
Real-Time Human Detection in Uncontrolled Camera Motion Environments

Mohamed Hussein Wael Abd-Almageed Yang Ran Larry Davis
Institute for Advanced Computer Studies

University of Maryland
{mhussein, wamageed, rany, lsd}@umiacs.umd.edu

Abstract

In environments where a camera is installed on a freely
moving platform, e.g. a vehicle or a robot, object detection
and tracking becomes much more difficult. In this paper,
we presents a real time system for human detection, track-
ing, and verification in such challenging environments. To
deliver a robust performance, the system integrates several
computer vision algorithms to perform its function: a hu-
man detection algorithm, an object tracking algorithm, and
a motion analysis algorithm. To utilize the available com-
puting resources to the maximum possible extent, each of
the system components is designed to work in a separate
thread that communicates with the other threads through
shared data structures. The focus of this paper is more on
the implementation issues than on the algorithmic issues of
the system. Object oriented design was adopted to abstract
algorithmic details away from the system structure.

1 Introduction

The problem of object detection and tracking in video se-
quences becomes much harder when the camera is allowed
to move uncontrollably. If the object of interest is a de-
formable object, like a human, the problem becomes even
more challenging. Nevertheless, several interesting appli-
cations are waiting for solutions to this problem. A mod-
ern car prepared with a digital camera and a computer vi-
sion software for human detection can automatically avoid
running over pedestrians. A military unmanned vehicle
equipped with similar technology can automatically detect
and deal with an enemy before being attacked.

In this paper, a real-time computer vision system for hu-
man detection and tracking in uncontrolled moving cam-
era platforms is presented. The contribution presented in
this paper is not in the algorithmic aspect of the system.
Rather, our focus is on the system design and implemen-
tation aspects. Namely, our design was made to achieve
two main goals: robustness and efficiency. Robustness was

achieved through integration of algorithms, for human de-
tection, tracking, and motion analysis, in one framework so
that the final decision is based on the agreement of more
than one algorithm. Efficiency was achieved through multi-
threaded design and usage of a high performance library. A
final merit of our system is its object oriented design. Object
orientation was adopted to abstract the algorithmic details
away from the system design so that we can easily experi-
ment with different algorithms. Therefore, our system can
be regarded as a testbed in testing different algorithms for
human detection, tracking, and motion analysis.

The rest of the paper is organized as follows: Section 2
explores some of the related works. Section 3 explains our
system design in detail. Section 4 briefly introduces the al-
gorithms used in our implementation. Section 5 presents
some experimental results. Finally, Sec. 6 concludes our
paper.

2 Related Work

Since our focus in this paper is on the implementation
issues of our system, a review of technical approaches in
video surveillance will not be much relevant. For a global
overview on automated surveillance systems, the reader is
referred to [4]. Readers interested in broader and deeper
coverage of technical details are referred to any recent sur-
vey on video surveillance, such as [8], [13], or [7]. For com-
pleteness of the discussion, we selected few systems that are
relevant to ours in function to describe briefly here.

Perhaps, a closely related system to ours is the DETER
system [9]. DETER can detect and track humans, and can
analyze the trajectory of their motion for threat evaluation.
TheW 4 system [6] detects humans and their body parts and
analyzes some simple interactions between humans and ob-
jects. In [11], the idea of combining several cues together to
enhance the robustness of tracking was utilized. Our system
utilizes a similar idea with one step further. It uses differ-
ent algorithms with different cues instead of one algorithm
with different cues. IBM S3-R1 [5] can detect, track, and
classify moving objects in a scene, encodes detected activ-

1

ities, and stores all the information on a database server to
enable a broad range of queries on it. We have to make it
clear that all these systems, though close to ours in function,
work only in a static camera environment, but, our system
works in an uncontrolled moving camera environment.

3 System Design

In this section, the details of our system design and
implementation are explained. To make the paper self-
contained, in Sec. 4, the algorithms used in our current im-
plementation are briefly introduced.

3.1 Objectives

As mentioned before, two main objectives underly our
system design: robustness and efficiency. To deliver a ro-
bust operation, our system utilizes more than one algorithm
to identify a human in a video sequence. Each algorithm
uses a different visual cue to make its decision. The final
output is based on the agreement of these cues. Namely,
our system integrates a human detection algorithm, an ob-
ject tracking algorithm, and a motion analysis algorithm.
The human detection algorithm uses the shape as a cue to
decide whether a part of the image contains a human or not.
Thereafter, the tracking algorithm uses the intensity cue to
track the detected object over time. Finally, the motion anal-
ysis algorithm utilizes the motion periodicity cue to verify
whether the detected and tracked object moves like a human
or not. Each of the three algorithms can be viewed as a filter
that filters out false alarms produced by the preceding one.

