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Abstract

This paper is an argument for two assertions: First,
that by representing correspondence probabilistically, dras-
tically more correspondence information can be extracted
from images. Second, that by increasing the amount of cor-
respondence information used, more accurate egomotion
estimation is possible. We present a novel approach illus-
trating these principles.

We first present a framework for using Gabor filters to
generate such correspondence probability distributions. Es-
sentially, different filters ’vote’ on the correct correspon-
dence in a way giving their relative likelihoods. Next, we
use the epipolar constraint to generate a probability distri-
bution over the possible motions. As the amount of cor-
respondence information is increased, the set of motions
yielding significant probabilities is shown to ’shrink’ to the
correct motion.

1. Introduction

Perhaps the single most pervasive structure in computer
vision is that of correspondence - two points in different im-
ages that are said to correspond to the same point in space.
Given a set of correct correspondences, powerful techniques
exist to do many things - find camera egomotion, 3d depth,
motion segmentation, etc. Thus most algorithms proceed by
first matching points, and then using these correspondences
to solve the problem at hand. Yet, it is well known that, in
general, low level measurements do not provide sufficient
information to match. This is not the paradox it might first
seem to be. There are essentially 3 conditions resulting in
correspondence being difficult to establish- repetitive struc-
ture in the scene, aliasing, and the aperture effect [1]. Fea-
ture detectors such as corner detectors [4] or SIFT features
[5] may be thought of as algorithms that locate points in the
scene that are relatively immune to these effects.

In this paper, we propose that a different structure could
be used, namely, a probability distribution over the possible
correspondences. There are several reasons to use such an
approach. First, at those points in the scene for which cor-
respondences are most easily found (e.g. non-repetitive fea-

ture points), we should expect that probability distribution
to be nearly zero except at the true correspondence, mean-
ing that no information needs to be given up at these points.
In our experiments, feature points generally do yield local-
ized probability distributions, though often so do points that
would not be detected as feature points. Second, it is possi-
ble to represent arbitrary ambiguities in the correspondence,
be they the result of aperture, repetitive structure, lack of
texture, etc. Third, and perhaps most importantly, a proba-
bility distribution can be reliably found for every point in the
scene. Though a point with a ”spread out” distribution may
provide weaker information than one with a sharp ”peak”,
it is advantageous to make use of as much of the available
information as possible.

Using these correspondence probability distributions
leads naturally to a measure of the probability of different
3d motions. This measure is robust to occluded points and
independent motion. We use the epipolar constraint to give
an expression which is easily and quickly calculated. We
will show that when a small number of correspondence dis-
tributions are used, a significant set of motions generally
yield significant probabilities. However, because our frame-
work gives us a very large number of correspondence dis-
tributions, they can all be used to reduce this set, yielding a
very accurate egomotion estimate.

We first give a simple contrast invariant technique for
calculating a correspondence probability distribution. Next,
we show how these distributions may be used to calculate
egomotion for a calibrated camera. We will present ex-
periments showing that this egomotion technique is com-
parable in accuracy to a epipolar minimization algorithm
based upon many manually extracted pixel-accurate corre-
spondences. We will also show that this algorithm performs
well in dynamic scenes, where objects in view violate the
common assumption in egomotion algorithms that only the
camera is moving.

1.1 Related Work

It is well known that correspondences cannot be reliably
estimated from low-level measurements [7]. Simoncelli et
al. [11] assume image gradients are corrupted by a Gaus-
sian noise model, resulting in a probability distribution over



the optical flow. This distribution is then used to estimate a
single optical flow vector as output. Clocksin [1] estimates
optical flow distribution functions for each point, and then
uses spatiotemporal support regions to estimate more accu-
rate (non-probabilistic) flow vectors each point.

Our approach to computing correspondence probability
distributions is based on the phase of tuned Gabor filters.
Phase has been widely used in the computation of stereo
disparity [2] [10] as well as in one of the best performing
optical flow algorithms [3]. We use the efficient Gabor filter
implementation of Nestares et al. [8].

