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Figure 1. We prune the 3D Gaussian Splatting (3D-GS) reconstruction of the Deep Blending playroom scene from 2.65M Gaussians to

0.265M Gaussians using our PUP 3D-GS pipeline, accelerating rendering speed from 76.65 FPS to 318.06 FPS – a 4.15× speed-up on

this scene– while preserving fine details. In comparison, LightGaussian, a recent high-performing post-hoc pruning pipeline for pretrained

3D-GS models, loses substantially more fine details than PUP 3D-GS and achieves a slower rendering speed of 261.27 FPS.

Abstract

Recent advances in novel view synthesis have enabled

real-time rendering speeds with high reconstruction accu-

racy. 3D Gaussian Splatting (3D-GS), a foundational point-

based parametric 3D scene representation, models scenes

as large sets of 3D Gaussians. However, complex scenes

can consist of millions of Gaussians, resulting in high stor-

age and memory requirements that limit the viability of

3D-GS on devices with limited resources. Current tech-

niques for compressing these pretrained models by prun-

ing Gaussians rely on combining heuristics to determine

which Gaussians to remove. At high compression ratios,

these pruned scenes suffer from heavy degradation of vi-

sual fidelity and loss of foreground details. In this paper,

we propose a principled sensitivity pruning score that pre-

serves visual fidelity and foreground details at significantly

higher compression ratios than existing approaches. It is

computed as a second-order approximation of the recon-
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struction error on the training views with respect to the spa-

tial parameters of each Gaussian. Additionally, we propose

a multi-round prune-refine pipeline that can be applied to

any pretrained 3D-GS model without changing its training

pipeline. After pruning 90% of Gaussians, a substantially

higher percentage than previous methods, our PUP 3D-GS

pipeline increases average rendering speed by 3 .56× while

retaining more salient foreground information and achiev-

ing higher image quality metrics than existing techniques

on scenes from the Mip-NeRF 360, Tanks & Temples, and

Deep Blending datasets.

1. Introduction

Novel view synthesis aims to render views from new view-

points given a set of 2D images. Neural Radiance Fields

(NeRFs) [17] use volume rendering to represent the 3D

scene using a multilayer perceptron that can be used to ren-

der novel views. Although NeRF and its variants achieve

high-quality reconstructions, they suffer from slow infer-

ence and require several seconds to render a single image.
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3D Gaussian Splatting (3D-GS) [9] has recently emerged as

a faster alternative to NeRF, achieving real-time rendering

on modern GPUs and comparable image quality. It repre-

sents scenes using a large set of 3D Gaussians with indepen-

dent location, shape, and appearance parameters. Since they

typically consist of millions of Gaussians, 3D-GS scenes of-

ten have high storage and memory requirements that limit

their viability on devices with limited resources.

Several recent works propose techniques that reduce the

storage requirements of 3D-GS models, including heuristics

for pruning Gaussians that have an insignificant contribu-

tion to the rendered images [3, 4, 12, 14, 20]. In this work,

we propose a more mathematically principled approach for

deciding which Gaussians to prune from a 3D-GS scene.

We introduce a computationally feasible sensitivity score

that is derived from the Hessian of the reconstructed error

on the training images in a converged scene. Following the

methodology in LightGaussian [3], we prune the scene us-

ing our sensitivity score and then fine-tune the remaining

Gaussians. Our experiments demonstrate that this process

can remove 80% of the Gaussians in the base 3D-GS scene

while preserving image quality metrics.

Moreover, our approach enables a second consecutive

round of pruning and fine-tuning. As shown in Figure 1,

our multi-round pruning approach can remove 90% of the

Gaussians in the base 3D-GS scene while surpassing pre-

vious heuristics-based methods like LightGaussian in both

rendering speed and image quality. Our work is orthogonal

to several other methods that modify the training framework

of 3D-GS or apply quantization-based techniques to reduce

its disk storage. We show that our PUP 3D-GS pipeline can

be used in conjunction with these techniques to further im-

prove performance and compress the model.

In summary, we propose the following contributions:

1. A post-hoc pruning technique, PUP 3D-GS, that can be

applied to any pretrained 3D-GS model without chang-

ing its training pipeline.

2. A novel spatial sensitivity score that is more effective at

pruning Gaussians than heuristics-based approaches.

3. A multi-round prune-refine approach that produces

higher fidelity reconstructions than an equivalent single

round of prune-refining.

2. Related work

Neural Radiance Field (NeRF) based [17] approaches use

neural networks to represent scenes and perform novel-view

synthesis. They produce remarkable visual fidelity but suf-

fer from slow training and inference. Recently, 3D Gaus-

sian Splatting (3D-GS) [9] has emerged as an effective al-

ternative for novel view synthesis, achieving faster infer-

ence speed and comparable visual fidelity to state-of-the-art

NeRF-based approaches [1].

2.1. Uncertainty Estimation

Several works estimate uncertainty in NeRF-based ap-

proaches that arise from sources like transient objects, cam-

era model differences, and lightning changes [8, 21, 22].

