
Privacy in Revealed and Dependent Databases

Adam Bender

Master’s Degree Scholarly Work

Abstract. This paper extends the recent work of Dwork, et.al., in several ways. We
provide new definitions of varying levels of privacy, and prove their equivalence to a previous
definition. We also prove two previous notions to be equivalent. We then initiate the first
formal analysis of privacy in databases whose rows are dependent on each other.

1 Introduction

Privacy has long been an important topic in databases research, and has recently seen a resurgence in
popularity among the computer science theory community. In this paper, we attempt to expand and
generalize previous definitions of privacy, show their equivalence under certain assumptions, and begin
the first undertaking of defining privacy for databases whose rows are not independent of each other.

Privacy in databases is a concern that is growing more important every day. As all sorts of records
are increasingly being stored and managed digitally, their sheer volume mandates that they are stored
in database systems. Along with the obvious advantages of easy search and retrieval, there are other
benefits to this shift toward electronic record management. When medical records, credit card histories,
and employment records are kept in databases, new methods of data mining [AS94] become possible,
allowing researches and businesses alike to learn trends from the data. However, there has also arisen a
competing concern. Often individuals’ sensitive data is stored in these databases, and thus protecting
the contents is a principal interest of these individuals. For instance, doctors and health professionals
want to be able to query a database of AIDS patients so that trends that further research can be
observed. On the other hand, patients do not want their personal information to be publicly available
to any doctor in the world. The struggle between these two opposing positions is what motivates current
research in database privacy - to find a method that both facilitates learning and protect privacy.

In order to study privacy, one must first define it. For a long time, the term “privacy” had evaded a
universally-agreeable definition. Each subsequent paper redefined it in the terms that the authors saw
most fit. It was hard to capture such an intrinsic notion in concrete terms; some definitions focused
on prevention from being brought to the attention of others [CDM+05], while others on preventing
“too much” information from being learned about any individual record [DN03]. Privacy is also often
confused with anonymity. The difference between the two notions is best highlighted by an example:
let there be two people, Alice and Bob. Alice would like to send a letter to Bob. If Alice sends her
letter without a return address and without signing it, then Alice is said to be anonymous in the sense
that no one can trace the letter to her. The contents of the letter may become known, but the sender
is not. However, if Alice were to lock her message in a box before sending it, so that only Bob can open
it, the message is considered to be private. It can be known that Alice sent it, but the contents are
known only to Alice and Bob. Anonymity is a term that refers to individuals, while privacy is a term
that refers to information. Thus, research in this area has focused on privacy rather than anonymity.

1

Recently, Dinur, Nissim, Dwork, and others began one of the first formal studies of privacy, set in
the framework of theoretical computer science. Their definitions focus on the notion of confidence, i.e.,
the certainty that someone interacting with a database has about the actual values of the records. This
work follows in the same vein. We examine previous definitions of privacy in databases, and generalize
them to show that many intermediate notions of privacy are possible. Then, we show equivalences
between some of the previous definitions of privacy, and our new definitions. We then go on to give the
first formal treatment of privacy in databases where the rows are dependently distributed, a topic that
has been and continues to be difficult to work with in a formal setting.

1.1 Previous Work

Dinur and Nissim [DN03] initiated a recent surge in database privacy work, which includes [DN04,
BDMN05, CDM+05]. Their models provide a foundation on which many results have been built. We
discuss them informally here.

Databases. Databases are, as their name suggests, repositories where data is stored, along with a
method of performing computations on the data and reporting the results. These computations are
commonly known as queries. A database can be thought of as a collection of n records, which are
sometimes referred to as rows. Initial works focused on modeling rows as just a single bit and databases
as n-bit vectors [DN03]. This definition was later extended to include rows composed of k bits, which
gives the model of a database as a binary matrix [DN04]. Later, rows were again generalized to length-
k vectors of real numbers, which can be treated as points in Rk (k-dimensional space) [CDM+05].
Databases in this definition would then be n×k real matrices. Databases composed of arbitrary objects
are considered in [BDMN05].