Egomotion and Structure from Motion are among the
most heavily researched areas of computer vision research,
and rather than attempting to summarize all references, the
reader is referred to a survey [9]. The approach most sim-
ilar to the one here is by Makadia et al. [6]. There, the
authors use traditional feature points, but rather committing
to an explicit matching, they search for a motion such that
each feature point has a compatible point in the other image
satisfying the epipolar constraint. Their approach can be
phrased probabilistically. The principal difference with the
current work is that we extract correspondence information
for all points in the image, with out use of a feature detec-
tor. This means both that additional correspondence infor-
mation is available, and that it is not necessary for the same
point to be reliably detected as a feature. This drastically
increased amount of correspondence information results in
major increases in accuracy and robustness.

2. Correspondence Probability Distributions

Given a point s in one image, we would like to represent
the probability that it corresponds to a point q in the next
image. We should represent the probability that s moves to
an arbitrary q, not necessarily with integer coordinates. We
cope with this by first approximating the probability that s
matches to a pixel q̂, having integer coordinates. The proba-
bility that s matches to an arbitrary point is then represented
via a sigmoid function. That is, we take the probability that
s corresponds to q to be

ρs(q) = max
q̂

ρs(q̂) exp(−||q̂ − q||2),

where the points s, q and q̂ are on the image plane, and || · ||
denotes the Euclidean norm. It will be seen later that this
unusual form of interpolation simplifies the method.

Now, we want to find the probability that some pixel s
corresponds most closely to another pixel q̂. There are many
possible ways to do this, but we follow many others in bas-
ing our approach on Gabor filters. These widely used filters
can be tuned to different frequencies and orientations to pro-
vide a local measurement of phase. Correspondence is then
estimated by exploiting the fact that phase will be nearly

the same for corresponding points. Fleet [2] shows how the
different filters form a voting scheme for stereo disparity.
Our approach is similar, but more than ensuring the highest
”score” for the most likely correspondence, we would like
the scores to reflect the appropriate probabilities. Suppose
the phase for the filter with orientation l and frequency ω at
a point a is φl,ω(a). We would like to consider points with
very nearly matching phase to be likely to correspond. Si-
multaneously, any single filter, because of noise, may be
unreliable. We therefore take the probability given by a
single filter (l, ω) that s and q̂ match to be proportional to
exp(−|φl,ω(s)−φl,ω(q̂)|2)+β. The added constant of β is
equivalent to taking a certain probability that the filter’s in-
formation is wrong, perhaps because of occlusion or noise.
Combining the probabilities over all filters then gives us

ρs(q̂) = Cs

∏

l,ω

[exp(−|φl,ω(s)− φl,ω(q̂)|2) + β]

Where Cs is chosen so that
∑

q̂ ρs(q̂) = 1. In all exper-
iments shown, we have used β = 1. Some example distri-
butions are shown in Figure 1. Though we will not focus on
this here, we should note that the above approach only uses
the phase of the Gabor filter response, and is thus highly
contrast invariant.

In all results shown here, we have used Gabor filters with
four orientations, and four frequencies. For the sake of com-
putational efficiency, a low threshold can be used, where if
ρs(q̂) < ρmin, it is taken as equal to zero, and therefore
removed from consideration. It is important to note that
the approach we have outlined here will give unpredictable
behavior when a point which is visible in the first image be-
comes occluded. The egomotion approach below does not
attempt any filtering to remove these points. Nevertheless
it is robust to this behavior, as well as being robust to inde-
pendently moving areas.

3. Egomotion Probability Distribution

Given the correspondence probability distributions for
all points, we would like to calculate the relative probabili-
ties of different 3d motions. First, given a line l in homoge-
neous coordinates, we will need the minimum distance on
the image plane between that line and a point p. If the line
is normalized by taking l ← l√

l2
1
+l2

2

, and p is normalized

by p ← fp

p3

, with f the focal distance, then the distance is
simply pT l.

Now, given the correspondence probability distribution
for a single point s, we take the probability of a given mo-
tion hypothesis E to be the maximum probability ρs(q)
such that s and q satisfy the epipolar constraint, qEs = 0.
To represent the fact that ρs(q) may be wrong- if s becomes
occluded, or belongs to an independently moving object-
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Figure 1. Example optical flow probability dis-
tributions. Left column: first image, with the
point whose correspondence is being consid-
ered marked. Center column: second image.
Right column: probability distribution over
the points in the second image, with proba-
bility encoded as color.

we add a constant α. This limits the influence or any single
point to the egomotion probabilities.