Other works focus on uncertainty caused by occlusion or

sparsity of training views [16]. These approaches rely on

an ensemble of models [26] or variational inference and KL

Divergence [24, 25], requiring intricate changes to the train-

ing pipeline to model uncertainty.

BayesRays [5] uses Fisher information for post-hoc un-

certainty quantification in NeRF-based approaches. Since

NeRFs [16] represent the scene as a continuous 3D func-

tion, they compute the Hessian over a hypothetical perturba-

tion field to estimate uncertainty. In contrast, our approach

focuses on 3D Gaussian Splats [9] instead, and we directly

compute the Fisher information using gradient information

without relying on a hypothetical perturbation field.

FisherRF [7] also computes Fisher information for 3D

Gaussian Splats; however, it only approximates the diago-

nal of the Fisher matrix and uses the color parameters (DC

color and spherical harmonic coefficients) of the Gaussians

for post-hoc uncertainty estimation. Our approach uses the

spatial mean and scaling parameters to compute a more ac-

curate block-wise approximation of the Fisher instead (see

Section 4.1). Lastly, our work uses uncertainty estimates to

prune Gaussians from the model, whereas FisherRF applies

their method to perform active-view selection.

2.2. Pruning Gaussian Splat Models

While 3D-GS [9] demonstrates remarkable performance, it

also entails substantial storage requirements. Several recent

works use codebooks to quantize and reduce storage for var-

ious Gaussian parameters [12, 19, 20]. Others use the spa-

tial relationships between neighboring Gaussians to reduce

the number of parameters [2, 14, 15, 18]. Although these

methods tout high compression rates, they modify the un-

derlying primitives and training framework of 3D-GS. They

also do not necessarily reduce the number of primitives and

are, therefore, orthogonal to our work. We apply one such

technique, Vectree Quantization [3], to further compress our

pruned scenes in Section 5.3.3.

A recent pruning-based method, Compact-3DGS [12],

proposes a learnable masking strategy to prune small, trans-

parent Gaussians during training. EAGLES [4], which we

apply our pipeline to in Appendix A.5, prunes Gaussians

based on the least total transmittance per Gaussian. They

also begin with low-resolution images, progressively in-

creasing image resolution to reduce Gaussian densification

during training, then quantize several attributes to reduce

disk storage. LightGaussian [3] computes a global signif-

icance score for each Gaussian with heuristics, uses that

score to prune the least significant Gaussians, and finally

uses quantization to further reduce storage requirements.
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3. Background: 3D Gaussian Splatting

3D Gaussian Splatting (3D-GS) is a point-based novel view

synthesis technique that uses 3D Gaussians to model the

scene. The attributes of the Gaussians are optimized over

input training views given by a set of camera poses Pgt =
{φi ∈ R

3×4}Ki=1 and corresponding ground truth training

images Igt = {Ii ∈ R
H×W }Ki=1. A sparse point cloud of

the scene generated by Structure from Motion (SfM) over

the training views is used to initialize the Gaussians. At

fixed intervals during training, a Gaussian densification step

is applied to increase the number of Gaussians in areas of

the model where small-scale geometry is insufficiently re-

constructed.

Each 3D Gaussian Gi is independently parameterized by

position xi ∈ R
3, scaling si ∈ R

3, rotation ri ∈ R
4, base

color ci ∈ R
3, view-dependent spherical harmonics hi ∈

R
15×3, and opacity αi ∈ R. From these, we define the set

of all Gaussian parameters as:

G = {Gi = {xi, si, ri, ci, hi, αi}}
N
i=1, (1)

where N is the total number of Gaussians in the model.

During view synthesis, the scaling parameters si and ro-

tation parameters ri are converted into the scaling and ro-

tation matrices Si and Ri. The Gaussian Gi is spatially

characterized in the 3D scene by its center point, or mean

position, xi and a decomposable covariance matrix Σi:

Gi(xi) = e−
1

2
xT
i Σ

−1

i
xi ,Σi = RiSiS

T
i R

T
i . (2)

For a given camera pose φ, a differentiable rasterizer ren-

ders 2D image IG(φ) by projecting all Gaussians observed

from φ onto the image plane. The color of each pixel p in

IG(φ) is given by the blending of the N ordered Gaussians

that overlap it:

C(p) =
∑

i∈N

c̃iα̃i(p)
i−1∏

j=1

(1− α̃j(p)), (3)

where c̃i represents the view-dependent color calculated

from the camera pose φ and the optimizable per-Gaussian

color ci and spherical harmonics hi, and α̃i(p) represents

the projected Gaussian value at p times the Gaussian’s opac-

ity αi.

The 3D-GS model is trained by optimizing the loss func-

tion L via stochastic gradient descent:

L(G|φ, Igt) = ||IG(φ)− Igt||1 +LSSIM (IG(φ), Igt), (4)

where the first term is a L1 residual loss and the second term

is a SSIM loss.