Queries. A database needs a way to retrieve the data that is stored inside of it. This is done through
a query, which is a request for specific information that is stored in the database. Many previous works
have only considered one type of query, which we also use in this paper. The type of query we are
concerned with is a noisy sum query, as defined in [DN03, DN04, BDMN05]. This type of query to
the database has two parameters: Q, a subset of the rows r of the database over which the query is
performed, and a function f : r → {0, 1} mapping rows to 0 or 1, which is to be applied to the individual
rows themselves. The result of the query is

∑
r∈Q

f(r), or the number of rows for which the function f

returns 1.
Adversaries. An adversary is a common notion in cryptography and security literature. It was

recently extended to privacy literature. In adversary-based definitions of security, or in this case privacy,
an adversary is an arbitrary human (or Turing machine) that attempts to defeat the integrity of a
system by whatever means it has at its disposal. The abstract notion of security is given in terms of
this adversary - results are of the form “an adversary that is limited by condition X cannot defeat this
system.” Analyzing the security of a real database would be a near-impossible task. Instead, theoretical
models of databases (such as the one above) and related components are created, and the interaction
between an attacker and a real database is modeled as a game between an adversary A and a database
D. This allows an analysis of privacy in much more general terms, as opposed to analyzing every single
different query an adversary could make to a real database. A’s goal in the game is to breach the privacy
of D. The game is designed so that if A cannot win the game, then he has no hope of breaching the
privacy of a real database. In the game, A will issue queries to D, then use the responses it receives,
along with data it might have learned from either external sources or from the database itself, to breach
the privacy of the database. For a game with an adversary, the adversary’s specific goal conditions (i.e.,
what constitutes a loss of privacy) must be defined. In general, the adversary wins if it gains some
restricted information from the database. That is, it wins if there is some hypothesis that a posteriori

2

interacting with the database it does not know whether it is true or not, but a priori interacting it does.
Obviously, if the adversary can learn the value of a record, it can verify many such hypotheses.

Without any sort of privacy protection, it is clear that A can easily win any such game: A picks
some record in the database that it is not sure of, say a record r. Thus, a priori it has no information
about r. It then makes a query to retrieve the contents of r (if there are restrictions on the type of
query allowed, such as those defined above, then multiple queries might be necessary; but in fact even
if the adversary learns one bit if new information about r, then it is considered to have won, so one
query suffices). Now that it knows the contents of the row, it has a posteriori learned information from
the database, and has won the game.

In order to prevent an adversary from winning a game so easily, many schemes used to protect privacy
have been developed and studied in the past. In this paper, we focus on a single method called output
perturbation. For a comprehensive study of other privacy protection methods, see [AW89, CDM+05].

Output Perturbation. Output perturbation is the process of adding random noise to the response
of a query. This is done to mask the true response, which as shown above would give (too much)
information to the adversary. A perfectly privacy-preserving method would be to answer every query
with random noise, but this clearly does not allow any sort of data mining. Instead, the true response
and the random noise are added together, with the goal that, over many queries, some learning of
general trends is possible, but it is not possible to learn enough about any single record.

One other common method of privacy preservation is to add random noise before publishing a
database, and not alter the query responses in any way. This is called database sanitization. There
are some advantages to output perturbation over database sanitization, which is why it is the method
considered in this paper. For one, the original data is not altered. This means that if perfect learning
were possible, using output perturbation would allow the real database to be learned, while using
sanitization would allow only a modified database to be learned. This, more accurate learning can
be done with output perturbation. Also, the amount of perturbation is variable. Certain “privilege
levels” can be assigned to queries, so that a higher-privileged query undergoes less perturbation than a
low-privilege query. In a sanitized database, the amount of perturbation is fixed.

2 Preliminaries

We adopt many of our basic definitions and constructions from the previously cited works, and present
them here.

Database. We define a database to be an n × k matrix with entries in R. Each of the n rows are
assumed to correspond to a different record; each record has k real-valued attributes. Each row can
be treated as a point in Rk-space, by interpreting each of the k values as a distance along a certain
dimension. The i’th row of a database D is referred to as Di.

Queries. A query is a question that is asked to the database, which then answers by examining its
records. This work focuses on a specific type of query called a noisy sum, or statistical, query.