ρs(E) = α + max
q:qEs=0

ρs(q)

Here q is an arbitrary point, not necessarily having inte-
ger coordinates. We can see how to calculate the above by
substituting our expression for ρs(q):

ρs(E) = α + max
q:qEs=0

max
q̂

ρs(q̂) exp(−||q̂ − q||2)

ρs(E) = α + max
q̂

max
q:qEs=0

ρs(q̂) exp(−||q̂ − q||2)

Observe that the above expression does not require us
to explicitly find q. We only need the minimum distance
between q̂ and some q on the line Es. Hence,

ρs(E) = α + max
q̂

ρs(q̂) exp(−(q̂T l(E,s))
2)

where the line Es is normalized as

l(E,s) =
Es

√

(E1s)2 + (E2s)2

where E1 and E2 are the first and second row of E, re-
spectively. The final egomotion probability in the form in
which it is computed is given by combining the information
given by all points:

ρ(E) = C
∏

s

[α + max
q̂

ρs(q̂) exp(−(q̂T l(E,s))
2)]

Where C is chosen so that
∑

E ρs(E) = 1. This can
be calculated quickly and directly from the correspondence
probability distributions with no iteration. In our results, we
have used α = 1.

3.1 Egomotion Algorithm

To be totally accurate, our framework does not give a
literal answer about what is the correct egomotion, but
rather a way to calculate a distribution over the set of mo-
tions. Still, we use a simple technique to try to approximate
argmaxE [ρ(E)]. Though our technique is not guaranteed
to find the actual maximum, as we will discuss later, this
is unlikely to make much different in performance. This is
due to the fact that all parameters yielding significant prob-
abilities tend to be contained in a very small volume of the
parameter space.

First, we give our parameterization of E. We took 2
somewhat unusual parameters to represent the translation,
θ and φ, and 3 parameters to represent the rotation rx, ry ,
and rz . We then take tx = sin(θ), ty = sin(φ), and

tz =
√

1− t2x − t2y. If ω is a vector storing the three ro-
tational parameters, we take R as the rotation matrix repre-
senting a rotation of angle |ω| about the unit vector ω/‖ω|.
We then take the usual E = [(tx, ty, tz)

T ]×R.
To maximize ρ(E), we first sample the parameter space

equally in each of the 5 dimensions. (In the experiments
given below, we used 11 points equally in each dimension,
for a total of 115 samples.) This is followed by a gradi-
ent search initialized to each of several sample points yield-
ing the highest probabilities. (Below we used the best 100
sample points, though in practice, a large fraction of these
converge to the same answer, suggesting fewer points are
necessary.)

Finally, two implementation notes: First, notice tz is
only well defined when |θ| + |φ| ≤ π/2. Since it is more
convenient to use parameters whose range is independent,
in our implementation, we use parameters α and β, taking
θ = (π/4)(α − β) and φ = (π/4)(α + β). α and β can
then be allowed to vary independently from -1 to 1. Second,



when maximizing ρ(E), numerical properties are much im-
proved by instead considering log(ρ(E)). For simplicity,
we will not discuss these issues further.

4. Experiments

4.1 ’Gold Standard’ Comparison

As a first experiment, we examine the relationship be-
tween the accuracy of the egomotion estimate and the num-
ber of correspondence distributions used. To give a rigorous
and algorithm independent comparison, we used a least-
squared epipolar minimization, based on 46 manually se-
lected pixel-accurate correspondences. The least squared-
epipolar minimization was initialized to the ground truth
motion. This experiment uses two synthetic images from
the well-known SOFA image database1 (Figure 2) . While
using synthetic images is unsatisfactory in some ways, the
availability of the exact ground truth motion is necessary
to compute errors. (The obvious way to attain the ’ground
truth’ for a real sequence would be to compute the mo-
tion from manually extracted correspondences, but here this
very technique is being used for comparison.) We measure
separately the translational and rotational error of the ego-
motion estimates. For the translational error, we compute
the Euclidean distance |t−t̂| between the estimated focus of
expansion t, and the true focus of expansion t̂, where each
is on the unit sphere. Similarly, for the rotational parame-
ters, we calculate |ω − ω̂|, where ω is a vector containing
the three rotational parameters. For each size, the two algo-
rithms were run on random subsets of that size. The mean
errors for each size are shown in Figure 3. For reference,
we have also included the results of running the algorithm
proposed in this paper on the manually extracted matches.
Here, we simply take ρs(q̂) = 1 when s corresponds to q̂
and 0 otherwise. For the algorithms using hand established
matches, the means are taken over 100 random subsets of
each size. For the results using correspondence probability
distributions, means are taken over 25 random subsets.