4. Method

3D scene reconstruction is an inherently underconstrained

problem. Capturing a scene as a set of posed images

(Pgt, Igt) involves projecting it onto the 2D image plane

of each view. As illustrated by Figure 2, this introduces un-

certainty in the locations and sizes of the Gaussians recon-

structing the scene: a large Gaussian far from the camera

can be equivalently modeled in pixel space by a small Gaus-

sian close to the camera. In other words, Gaussians that

are not perceived by a sufficient number of cameras may

be able to reconstruct the input view image from a range of

locations and scales.

We define uncertainty in 3D-GS as the amount that a

Gaussian’s parameters, such as its location and scale, can be

perturbed without affecting the reconstruction loss over the

input views. Concretely, this is the sensitivity of the error

over the input views to that particular Gaussian. Given a

loss function L : RG → R that takes the set of Gaussians G
as inputs and outputs an error value over the set of training

views, this sensitivity can be captured by the Hessian ∇2
GL.

In the following subsections, we demonstrate how to

compute this sensitivity and use it to decide which Gaus-

sians to prune from the model. Directly computing the full

Hessian matrix is intractable due to memory constraints.

We demonstrate how to obtain a close estimate of the Hes-

sian via a Fisher approximation in Section 4.1. We also

find that only a block-wise approximation of the Hessian pa-

rameters is needed to quantify Gaussian sensitivity in Sec-

tion 4.2, and that computing this over image patches is suf-

ficient for pruning in Section 4.3. Finally, we find that mul-

tiple rounds of pruning and fine-tuning improves our per-

formance over one-shot pruning and fine-tuning, giving our

full PUP 3D-GS pipeline in Section 4.4.

4.1. Fisher Information Matrix

To obtain a per-Gaussian sensitivity, we begin by taking the

L2 error over the input reconstruction images IG :

L2 =
1

2

∑

φ∈Pgt

||IG(φ)− Igt||
2
2. (5)

Differentiating this twice gives us the Hessian:

∇2
GL2 =

∑

φ∈Pgt

∇GIG(φ)∇GIG(φ)
T+(IG(φ)−Igt)∇

2
GIG(φ).

(6)

On a converged 3D-GS model, the ||IG−Igt||1 residual term

of Equation 4 approaches zero, causing the second order

term (IG(φ)− Igt)∇
2
GIG in Equation 6 to vanish:

∇2
GL2 =

∑

φ∈Pgt

∇GIG(φ)∇GIG(φ)
T . (7)

This is identified as the Fisher Information matrix in re-

lated literature [5, 7]. We provide an explicit derivation of

the Fisher Information matrix from this L2 loss along with

a Bayesian interpretation of our method in Appendix A.1.
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Figure 2. Spatial uncertainty arises from limited views because there are multiple possible 3D Gaussian locations that map to the same

projected Gaussian in pixel space (a). This is reduced when multiple cameras observe previously unconstrained Gaussians (b).

Note that ∇GIG is the gradient over only the reconstructed

images, so our approximation only depends on the input

poses Pgt and not the input images Igt.

4.2. Sensitivity Pruning Score

The full Hessian over the model parameters ∇2
GL ∈ R

G×G

is quadratically large. However, we find that using only a

subset of these parameters is sufficient for an effective sen-

sitivity pruning score. For brevity, we remove the Pgt terms.

To obtain sensitivity scores for each Gaussian Gi, we re-

strict ourselves to the block diagonal of the Hessian that

only captures inter-Gaussian parameter relationships. This

allows us to use each block as a per-Gaussian Hessian from

which we can obtain an independent sensitivity score:

Hi = ∇Gi
IG∇Gi

ITG , (8)

where ∇Gi
is the gradient with respect to the parameters

of Gaussian Gi. Intuitively, each block Hessian Hi mea-

sures the isolated impact that perturbing only Gi’s parame-

ters would have on the reconstruction error. To turn Hi into

a sensitivity score Ũi ∈ R, we take its log determinant:

Ũi = log |Hi| = log |∇Gi
IG∇Gi

ITG |. (9)

This captures the relative impact of all the parameters of

Gaussian Gi on the reconstruction error. Specifically, it is

a relative volume measure of the basin around the Gaus-

sian parameters Gi in the second-order approximation of the

function describing their impact on the reconstruction error.

We find that we can restrict the per Gaussian parameters

even further and consider only the spatial mean xi and scal-

ing si parameters for an effective sensitivity score. Our final

sensitivity pruning score Ui ∈ R is:

Ui = log |∇xi,siIG∇xi,siI
T
G |. (10)

We speculate that only the mean and scaling parameters

are needed because they capture the projective geometric

invariances that exist between the 3D scene and the in-

put views as shown in Figure 2. Rotations – the remain-

ing geometric parameters – are excluded because they do

not induce a change of 3D geometry when invariances are

present. We ablate the choice of parameters in Section 6.3.