Definition 1 (Statistical query). A statistical query is a query to a database that takes two user-
supplied parameters: a set Q of rows, and a function f : Rk → {0, 1}. The result is

∑
r∈Q f(r) =

|{r ∈ Q | f(r) = 1}|. That is, the function maps each row to either 0 or 1, and the result is the number
of rows that map to 1.

At first glance, this does not resemble the common notion of a database query, which when written
in a language such as SQL would look something like this:

SELECT count(*)

3

FROM table
WHERE age >= 20 AND age <= 35

A seemingly more suitable definition of a query would be to replace the set Q with a k-hypercube. Then,
interpret each row of the database as a point in Rk. If a point is inside the hypercube, it is passed to the
function f and potentially counted in the sum, otherwise it is not. Thus, instead of saying “Perform a
query on rows 1-37”, a user can now say “Perform a query on all persons between 20 and 35 years old.”
However, this type of query can be emulated by a noisy-sum query. For instance, if a query should be
restricted to to records of people between 20 and 35 only, the query that is used should be (Q, f ′) where
Q is the entire database (D) and f ′ = (age >= 20) ∧ (age <= 35) ∧ f where age is interpreted as a
column of D that represents a record’s age. Then, f ′ will only be true for records that have an age value
between 20 and 35 and for which f is true, which will be the same records counted when restricting the
function f to only rows with age values between 20 and 35. Thus, noisy-sum queries are a super-set of
hypercube-based queries.

Revealing. One aspect of a real database that could potentially be hard to model in a formal
definition of privacy is that copies of information in the database can be obtained from some other
source. Consider the following scenario: Alice’s personal information is entered into a medical database.
Alice then publishes this same information on her website. An adversary, Bob, then tries to breach the
privacy of the medical database. He does not interact with the database, but demonstrates that he
has learned information by giving the data he found on Alice’s website. Clearly, this is not a breach
of privacy, even though Bob knows some information about Alice. Yet, if Bob were playing a privacy
game against the database, he would have won. Ideally, information gained from outside the interaction
with the database should not count as a breach of database privacy. In order to model the possibility of
observing the sensitive from data outside of the database, previous works have allowed another form of
database interaction: revealing rows. An adversary can obtain the contents of a row, un-modified, by
calling the function reveal(i) on database D, which returns Di. If a real-life adversary learns about a
row i from an outside source (something other than a query), that is modeling in a game by having the
adversary call reveal(i). In our example, when Bob looked at Alice’s website, he would be considered
to have called reveal(Alice’s row), since he learned that information from some source besides a query.
reveal() is used as a generic, theoretical function that encompasses the many real-world ways in which
an attacker can learn about a database from outside sources.

Previous works have allowed only a different type of reveal function: reveal(¬i), which reveals all
records in D except i [DN03, DN04, BDMN05]. This is done at a specific step in an adversarial game,
described in Section 2.1. We use a different definition of reveal(), because being able to reveal row
individually allows more fine-grained control over what the adversary is allowed to do. This leads to our
new classifications of privacy schemes. There is no added time complexity in revealing all but one of
the database rows one at a time versus all at once A call to reveal(¬i) returns a table of n− 1 records,
which would take n − 1 steps to read. Each call to reveal(i) takes unit time, so revealing n − 1 rows
this way takes the same amount of time.

Output perturbation. As mentioned before, output perturbation is used to preserve the privacy of a
database. Here, we give a technical discussion. After the result of a query to a database is determined,
if that database is using output perturbation then it adds random noise to the result before giving the
response to the user that issued the query. Recall that without output perturbation, the response to a
query (Q, f) is

∑
r∈Q f(r). With output perturbation, the response to (Q, f) is now

∑
r∈Q f(r)+N(0, v),

where N(m, v) is random noise with mean m and variance v [BDMN05]. The authors of [DN03] showed
that v = O(

√
n) was necessary for adversaries that work in time O(n). Otherwise, the adversary could

query a single row O(n) times, and the noise would cancel out enough to give the adversary a good
estimate of that row’s contents. For an adversary restricted to work in sub-linear time, [BDMN05]

4

shows that less noise is necessary to guarantee privacy. Our results in this work are independent of
the running time of the adversary. In regards to what types of learning are possible with a sub-linear
number of noisy-sum queries to a database using output perturbation, [BDMN05] also shows that
principal component analysis, k means clustering, the Perceptron Algorithm, and the ID3 Algorithm,
are still possible.