To confront computational complexity and deliver real
time performance, the system was designed to utilize as
much as possible from the available computational re-
sources. That is achieved via multi-threading, efficient
inter-thread communication, and using a high performance
library. Multi-threading removes the unnecessary blocking
of a system component when a dependent component is
working. For example, the object tracking component does
not need to block until the motion analysis is performed.
To reduce the communication burden between threads, the
shared memory between threads is kept to minimum. Each
two communicating threads share a data structure that is ac-
cessed only by them in a consumer-producer fashion. Fi-
nally, Intel Integrated Performance Primitives (IPP) library
[12], which is a highly optimized library for image process-
ing and low level computer vision tasks, is used in our im-
plementation.

3.2 System Architecture

Figure 1 depicts the architecture of our system. The
main modules of our system, as they are shown in Fig. 1,

from left to right, are: the frame grabbing module, the hu-
man detection module, the object tracking module, the mo-
tion analysis module, and finally the output module. Input
of the system is video frames obtained either online from
a video camera, or off-line from a video file or individual
video frame files. The output can be shown online or stored
to the disk for further analysis.

Each of the modules runs in a separate thread and data is
passed from one module to another via a shared data struc-
ture. Details of inter-thread communication are given in
Sec. 3.4.

3.3 System Components

In this section, we describe the operation of each module
in the system.

3.3.1 Frame Grabbing Module

The frame grabbing module is responsible for dealing with
the input device. The input device can be a digital video
camera connected to the computer, or a storage device on
which a video file or individual video frames are stored.
This module abstracts the nature of the input device away
from the rest of the system so that changing the input device
does not affect the rest of the system.

3.3.2 Human Detection Module

This module is responsible for invoking the detection algo-
rithm. Ideally, the detection algorithm is to be run on each
input frame. However, this will inhibit the system from
meeting its real time requirements. Instead, the detection
algorithms in our implementation is invoked every two sec-
onds. The location of the human targets in the remaining
time is determined by tracking the detected humans using
the tracking algorithm.

To further speed up the process, the detection algorithm
does not look for humans in the entire frame. Instead,
it looks for humans in the regions determined to be fore-
ground regions. To determine the foreground regions, a
stabilization algorithm is used to align the current frame
with a preceding frame and with a succeeding frame. Af-
ter alignment, the current frame is subtracted from the two
other frames. The result of each subtraction is thresholded
to form a binary image that represents the locations of fore-
ground objects in the two subtracted frames. To know the
locations of the foreground objects in the current frame, the
results of the two subtractions are combined by an AND op-
eration. The subtraction is performed in the hue channel of
the HSV color space.

2

Queue Element:

Frame Detections Queue

Queue Element:

+ Frame Pointer

+ List of Detections

Output Frames Queue

Queue Element

+ Frame Pointer

+ Verified Detections

Tracking Results

+ Frames Queue

+ Tracks List

List Element:

+ Track Element List

Tracks List

Track Element List

List Element:

+ Frame Queue Elemet Ptr.

+ Bounding Box

Frames Queue

+ Frame Pointer

+ Track Counter

Input Frames Queue

Queue Element:

+ Frame Pointer

Stabilization

Shape−Based

Detection

Human Detection Module

Frame

Module

Output

Module

Object

Tracking

Module Module

Motion

AnalysisGrabbing

Video Input

Figure 1. System Architecture

3.3.3 Object Tracking Module

This module processes frames and detections received from
the human detection module, and retains information about
all the existing tracks. When a new frame is received, the
already existing tracks are extended by locating the new
bounding boxes locations for each track in this frame. If
the frame is received accompanied with new detections, the
new detections are compared to the already existing tracks.
If a new detection significantly overlaps with one of the ex-
isting tracks, it is ignored. Otherwise, a new track is created
for this new detection. A track is discontinued if the track-
ing algorithm fails to extend it in a newly coming frame.

3.3.4 Motion Analysis Module

When the length of a track exceeds some specific length,
typically, two seconds, the motion analysis module is in-
voked. The motion analysis module analyzes the period-
icity encountered in the track. Based on the result of this
analysis, it decides whether the tracked object is indeed a
human or not. This way, the detection results are double
checked by the motion analysis. In our experiments, that
results in a reduction in the false positives produced by the
detector, as shown in Sec. 5.

3.3.5 Output Module

When each track in a frame has been either analyzed by
the motion analysis module, or removed because of being
too short to be analyzed, this frame is ready for output and
passed to the output module. The output module marks the
detected human locations in the frame and sends it to the
output device, which can be the display monitor or a storage
device.