4.3. Patch­wise Uncertainty

The computation of the Hessian over the entire scene re-

quires a sum over all per-pixel Fisher approximations of the

reconstructed input views. However, we empirically ob-

serve that sensitivity scores computed over image patches

are highly correlated with those computed over individual

pixels. Specifically, we compute the Fisher information ap-

proximation on image patches by rendering downsampled

images and computing the Fisher approximation on each

of their pixels. Then, we obtain the scene-level Hessian

by summing the patch-wise Fisher approximations over all

views. We use 4× 4 image patches in our experiments and

ablate our choice of patch size in Appendix A.2.

4.4. Multi­Round Pipeline

Similar to LightGaussian [3], we prune the model and then

fine-tune it without further Gaussian densification. For

brevity, we will refer to this process as prune-refine. We

find that, in many circumstances, the model is able to re-

cover the small ||IG − Igt||1 residual after fine-tuning, al-

lowing us to repeat prune-refine over multiple rounds. We

empirically notice that multiple rounds of prune-refine out-

performs an equivalent single round of prune-refine. Details

of this evaluation are in Section 6.1.
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Figure 3. The average metrics over all scenes in the Mip-NeRF 360 dataset after pruning with different percentages in our two-round

pipeline. PSNR and SSIM decrease and LPIPS and FPS increase with more pruning. Per-round percentages are selected in 5% intervals

and the model is fine-tuned for 5, 000 iterations in each round. The red dots at (80%, 50%) represent our percentages for 90% compression.

5. Experiments

5.1. Datasets

We evaluate our approach on the same challenging, real

world scenes as 3D-GS [9]. All nine scenes from the Mip-

NeRF 360 dataset [1], which consists of five outdoor and

four indoor scenes that each contain a complex central ob-

ject or viewing area and a detailed background, are used.

Two outdoor scenes, truck and train, are taken from the

Tanks & Temples dataset [11], and two indoor scenes, dr-

johnson and playroom, are taken from the Deep Blending

dataset [6]. For consistency, we use the COLMAP [23]

camera pose estimates that were provided by the creators

of the datasets.

5.2. Implementation Details

Our method, PUP 3D-GS, can be applied to any 3D-GS

model. We implement the Hessian computation as a CUDA

kernel in the original 3D-GS codebase [9], then adapt the

pruning and refining framework from LightGaussian [3]

to accommodate our uncertainty estimate and multi-round

pruning method. For a fair comparison, we run LightGaus-

sian and our pipeline on the same pretrained 3D-GS scenes.

Rendering speeds are collected using a Nvidia RTXA4000

GPU in frames per second (FPS).

5.3. Results

5.3.1. Analysis of PUP 3D­GS Pipeline

The efficacy of our PUP 3D-GS pipeline is demonstrated by

Table 1, where we record the mean of each metric over the

Mip-NeRF 360 dataset. Pruning 80% of Gaussians from the

original 3D-GS model more than doubles its FPS while de-

grading PSNR, SSIM, and LPIPS. Fine-tuning the pruned

model for 5,000 iterations recovers the image quality met-

rics with only a slight decrease in rendering speed. Pruning

50% of the remaining Gaussians, such that a total of 90%
of Gaussians are pruned from the base 3D-GS scene, causes

another drop in the image quality metrics. However, we re-

cover most of this degradation by fine-tuning this signifi-

cantly smaller model for another 5,000 iterations. Render-

ing speed is more than tripled over the 3D-GS model.

Table 1. Mean PSNR, SSIM, LPIPS, FPS, and point cloud size

for the Mip-NeRF 360 dataset at each stage of our PUP 3D-GS

pipeline. The operation in each row is applied cumulatively to all

of the following rows.

Methods PSNR↑ SSIM↑ LPIPS↓ FPS↑ Size (MB)↓

3D-GS 27.47 0.8123 0.2216 63.88 746.46

+ Prune 80% 21.00 0.7075 0.3075 167.93 149.29

+ Refine 26.97 0.7991 0.2444 148.28 149.29

+ Prune 50% 22.63 0.7021 0.3316 241.97 74.65

+ Refine 26.67 0.7862 0.2719 204.81 74.65
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GT 3D-GS Ours LightGaussian

Figure 4. Visual comparison after two rounds of prune-refine using our and LightGaussian’s methods. Top: bonsai from Mip-NeRF 360.

Middle: room from Mip-NeRF 360. Bottom: train from Tanks & Temples. Additional visualizations are presented in Appendix A.6.

5.3.2. Comparison with LightGaussian

Figure 3 compares our spatial uncertainty estimate against

LightGaussian’s global significance score at different per-

round pruning percentages in our two-round prune refine

pipeline. After each round of pruning, the models are

fine-tuned for 5, 000 iterations for a total of 10, 000 itera-

tions. The per-dataset means of each metric are illustrated

as heatmaps. As illustrated by the contour lines, our method

consistently outperforms LightGaussian across all metrics

and pruning percentage permutations.