2.1 Privacy

We now explicitly define our notion of privacy, in terms of a game between an adversary and a database.
It resembles the one found in [DN04]. We assume that there is some predicate g : Rk → {0, 1} that the
adversary A wishes to learn about a row r in the database D. If A is able to learn the value of g(r), it
is said to have won the game – that is, it has to learn only a single bit to breach the privacy of D. If
the adversary is able to win the game, then there is a chance that it will be able to breach the privacy
of a real-world database, but if it is unable to, there is no realistic way for it to be able to learn private
information from such a database - as long as the real database sufficiently resembles the theoretical
model. The general structure of a game consists of several stages, as follows:

1. A issues queries to D, and reveals rows of D if it has the capability

2. A selects the row i that it will attempt to learn about, and a predicate g

3. A issues queries to D, and reveals rows of D if it has the capability

4. A indicates it is finished, and it guesses g(Di). If it guess correctly, and it never called reveal(i),
it wins, otherwise it loses.

Let pi,g
q,r be the probability that A correctly guesses the value of g(Di) after making q queries to

the database and revealing r rows. Then pi,g
0,0 is the a priori probability that A can guess g(Di) before

interacting with D at all, based solely on knowledge of the distribution from which Di was drawn.
Previous works have given definitions of privacy in terms of confidence, which is a function of these
probabilities, and the change in confidence between before interacting with the database and afterward.
For the sake of simplicity do not use the same definition; however, ours is functionally equivalent.

Definition 2 ((δ, q, r)-privacy). A database response mechanism is (δ, q, r)-private if for every database
D of n rows, every row index i, every function g : Rk → {0, 1}, and every adversary A making at most
q queries and revealing r rows, Pr

[∣∣∣pi,g
q,r − pi,g

0,0

∣∣∣ > δ
]

< 1
nc for any constant c.

Informally, if the probability that an adversary guesses g(Di) is the same after querying the database
and revealing its rows as it was before, then the database is said to be private. If the adversary does
not have any prior knowledge about the value of g(Di), and thus the probability that it is able to guess
the value correctly is 1

2 , then the above equation can be restated as: Pr
[
pi,g

q,r > 1
2 + δ

]
< 1

nc .

2.2 CCA-2 Security

When reading [DN03] we were struck by how similar their definition of privacy was to the definition of
adaptive chosen-ciphertext attack in the literature of cryptography. Upon further inspection, a corre-
lation exists between how an adversary attempting to defeat the security of a cryptosystem interacts
with its oracles, and how an adversary attempting to breach the privacy of a database interacts with
the database.

5

An understanding of adaptive chosen-ciphertext attack, or CCA-2, is not necessary for the un-
derstanding of this paper, so we will give only a brief overview. In order to prevent a message, or
plaintext from being read by adversaries, it can be encrypted with a key into a ciphertext before being
transmitted. If the recipient knows how to undo the encryption (decrypt), he can read the original
message. Decryption requires knowledge of the encryption key (in some cases, more is required). In a
CCA-2 game, the adversary attempting to break the cryptosystem interacts with an oracle, which can
be thought of as the administrator of the game. For each game, there is a fixed encryption key that
the adversary is unaware of. The adversary is allowed two operations: encrypt(m), which returns the
ciphertext created by encrypting m with the key, and decrypt(c), which returns the plaintext that was
encrypted with the key to produce c. Thus, decrypt(encrypt(m)) = m. The oracle is what responds to
each of these operations. The steps of a CCA-2 game are as follows:

1. The oracle picks a key

2. The adversary is allowed to call encrypt() and decrypt() arbitrarily

3. The adversary sends two messages, m1 and m2, to the oracle. The oracle responds with c, which
is an encryption of one of the messages

4. The adversary is allowed to call encrypt() and decrypt() arbitrarily

5. The adversary says whether it was m1 or m2 that was encrypted in step 3

The adversary wins if it correctly guesses which message was encrypted and it never called decrypt(c)
[GB].