3.4 Inter-Thread Communications

Multi-threading in our system is implemented using the
OpenThreads open source threading library [1]. Two
threads communicate with one another through the shared
data structure that both can access. To prevent race con-
ditions between any two threads sharing a data structure,
a template class is designed that automatically defines the
OpenThreads objects that are necessary for mutual ex-
clusion enforcement for any given data type. In this section,
the details of the data structures at the interface between
each pair of communicating threads are explained. Figure 1
illustrates the various data structures used.

3.4.1 Frame Grabbing and Human Detection Modules

The shared data structure between the frame grabbing mod-
ule and the human detection module is just a queue of point-
ers to frames.

3

3.4.2 Human Detection and Object Tracking Modules

This interface is a queue of structure elements. Each ele-
ment contains a pointer to the frame along with a list of de-
tections found in it. If the list of detections is empty, then,
either the detection algorithm was not run on this frame, or
the detection algorithm did not find any human in it.

3.4.3 Object Tracking and Motion Analysis Modules

In the shared data structure of this interface, two lists are
maintained: aframes queue, which is a queue offrames
queue elements, and atracks listwhich is a list of pointers
to track element lists. Eachframes queue elementcontains
a pointer to a frame and a counter that holds the number of
tracked objects in that frame. Eachtrack element listis, in
turn, a list oftrack elements. A track elementrepresents the
location of the tracked object in one of the frames pointed to
by an element in the frames queue. A track element contains
two items: a bounding box that specifies the location of this
track’s object in the corresponding frame, and a pointer to
the entry of this frame in the frames queue.

When the motion analysis module processes a track, it
removes all its track list elements except for the most re-
cent one; so that it can be tracked in the next frame. The
object tracking module itself removes all the track list ele-
ments of a track if this track is discontinued and its length
is not enough to be analyzed by the motion analysis mod-
ule. When a track list element is removed, either by the ob-
ject tracking module or by the motion analysis module, the
counter of the corresponding frame in the frames queue is
decremented. Therefore, when the counter of a frame goes
down to zero at any time, that means this frame is com-
pletely processed and ready to be sent to the output module.

3.4.4 Motion Analysis and Output Modules

The interface between the motion analysis module and the
output module is simply a queue of pointers to frames that
has become ready for output. The Motion Analyzer Module
is responsible for sending frames ready for output to the
output module, along with the bounding boxes that identify
the targets that have been verified to be humans.

4 Algorithms

In this section, the algorithms used in our implementa-
tion are briefly explained. We do not claim that the al-
gorithms selected are the best ones in their functions. In
our system design, any of these algorithms can be safely re-
placed by others as long as the interfaces between different
modules are preserved.

4.1 Stabilization Algorithm

Wolberg and Zokai [14] presented an image registration
algorithm which recovers affine motion between a pair of
images. The algorithm proposed in [14] uses a log-polar
transformation of the image pair to recover translational, ro-
tational and scale misalignments. For a detailed discussion
of the stabilization algorithm, the reader is referred to [14].

Briefly, assume that we need to register the image pairI1

andI2. A rotation between the two images in the Cartesian
space is indeed a translation in the polar space. Therefore,
the rotation can be recovered by transforming the image pair
to the polar space and location of the maximum cross cor-
relation.

The scale recovery is performed by taking thelog of the
polar space values. In thelog space, the scale factor man-
ifests itself as a phase shift in the log-polar domain, which
can be computed again using cross correlation methods. To
recover the translation, the previous two steps are applied
to a small patches cropped offI1 and registered againstI2.
The translation is the location that maximizes the cross cor-
relation.

In our implementation, stabilization is used as a prepro-
cessing stage in the human detection module, Sec. 3.3, to
limit the area in which we search for humans. Therefore,
precise alignment betweenI1 andI2 is not necessary.

4.2 Human Detection Algorithm

The human detection algorithm used in our implemen-
tation was introduced in [3]. This algorithm searches for
humans in the image by matching its edge features to a
database of templates of human silhouettes. Examples of
these templates are shown in Fig. 2. The matching is done
by computing the average Chamfer distance [2] between the
template and the edge map of the target image area. The im-
age area under consideration must be of the same size as the
template. Let the templateT be a binary image that is0 ev-
erywhere except for the silhouette pixels where the value is
1, and let the Chamfer distance transform of the edge map
of the target image area be denoted byC. The distance
between a templateT and the target image areaI can be
computed by

D(I, T) =
1
|T |

∑

i

CiTi ,

where|T | is the number of silhouette pixels inT , Ti is the
pixel numberi in T , andCi is the Chamfer distance value
at pixel numberi in I. The smaller the value of the distance
between the template and the target image area, the better
the match between them.