It can be observed that for any given number of corre-
spondences, the epipolar minimization will perform some-
what better than our technique on an equal number of prob-
ability distributions. Nevertheless, when using a large num-
ber of correspondences, our automatic technique is actually
able to perform comparably to this ’Gold Standard’ algo-
rithm run on manually generated pixel-accurate correspon-
dences. The technique’s success is due not to the way it
processes the correspondence information, but rather to the
abundance of information that is available to it.

1SOFA synthetic sequences courtesy of the Computer Vision Group,
Heriot-Watt University (http://www.cee.hw.ac.uk/ mtc/sofa)

Figure 2. A synthetic sequence, with manually
extracted correspondences marked.
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Figure 3. Mean errors for different numbers
of correspondences or correspondence dis-
tributions.

4.2 Effects of more probability distributions

We would like to illustrate exactly how it is that the use
of many distributions improves performance. To make the
process easier to visualize, we fix three of the parameters to
the correct ground truth. It is then possible to plot ρ(E) as
a function of the remaining two parameters, θ and ry , each
sampled at 401 points. Figure 4 shows this for increasing
numbers of input correspondence distributions. Mathemat-
ically, two correspondences known with perfect accuracy
would give the exact answer. Nevertheless, a small change
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Figure 4. Three plots, each showing the computed probabilities as a function of θ and ry. All
other parameters are fixed to the ground truth. Left: 5 correspondence distributions. Center: 50
distributions. Right: 500 distributions.

in the translation can be compensated by a small change in
the rotation to yield similar epipolar lines. Thus, the un-
certainty in the correspondence leads to an ambiguity in the
motion. This ambiguity is reduced in the presence of ad-
ditional correspondence information. It is for this reason
we say that a better maximization of ρ(E) is unlikely to
significantly improve performance. Given a small number
of matches, there will be a large volume in the parameter
space of E all yielding similarly high probabilities. Finding
a motion with a slightly higher probability can only be ex-
pected to slightly improve performance. On the other hand,
as the number of input probability distributions increases,
the volume of the parameter space with a high probability
’shrinks’ to the correct answer. To put it in a different way,
suppose we had access to a limitless number of correspon-
dence probability distributions. In the limit, the egomotion
probabilities would become ρ(Ê) = 1 for the correct mo-
tion Ê, and ρ(E) = 0 for all others. Thus any algorithm
which reliably finds an E with ρ(E) within some bound of
the optimal one will have its error decrease towards zero as
the amount of correspondence information is increased.

4.3 Egomotion in scenes with Independent Motion

As a further test of our technique, we used the well-
known ’Yosemite’ sequence. The clouds at the top of the
images are moving independently, and nonrigidly. Figure
5. Notice that the clouds move relative to the epipolar lines,
while the rest of the image does not.

Finally, we captured two real sequences including inde-
pendent motion. As shown in Figure 6 the rigid motion for
the static background was found with high accuracy, while
being undisturbed by the independently moving foreground.

Figure 5. Two frames from the ’Yosemite’ se-
quence, with the epipolar lines found by our
method overlaid.



5. Conclusions

Using probability distributions gives us a large amount of
very robust information about correspondence. This large
amount of data dramatically reduces the ambiguity in the
estimation of egomotion. We have presented a technique
which achieves very accurate results, even in the face of
independent motion. Despite these promising results, we
suspect that most aspects of our technique can be improved
with further work. More accurate correspondence proba-
bility distributions could be calculated by a more rigorous
examination of the imaging process. Though our simple-
minded approach to maximizing ρ(E) works well in prac-
tice, it would be better to have a technique with more rig-
orous performance bounds. Future work could also extend
this framework to other problems, such as explicitly iden-
tifying which portions of the scene are independently mov-
ing.
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