Non-adaptive chosen-ciphertext attack (CCA-1) is similar, except that the adversary cannot call
decrypt() in step 4. Chosen-plaintext attack (CPA) is similar, except that the adversary cannot call
decrypt() at all. A cryptosystem is called CCA-2 secure if it can withstand a CCA-2 attack; similarly
for CCA-1 and CPA.

2.3 Adversaries

We draw the following parallels between the definitions of privacy with output perturbation and the
definitions of cryptographic security given above:

• Encryption is analogous to querying. In both cases, the adversary requests the result of data that
is passed to a function that is intended to obscure the data’s true contents. In the case of output
perturbation, it is obscured by adding random noise; in the case of encryption, it is encrypted
with a secret key.

• Decryption is akin to revealing a row of the database. Both allow an adversary to view data
that would otherwise be obscured (either by output perturbation or encryption). However, both
operations disqualify the adversary from using their output as an example of something it has
learned (i.e., the privacy adversary only wins if it does not call reveal(i) and the cryptographic
adversary only wins if it does not call decrypt(c)).

• Presenting two plaintexts to the encryption oracle corresponds to choosing which row of the
database that the adversary will attempt to breach. This is how the adversary indicates its goal,
and prevents the adversary from using decrypted or revealed information as something that will
win the game.

6

Thus, we can formulate three definitions of privacy, that correspond to each of CPA, CCA-1, and
CCA-2 security, and compare them to the most common previous definition of privacy. This section
refers to the game presented in Section 2.1.

Definition 3 (Privacy without revealing). A database has privacy without revealing if it is resilient
to an an adversary that is allowed to only query in steps 1 and 3 of the game.

Thus, the adversary does not have the ability to call reveal(). This corresponds to a chosen-plaintext
attack, where the adversary does not have the ability to call decrypt().

Definition 4 (Privacy with prior revealing). A database has privacy with prior revealing if it is
resilient to an adversary that can call reveal() in step 1, but not in step 3.

This corresponds to a non-adaptive chosen-ciphertext attack. Here, the adversary can potentially
learn which row would be easier to compromise by learning the contents of other rows.

Definition 5 (Privacy with post revealing). A database has privacy with post revealing if it is
resilient to an adversary that can call reveal() in step 3, but not in step 1.

This is the standard definition, as presented in [DN03, DN04]. It does not correspond to any previous
definition of a cryptographic adversary. See Appendix A for a definition of cryptographic security that
corresponds to such a privacy adversary.

Definition 6 (Privacy with prior and post revealing). A database has privacy with prior and
post revealing if it is resilient to an adversary that can call reveal() in steps 1 and 3.

This corresponds to an adaptive chosen-ciphertext attack, where the adversary has access to the
decrypt() function at all times. Note that since the adversary learns nothing by selecting a row i in
step 2 (unlike in the definition of CCA-2, where it learns the ciphertext c), all queries made in step 3
can be made in step 1 (similarly for any ability to call reveal). Therefore, querying in step 3 is useless,
and revealing in that step is also useless if the adversary is able to reveal in step 1. Thus privacy with
prior and post revealing is equivalent to privacy with prior revealing.

Isolator. The above game implies a realistic, but perhaps unnecessary, restriction, namely that the
adversary must know the index i of the row of the record whose privacy it is trying to breach (since it
has to output an i in step 2). This restriction can be relaxed by considering a different type of adversary,
known as an isolator. This adversary succeeds if at any time it outputs a point p in Rk where p is “near”
one point in the database, but “far” from others.

Unfortunately, the only formal definition of an isolator is for a different method of privacy preserva-
tion [CDM+05]. It is given in the context of a sanitized database, where the data is altered before being
published. The advantage of the isolator A is given in terms of the sanitized database (SDB), any auxil-
iary information z, any point i in the real, un-sanitized database, and a Turing machineA′ running in the
same time as A. A SDB is δ-resilient to an isolator if |Pr[A(SDB, z) isolates i]−Pr[A′(z) isolates i]| <
δ. A point p is isolated if the adversary outputs a hypercube H such that p lies within H, but fewer
than c other points do, for some system parameter c.