We choose to prune 80% then 50% of the Gaussians in

the first and second rounds of pruning to optimize image

quality and rendering speed at 90% pruning, a significantly

higher compression ratio than previous methods. Table 2

compares our 90% pruning results against LightGaussian’s

using the per-dataset mean of each metric. We show that

our spatial uncertainty estimate outperforms LightGaussian

across nearly every metric – the lone exception is PSNR in

the Tanks & Temples dataset, where we are outperformed

by LightGaussian by 0.36 points. Our choice of pruning

percentages is further ablated in Section 6.2.

In Figure 4, we report qualitative results on one scene

taken from each dataset. The magnified regions demon-

strate that our method retains many fine foreground details

that are not preserved by LightGaussian. Error residual vi-

sualizations with respect to the ground truth images and

original 3D-GS renders are available in Appendix A.7; vi-

sualizations of other scenes are provided in Appendix A.6.

Table 2. Comparison of our PUP 3D-GS pipeline against Light-

Gaussian [3]. In both methods, we prune-refine 80% of the Gaus-

sians from the 3D-GS model and then 50% of the remaining Gaus-

sians for a total of 90%. The final sizes are identical. PUP 3D-GS

increases the rendering speed of 3D-GS by 3.56× on average. Per-

scene metrics for each dataset are recorded in Appendix A.4.

Datasets Methods PSNR↑ SSIM↑ LPIPS↓ FPS↑ Size (MB)↓

MipNeRF-360

3D-GS 27.47 0.8123 0.2216 64.07 746.46

LightGaussian 26.28 0.7622 0.3054 162.12 74.65

Ours 26.67 0.7862 0.2719 204.81 74.65

Tanks & Temples

3D-GS 23.77 0.8458 0.1777 97.86 433.24

LightGaussian 23.08 0.7950 0.2634 329.03 43.33

Ours 22.72 0.8013 0.2441 391.10 43.33

Deep Blending

3D-GS 28.98 0.8816 0.2859 66.79 699.19

LightGaussian 28.51 0.8675 0.3292 234.10 69.92

Ours 28.85 0.8810 0.3015 301.43 69.92

We speculate that the visibility score in LightGaussian’s

importance sampling heuristic is biased towards retaining

larger Gaussian because they have a higher probability of

being visible in more pixels across the training views. In

Figure 5, we plot the distributions of the log determinants

of the Gaussian covariances over the scenes visualized in

Figure 4. The distributions skew more heavily towards

larger Gaussians in the scenes pruned with LightGaussian’s

pipeline than ours.

5.3.3. Vectree Quantization

We apply Vectree Quantization – a compression method that

is orthogonal to pruning – from the LightGaussian frame-

work [3] to further compress our pruned models. Our final
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Figure 5. Histograms of the distribution of Gaussians over the log of their volumes for the bonsai, room, and train scenes after two rounds

of prune-refine. PUP 3D-GS retains smaller Gaussians than LightGaussian, consistent with its higher rendering speed and visual fidelity.

models are smaller than the unpruned 3D-GS scenes by an

average of 51.70×, 52.56×, and 51.06× for the Mip-NeRF

360, Tanks & Temples, and Deep Blending datasets. De-

tailed results are in Table 3. We also apply our method to

EAGLES [4], another orthogonal method, in Appendix A.5.

Table 3. Vectree Quantization comparison with LightGaussian af-

ter pruning to 90%. PUP 3D-GS outperforms LightGaussian in

terms of image quality, rendering speed, and now size.

Datasets Methods PSNR↑ SSIM↑ LPIPS↓ FPS↑ Size (MB)↓

Mip-NeRF 360

3D-GS 27.47 0.8123 0.2216 64.07 746.46

LightGaussian 24.65 0.7302 0.3341 162.34 14.44

Ours 24.93 0.7584 0.2988 205.97 14.44

Tanks & Temples

3D-GS 23.77 0.8458 0.1777 97.86 433.24

LightGaussian 21.88 0.7679 0.2886 331.47 8.53

Ours 21.61 0.7787 0.2670 389.18 8.49

Deep Blending

3D-GS 28.98 0.8816 0.2859 66.79 699.19

LightGaussian 27.90 0.8586 0.3403 233.28 13.38

Ours 28.24 0.8735 0.3108 300.15 13.30

6. Ablations

6.1. Multi­Round Pruning

A core component of our pipeline is multiple rounds of

prune-refine. In Table 4, we compare the mean image qual-

ity metrics and FPS over the Mip-NeRF 360 scenes when

we prune using our two step prune-refine method against

pruning 90% of Gaussians in a single round with an equiv-

alent number of fine-tuning steps. Two-round pruning pro-

duces better measurements across all metrics.

The number of pruning percentage permutations in-

creases exponentially as the number of rounds increases, so

we use interpolation to compare two against three rounds of

pruning on the Mip-NeRF 360 bicycle scene in Figure 6.

Three-round pruning is substantially worse at lower per-

centages and only slightly better at higher percentages. We

choose the simpler two-round approach for our pipeline be-

cause both configurations outperform LightGaussian by a

much larger margin at 90%.

