1, but the
result of αD/s1 is quite close to the result of the statically optimal α∗

S/s1 in minimizing
the risk of Markowitz portfolio. Therefore, we can see the reasonableness of our
parameter choice method from this comparison.

7. Conclusion. In this study, we applied Tikhonov regularization to improve
the covariance matrix estimate used in the Markowitz portfolio selection problem.
We put the previous covariance estimators in a common framework based on the
filtering function φ2(λi) for the eigenvalues of Cov[z(t)]. The Tikhonov estimator
Σtikh attenuates smaller eigenvalues more intensely, which is a key difference between
it and the other filter functions. We also proposed a new approach to overcome the
rank deficiency of the covariance matrix estimate which better accounts for noise.

In order to choose an appropriate Tikhonov parameter α that determines the
intensity of attenuation, we formulated an optimization problem minimizing the dif-
ference between Corr[ǫ(t)] and I based on the assumption that noise in stock return
data is uncorrelated. Finally, we demonstrated the superior performance of our esti-
mator using the most frequently traded 112 stocks in NYSE, AMEX, and NASDAQ.
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