To deal with this discrepancy, we use a generalization of this definition. Specifically, define for each
row i in D a probability P i

q,r, which is the probability that the adversary can isolate the point i, after
making q queries and revealing r rows. The adversary wins if ∃i : Pr

[∣∣P i
q,r − P i

0,0

∣∣] < δ. Note that
the adversary does not need to know the index i in order to win this game. This is a generalization of
(c, t)-isolation as presented in [CDM+05] (ignoring the fact that the definition in [CDM+05] is in terms
of a sphere, not a cube), in that it is no longer specific to a sanitized database.

7

3 Results

In this section we make the conventional assumption that all rows are independently distributed. All
previous work has also made this assumption, which only serves to highlight the contributions in Section
4. Using this assumption, we prove equivalences between all of the adversaries defined previously. This
seems counterintuitive, in that an adversary who can only query a database is just as powerful as an
adversary that can query a database where it additionally knows the contents of all but one row. Thus,
the lack of dependencies between rows become a significant distinction.

Theorem 1. Privacy with post revealing is equivalent to privacy with no revealing.

Proof sketch. The only distinction between privacy with post revealing and privacy with no revealing
is in step 3. Let pr = pg,i

q,r be the probability that an adversary A can guess g(Di) after revealing r
rows. Assume A is in step 3 of a game. Consider two scenarios: A makes a query on row a and row
b, then reveals row b, versus A makes a query solely on row a. In the first scenario, if f(b) = 1 then
the response is 1 + f(a) + N(0, v). If f(b) = 0 then the response is f(a) + N(0, v). The adversary can
then call reveal(b) to determine f(a) + N(0, v). In the second scenario, the response is f(a) + N(0, v).
Therefore, the adversary gains the same information about row a by issuing a single query and not
revealing the row. If A queried more than two rows, it would have to reveal even more rows to gain the
same information. Thus, revealing rows in step 3 does not affect pg,i

q,r; namely, pg,i
q+1,r = pg,i

q+1,r+1. Since
revealing in step 3 does not help the adversary, it is unnecessary, so privacy with post revealing and
privacy with no revealing are equivalent.

Likewise, the intuition that allowing revealing before selecting a row can somehow allow an adversary
to select a row that is easier to breach is false.

Theorem 2. Privacy with prior revealing is the same as privacy with post revealing.

Proof sketch. The same argument above applies, as there are no proof steps that depend on the adver-
sary being in step 3. Therefore, it can also be applied to step 1. This gives the desired result.

Thus, by transitivity, all four definitions are equivalent. A further, somewhat surprising, result
is that these adversaries are also equivalent to an isolator, which perhaps could serve to enhance the
results of [CDM+05]. We now turn our attention to isolator adversaries. We claim that if a database is
has privacy with prior revealing, than it is also resilient to an isolator (this is one direction of showing
equality, if we could show that a database resilient to an isolator also has privacy with prior revealing,
then they would be equal, however there is no evidence that this is the case).

Theorem 3. Privacy with prior revealing implies resistance to an isolator.

Proof sketch. Let D be a database able to provide privacy with prior revealing. Let A be an isolator
attempting to breach the privacy of D by isolating a point. As shown before, step 3 is unnecessary for
A, and can be skipped. Thus steps 2 and 4 can be combined, and instead of naming a row in step 2, A
simply produces a hypercube H. For each point i in H, if P i

q,r > δ, and A did not call reveal(i), then
A wins. Let g(j) be a predicate such that g(j) = 1 if A is able to isolate point j and 0 otherwise. Note
that if P i

q,r > δ, then Pr[g(i) = 1] > δ, whereas before interacting with the database, Pr[g(i) = 1] < δ
(by definition of an isolator). Thus, A has learned some predicate about an entry in a database that
has privacy with prior revealing, which is a contradiction. Therefore A cannot isolate any points i.

We now focus on databases where the rows can have dependent relationships on one another.

8

4 Dependent Rows

Up until now, there has been no work that addresses databases whose records are not drawn inde-
pendently. This is likely because of the extreme difficulty in categorizing the many types of possible
relations the rows can have. Consider, for example, a database in which every record shares the same
value for an important attribute. A real life example would be a database of AIDS patients. In this case,
every record should be kept private. Even if names and social security numbers are stripped from the
database, identification of records is still possible. For instance, Sweeney claims that 87% of the U.S.
population is uniquely identifiable from only birthdate, zip code, and gender [Swe97]. Clearly, these
would be useful attributes for data mining, so would reasonable be left intact in a medical database.
In this case an adversary who calls reveal once on this database may not be able to win any previously
defined privacy game, yet the privacy of the individuals in database is clearly comprised. These are the
type of complicated situations that arise when dealing with databases with dependent rows.