Table 4. One step of pruning 90% of Gaussians from 3D-GS and

then fine-tuning for 10,000 iterations, versus pruning 80% then

50% of Gaussians and fine-tuning for 5,000 iterations in each step.

In both methods, 90% of Gaussians are pruned cumulatively and

the model is fine-tuned for 10,000 total steps. Our multi-round

approach outperforms the one-round approach across all metrics.

Methods
Mip-NeRF 360

PSNR↑ SSIM↑ LPIPS↓ FPS↑ Size (MB)↓

3D-GS 27.47 0.8123 0.2216 95.59 746.46

Prune 90% + 10K Fine-tune 26.12 0.7761 0.2807 189.95 74.65

Prune 80% + 50% (5K Each) 26.67 0.7862 0.2719 204.81 74.65

6.2. Per­Round Pruning Percentages

We choose to prune 90% of Gaussians, substantially more

than previous methods, because preserving visual fidelity at

extreme compression ratios is challenging. Figure 7 plots

the metrics for each permutation of per-round pruning per-

centages that results in approximately 90% total pruning.

Pruning 80% then 50% of the Gaussians in the first and sec-

ond rounds optimizes image quality and rendering speed at

exactly 90% total pruning. Our method outperforms Light-

Gaussian across all metrics and percentage permutations.

6.3. Spatial vs. Color Parameters

Another component of our method is restricting our sensi-

tivity pruning score to only the mean and scale parameters

of each Gaussian. We choose to exclude rotations, the re-

maining geometric parameters, because they do not induce

a change in 3D geometry when invariances are present. Fur-

thermore, including rotation parameters produces 10 × 10
Fisher Information matrices that are 2.78× larger than the

6 × 6 mean and scale parameter-only matrices used in our

method, inducing significant additional computational over-

head. It is no longer possible to run the pruning pipeline on

the Nvidia RTXA4000 GPU used for our other experiments

due to memory constraints, necessitating more expensive

hardware like the Nvidia RTXA5000.

Table 5 shows that image quality decreases if we include
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Figure 6. Summary results on the MipNeRF-360 bicycle scene for

2× and 3× prune-refine rounds. We plot the mean and standard

deviation of 2× for all cumulative pruning percents in Figure 3,

computed via cubic interpolation, then do the same for 3× with

10% pruning intervals. The dotted red line denotes our target 90%
cumulative percentage; per-round results are ablated in Figure 7.

the rotation parameters in our mean and scale parameter

sensitivity score. Image quality also decreases if we use

the RGB color parameters of the Gaussians to compute our

sensitivity score instead. We speculate that the lower perfor-

mance of the RGB sensitivity score is due to its similarity

with LightGaussian’s visibility score – the change in the L2

error over the training images with respect to perturbations

in the RGB value of a Gaussian correlates with its visibility

across the training views.

Table 5. Results from our two step prune-refine pipeline when

computing sensitivity via our score, our score with rotation param-

eters, and RGB color parameters. Our spatial score outperforms

the spatial with rotation and RGB color scores.

Methods
Mip-NeRF 360

PSNR↑ SSIM↑ LPIPS↓ FPS↑ Size (MB)↓

3D-GS 27.47 0.8123 0.2216 95.59 746.46

Ours 26.67 0.7862 0.2719 204.81 74.65

Ours + Rotation 26.79 0.7861 0.2726 177.30 74.65

RGB Sensitivity 26.40 0.7798 0.2769 195.76 74.65

7. Limitations

A limitation of our approach is that it assumes that the scene

is converged because the Fisher approximation requires a

small L1 residual to be accurate. We find that a small resid-

Figure 7. Results for the MipNeRF-360 bicycle scene when prun-

ing approximately 90% of Gaussians with varying per-round per-

centages in our two-round pipeline. The dotted black line denotes

our chosen pruning percentages of 80% then 50%; the 90% means

from Figure 6 are also shown as dotted lines. Appendix A.3 reports

the average metrics across all scenes in the MipNeRF-360 dataset.

ual is preserved even after removing 80% of the Gaussians

with prune-refine, allowing for a second round of pruning,

as shown in Section 4.4. Another limitation is that the mem-

ory requirement for computing the Fisher matrices is pro-

portional to N × 36, where N is the total number of Gaus-

sians. We do not find this size to be prohibitive on Nvidia

RTXA4000 or larger GPUs.

8. Conclusion

In this work, we propose PUP 3D-GS: a new post-hoc

pipeline for pruning pretrained 3D-GS models without

changing their training pipelines. It uses a novel, mathemat-

ically principled approach for choosing which Gaussians to

prune by assessing their sensitivity to the reconstruction er-

ror over the training views. This sensitivity pruning score

is derived from a computationally tractable Fisher approx-

imation of the Hessian over that reconstruction error. We

use our sensitivity score to prune Gaussians from the re-

constructed scene, then fine-tune the remaining Gaussians

in the model over multiple rounds. After pruning 90% of

Gaussians, PUP 3D-GS increases average rendering speed

by 3.56×, while retaining more salient foreground informa-

tion and achieving higher image quality metrics than exist-

ing techniques on scenes from the Mip-NeRF 360, Tanks &

Temples, and Deep Blending datasets.
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A. Appendix

A.1. Fisher Information Derivation: A Bayesian
Interpretation of PUP 3D­GS

The Fisher Information is the variance of the score:

I(θ) = Eθ[(∇θ log p(x|θ))
2]. (11)

Lemma 5.3 from [13] gives that this is equivalent to:

I(θ) = Eθ[−∇θ∇θ log p(x|θ)], (12)

assuming log p(x|θ) is twice differentiable and with certain

regularity conditions.

To start, we reformulate our L2 objective as a log-

likelihood:

− log p(I|Φ,G) = E(I,φ)∼(I,Φ)[(I−IG(φ))
T (I−IG(φ))],

(13)

where I is the set of ground truth image, Φ is the set

of their corresponding poses, G are the model Gaussian pa-

rameters, IG(φ) is the rendering function for pose φ, and we

assume that the error follows a Gaussian distribution.

We can take the Laplace approximation of the log of the

posterior distribution over the model parameters G on the

converged scene parameters Ĝ as:

− log p(G|I,Φ) ≈ − log p(Ĝ|I,Φ)+
1

2
(G−Ĝ)H(Ĝ)(G−Ĝ),

(14)

where:
H(Ĝ) = −∇G∇G log p(Ĝ|I,Φ). (15)

If we assume a uniform prior, then our claimed Fisher In-

formation matrix from Section 4.1 is precisely the Hessian

H(Ĝ) of this posterior.

From this formulation of our Fisher Information matrix,

Proposition 3.5 from [10] gives that the log determinant of

the Fisher as the entropy of the second order approximation

of p(G|I,Φ) around Ĝ. If we restrict the posterior to a par-

ticular Gaussian’s parameters Gi, giving p(Gi|I,Φ), the log

determinant of the block diagonal element corresponding

to this Gaussian is a measure of entropy for that particular

Gaussian. This interpretation gives our pruning scores as a

ranking of the Gaussians by their entropy on this posterior.

A.2. Ablation on Patch Size

We ablate our choice of patch size in Table 6. Notice that,

although the 4 × 4 patches that we use in our experiments

produce slightly better image quality metrics, the 2× 2 and

64× 64 patches also produce similar results.

A.3. Ablation on Per­Round Pruning Percentages

Figure 8 plots the average metrics for each permutation of

per-round pruning percentages that results in approximately

90% total pruning across all scenes in the Mip-NeRF 360

Table 6. Mean PSNR, SSIM, LPIPS, FPS, and point cloud size for

the Mip-NeRF 360 dataset using our sensitivity score computed

with 2× 2, 4× 4 and 8× 8 patches.

Methods
Mip-NeRF 360

PSNR↑ SSIM↑ LPIPS↓ FPS↑ Size (MB)↓

3D-GS 27.47 0.8123 0.2216 83.88 746.46

2× 2 26.46 0.7869 0.2742 218.59 74.65

4× 4 (Ours) 26.67 0.7862 0.2719 204.81 74.65

8× 8 26.53 0.7775 0.2780 189.23 74.65

dataset. Similar to the bicycle scene evaluated in Figure 7,

pruning 80% of Gaussians in the first round and then 50% in

the second optimizes image quality and rendering speed at

exactly 90% total pruning. Our method outperforms Light-

Gaussian across all metrics and per-round pruning percent-

age permutations.

Figure 8. The average PSNR, SSIM, LPIPS, and FPS across the

MipNeRF-360 dataset scene after pruning approximately 90% of

Gaussians with different per-round percentages in our two-round

pipeline. The dotted red line denotes our chosen per-round pruning

percentages of 80% then 50%.

A.4. Scene Evaluations

PSNR, SSIM, LPIPS, and FPS for each scene from the Mip-

NeRF 360, Tanks&Temples, and Deep Blending datasets

that was used in 3D-GS [9] are recorded in Tables 7, 8,

9, and 10, respectively. Note that the sizes of the pruned

scenes in this section are identical because exactly 90% of

Gaussians were removed from each of them using our two

step prune-refine method. FPS is collected using a Nvidia

RTXA4000 GPU.

11



Table 7. PSNR on each scene after two steps of prune-refine.

Methods
Mip-NeRF 360 Tanks&Temples Deep Blending

bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline (3D-GS) 25.09 32.25 29.11 21.34 27.28 31.57 31.51 26.55 22.56 22.10 25.43 28.15 29.81

LightGaussian 24.34 29.64 27.57 20.70 25.78 29.45 30.65 25.88 22.49 21.35 24.81 27.73 29.29

Ours 24.72 30.64 28.00 20.86 26.23 29.83 31.03 26.30 22.39 21.03 24.40 28.00 29.71

Table 8. SSIM on each scene after two steps of prune-refine.