Consider another example1 of an employee database, where it is known that employee X makes the
same as employee Y . We can determine X’s salary if we know what Y ’s salary is. The purpose of
using the reveal function is to formally manage exactly which information can be learned from sources
other than queries. Here, unlike as with independently drawn records, learning about one row can give
information about another row. Since such out-of-band information becomes more of a liability in this
case, we must manage it more closely than in the case with independently drawn records.

From these examples, it becomes clear that the equivalences shown in the previous sections do not
hold for dependent databases. Indeed, the revealing of a single row could give an adversary information
about all of the rows, which is impossible in a database with independently drawn rows. In order to
aid our analysis, we take into account rows that, when revealed, give information about the contents
of other rows. We define such a master row as one that, when changed, has the possibility of changing
other rows (in order to keep the database consistent – in the above example, if X’s salary changes, Y ’s
must as well). That is, any row that that has another row dependent upon it is a master row. A row
can have more than one master row that it depends upon.

4.1 Sensitivity

The analysis of Dwork, McSherry, Nissim and Smith in [DMNS06] defines the sensitivity of a function
f , S(f) as how much the output of f can change when the input changes very little.

As an example, consider the case of noisy-sum query (before output perturbation). If the input (the
database) changes very little (one record is altered), the output can change by at most 1. Here, f would
be

∑
r∈D g(r), g : Rk → {0, 1}, as defined previously. Since only one record changes, at most one value

g(r) changes, and the sensitivity of f is 1. Therefore the sensitivity of a noisy-sum query is 1.
We extend this definition to apply to the sensitivity of databases as a measure of the dependencies

between records. Informally, this is the greatest number of records that can change when a single master
record is changed. In a database with independently drawn rows, the sensitivity of that database is
1: when a single row changes, there are no others that depend on it that would have to change. In
the case of the database salaries where two are forced to be the same, the sensitivity of that database,
S(D), would be 2: if X’s salary were changed, Y ’s would have to be as well. Thus, if it were possible
to determine the sensitivity of a database beforehand, one would be able to calibrate the amount of
noise that would be needed to preserve privacy, as given in [DMNS06]. In that work, the Laplace(λ)
distribution is used to provide the random noise. It is distributed according to Pr(x) ∝ e−|x|/λ. Their
result can be used to show that the amount of noise necessary for protecting noisy sum queries on a

1Due to Nick Frangiadakis

9

database with sensitivity S is Laplace(S/δ). Now that it is known how much noise is necessary to use to
perturb query responses, we must now determine how many rows of a database can be revealed, while
still protecting privacy.

4.2 Revealing

Many complications arise when considering revealing rows of dependent databases. One important
question is whether or not the adversary knows the relations between the rows before interacting with
the database. It seems more prudent to assume that he does. A more nuanced question is whether
or not the adversary knows which rows of a database would be the master rows. Here it also seems
prudent to assume that this is public knowledge, but here it seems to depend more on the individual
databases themselves. A pessimistic approach is often the wisest, yet those assumptions leave a bleak
outlook for future research in this direction.

After analyzing the vastly differing amounts of revealing that is possible in the above two examples,
it is clear that one cannot easily quantify how many rows of a database can be revealed before privacy
is breached. It is our view that any definition of privacy in dependent databases must be orthogonal to
revealing the contents of rows, and should focus on the amount of noise to add to queries instead. It is a
saddening fact that when applied to actual databases with rows that are dependent upon one another,
any definition of privacy cannot permit or prove privacy against any reveal operation. To see this, just
consider the two above examples. Revealing a single row compromises the privacy of someone in the
AIDS database, whereas unless the adversary knows which row corresponds to X and Y , n − 1 rows
are able to be revealed without breaching privacy. No general statements can be made about revealing
in dependent databases, as there are situations where all four definitions in Section 2.3 are equivalent,
and others where they are not. This conjecture also extends to the relationships that each row has with
another. An adversary examining the salary database in the above example might not know that the
salary of X must equal the salary of Y , but if this information were somehow revealed, it would give
the adversary new insight on the structure of the database.