Methods
Mip-NeRF 360 Tanks&Temples Deep Blending

bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline (3D-GS) 0.7467 0.9457 0.9140 0.5875 0.8558 0.9317 0.9255 0.7687 0.6352 0.8134 0.8782 0.8778 0.8854

LightGaussian 0.6801 0.8921 0.8562 0.5343 0.7833 0.8830 0.8989 0.7256 0.5956 0.7349 0.8512 0.8546 0.8747

Ours 0.7270 0.9261 0.8917 0.5548 0.8189 0.9128 0.9152 0.7570 0.6248 0.7600 0.8541 0.8762 0.8861

Table 9. LPIPS on each scene after two steps of prune-refine.

Methods
Mip-NeRF 360 Tanks&Temples Deep Blending

bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline (3D-GS) 0.2442 0.1811 0.1838 0.3602 0.1225 0.1165 0.1973 0.2429 0.3460 0.2077 0.1476 0.2895 0.2823

LightGaussian 0.3338 0.2568 0.2801 0.4258 0.2407 0.2042 0.2625 0.3132 0.4315 0.3227 0.2041 0.3383 0.3201

Ours 0.2965 0.2281 0.2297 0.4211 0.1997 0.1545 0.2278 0.2836 0.4062 0.2967 0.1916 0.3067 0.2963

Table 10. FPS on each scene after two steps of prune-refine. Results were collected with a Nvidia RTXA4000 GPU.

Methods
Mip-NeRF 360 Tanks&Temples Deep Blending

bicycle bonsai counter flowers garden kitchen room stump treehill train truck drjohnson playroom

Baseline (3D-GS) 32.32 106.65 79.70 66.48 37.60 64.46 76.31 54.04 59.08 114.45 81.26 56.79 76.79

LightGaussian 110.94 208.15 168.48 182.28 133.77 165.98 172.46 169.98 147.03 378.50 279.55 206.94 261.27

Ours 127.85 289.21 222.77 205.21 164.79 237.66 231.63 179.38 184.78 494.76 287.44 284.81 318.06

A.5. Prune­Refining EAGLES

In Table 11, we ablate our PUP 3D-GS pipeline against

LightGaussian’s pipeline on an EAGLES [4] model of the

Mip-NeRF 360 bicycle scene. Notice that the base EA-

GLES model produces similar metrics to vanilla 3D-GS de-

spite being 2.51× smaller than it. By applying PUP 3D-GS

to the EAGLES model, we further reduce its size to 25.14×
smaller than the vanilla 3D-GS model while achieving bet-

ter image quality and rendering speed than LightGaussian.

Table 11. Results from training EAGLES [4] on the bicycle scene

and then running two steps of prune-refine with our and Light-

Gaussian’s methods.

Methods
Mip-NeRF 360 Bicycle Scene

PSNR↑ SSIM↑ LPIPS↓ FPS↑ Size (MB)↓

3D-GS 25.09 0.7467 0.2442 32.12 1345.58

Baseline (EAGLES) 25.07 0.7508 0.2433 47.82 535.21

EAGLES + LightGaussian 23.57 0.6082 0.4039 109.26 53.52

EAGLES + Ours 24.01 0.6686 0.3566 144.56 53.52

A.6. Additional Scene Visualizations

Figure 9 provides a visual comparison of the ground truth

image against renderings from the 3D-GS model before and

after pruning with our PUP 3D-GS and LightGaussian’s

pipelines. Notice that our method consistently achieves

higher visual fidelity and retains more salient foreground

information like individual leaves and legible text.

A.7. Scene Residuals

Figures 10 and 11 provide visual comparisons of the L1s

residual of renderings from the 3D-GS model before and

after pruning 90% of Gaussians with our PUP 3D-GS and

LightGaussian’s pipelines. Figure 10 compares the L1

residuals with respect to the ground truth image, while Fig-

ure 11 compares them with respect to renderings from the

base 3D-GS model. In both cases, our PUP 3D-GS pipeline

produces less L1 error than LightGaussian’s.

12



Figure 9. Visual comparison after two rounds of prune-refine using our method and LightGaussian’s method. Top: bicycle from the Mip-

Nerf 360 dataset. Middle: stump from the Mip-Nerf 360 dataset. Bottom: playroom from the Deep Blending dataset. A larger example

image of playroom can be found in Figure 1.
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Figure 10. Visual comparison after two rounds of prune-refine using our method and LightGaussian’s with additional L1 error visualizations

against the ground truth images. Columns ”GT”, ”Ours”, and ”LightGaussian” are the same as in Figure 4. Columns ”Ours L1 Error” and

”LG L1 Error” are the L1 Error images of our method and LightGaussian against the ground truth images.
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Figure 11. Visual comparison after two rounds of prune-refine using our method and LightGaussian’s with additional L1 error visual-

izations against renderings from the base 3D-GS model. Columns ”3D-GS”, ”Ours”, and ”LightGaussian” are the same as in Figure 4.

Columns ”Ours GS L1 Error” and ”LG GS L1 Error” are the L1 error images of our method and LightGaussian against the original 3D-GS

reconstruction of the scene.
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