In spite of this negative result, we offer one additional result: If the adversary does not know which
rows are master rows, then the probability that they are all revealed, after r reveals, is(

n−m
r−m

)(
n
r

)
=

(n−m)!r!(n− r)!
(r −m)!(n− r)!n!

=
rm

nm

<
rm

nm

where nm = n(n− 1)(n− 2) · · · (n−m + 1).
This can be used to set a limit on the number of rows that can be revealed before it is expected

that the adversary can learn anything significant about the dependencies in the rows of the database.

5 Conclusion

In this paper, we build upon previous works in database privacy. We then go on to derive a precise
taxonomy of privacy in databases, using definitions of adversaries from cryptography, which we extend
to apply to privacy. In the case of databases with independently drawn rows, we show that each of

10

these notions is equivalent to each other. In addition, the previous notion of an isolator adversary is
also equivalent to these definitions, which might be helpful in bringing together the analysis of output
perturbation (the setting in which our adversaries are defined) and database sanitization (the setting
in which the isolator was originally defined). We have also initiated a study of privacy in databases
where the rows can depend on one another. The results in this section are mixed: we show that if it is
possible to determine the sensitivity of a database, the amount of noise that needed to mask a query
can be determined. However, we give evidence of our belief that revealing rows in dependently-drawn
databases cannot be generically quantified.

6 Acknowledgments

We would like to thank Nick Frangiadakis for asking pertinent questions and Jonathan Katz for guidance.

References

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules.
In VLDB, 1994.

[AW89] Nabil R. Adam and John C. Worthmann. Security-control methods for statistical databases:
a comparative study. ACM Comput. Surv., 21(4):515–556, 1989.

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: The
sulq framework. In PODS, ACM, pages 128–138, 2005.

[CDM+05] Shuchi Chawla, Cynthia Dwork, Frank McSherry, Adam Smith, and Hoeteck Wee. Toward
privacy in public databases. In 2nd Theory of Cryptography Conference (TCC), pages 363–
385, 2005.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO, pages 13–25, London, UK, 1998.
Springer-Verlag.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In 3rd Theory of Cryptograph Conference (TCC), volume
3876 of LNCS, pages 265–284, 2006.

[DN03] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Twenty-
Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 202–210, 2003.

[DN04] Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically partitioned
databases. In CRYPTO, volume 3152 of LNCS, pages 528–544, 2004.

[GB] Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography. http://www-
cse.ucsd.edu/ mihir/papers/gb.html.

[Swe97] Latanya Sweeney. Weaving technology and policy together to maintain confidentiality. Jour-
nal of Law, Medicine, and Ethics, 25, 1997.

11

Appendix

A CCA-A security

In section 2.3, we described one adversary that does not have a corresponding adversary in the crypto-
graphic literature. The game that such an adversary would attempt to win is:

1. The challenger derives a key K

2. The adversary calls encryptK(m) for messages m.

3. The adversary presents two plaintexts, m0 and m1 to the challenger, who selects a bit b and
returns c = encryptk(mb)

4. The adversary performs further computations, including calls to a decryptK() oracle, except it
cannot call decryptK(c).

5. The adversary outputs its guess for b.

A cryptosystem is said to be CCA-A secure if it is resilient to such an attack.
This definition is strictly weaker than CCA-2 security [CS98], and probably incomparable to CCA-1

security. A cryptosystem that is CCA-2 except that knowing a ciphertext and its decryption leaks
information about how to pick a message that is easily decrypted could be CCA-A secure, but not
CCA-1 secure. Likewise, a cryptosystem that is CCA-2 secure except that decryption of a ciphertext
leaks information about related ciphertexts could be CCA-1 secure, but not CCA-A secure.

CCA-A security closely models the real-life situation where a ciphertext is found, and then many
plaintext-ciphertext pairs, or even a limited decryption device, are found and employed to try to break
the cipher. Thus, this definition warrants further study.

12