For efficient computations, a hierarchal structure, which
contains selected templates from the database, is built off-

4

Figure 2. Example Human Silhouette Tem-
plates

line. That limits the comparison to a few number of tem-
plates and accelerates the search in the database. Details
of building the hierarchy and matching the edge features to
templates are explained in [3].

4.3 Object Tracking Algorithm

The tracking algorithm used in our system is the one in
[15]. The intensity value of each pixel is modeled as a time
varying mixture of three Gaussian components,F, S, and
W . TheF component is the fixed component, which rep-
resents the appearance that is expected to be encountered
most of the time. TheS component represents the sta-
ble structure of the object’s appearance observed over time.
TheW component, also called the wandering component,
represents the transient changes in the appearance between
two successive frames. Let the appearance model at time
t be denoted byAt. At is composed of three components
{Ft, St,Wt}. Let µf,t, µs,t, andµw,t, andσf,t, σs,t, and
σw,t, andmf,t,ms,t, andmw,t denote the means, the stan-
dard deviations, and the mixing probabilities for theF , S,
andW components, at timet, respectively. The observa-
tion at timet, denoted byZt, is the intensity values of thed
pixels in the proposed target location at timet . The state
at time t, denoted byθt, is the affine transformation that
transforms the current appearance model to the region of
the observationZt. The likelihood of a stateθt with respect
to an observationZt can be expressed as

p(Zt/θt) =
d∏

k=1


 ∑

i=f,s,w

mi,tN
(
Zt(k); µi,t(k), σ2

i,t(k)
)

 ,

Particle filtering is used to estimate the current stateθt

based on the previous state and the current observation. The
state transition model used isθt = θ̂t−1 + νt + Ut , where

θ̂t−1 is the estimated state at timet − 1, νt is the predicted
shift in the state vector at timet, which is estimated using
a first order linear approximation, andUt is a zero-mean
Gaussian noise component. Interested reader is referred to
[15] for further details and justifications.

4.4 Motion Analysis Algorithm

Since the human motion is naturally different than other
types of motions, the sequence of bounding boxes can be
further analyzed to verify whether or not the tracked sub-
ject is indeed a human. We use the human motion analyzer
proposed by Ran et al. [10].

The algorithm proposed in [10] tests the spatio-temporal
pixels in order to prove or disprove the null hypothesis that
the signal being tested is periodic. Briefly, for a given
pixel location(x, y) in the bounding box, the algorithm
computes the periodogram of the color value of(x, y)
across all bounding boxes of subject. A peak in the peri-
odogram proves that the spatio-temporal signal is periodic.
On the other hand, a flat periodigram means that the spatio-
temporal is a white noise.

The periodicity test is repeated for all pixel locations in
the bounding box. If the number of periodic pixels is higher
than a certain threshold, then the subject undergoing the test
is a human. Otherwise, the null hypothesis that the subject
is a human is rejected. For more details on the algorithm,
the reader is referred to [10].

5 Experimental Results

Our system was experimented on a set of challenging
video sequences. It has succeeded to demonstrate robust-
ness and close to real time performance (around 15 frames
per second.) In this section, we will present the results of
two sequences. In the figures presented, rectangular bound-
ing boxes are the output of the detection algorithm. Green
boxes are the detections that are verified by the motion anal-
ysis algorithm, and the red boxes are the ones that are re-
jected by it. The reader is referred to the electronic version
for clarity of results.

In the sequence shown in Fig. 3, there was only one false
detection and it was caught by the motion analysis. On the
other hand, the sequence shown in Fig. 4 clearly shows the
advantages of the verification step. The shape-based de-
tection algorithm produced many false alarms due to high
edge density on the left part of the scene. After tracking
these false detections for a period of time, the motion anal-
ysis algorithm decided that they did not exhibit the periodic
motion of a human.

5

(a) Frame 1

(b) Frame 22

(c) Frame 45

(d) Frame 65

Figure 3. Green rectangles are the detections
verified by motion analysis.

(a) Frame 1

(b) Frame 23

(c) Frame 45

(d) Frame 66

Figure 4. A more challenging example.
The verification step removed many false
alarams.

6

6 Conclusion

In this paper, a real-time computer vision system for hu-
man detection, tracking, and verification in uncontrolled
camera motion environment has been presented. The key
features of our system are robustness and efficiency. Ro-
bustness was achieved via integration of more than one al-
gorithm, each of which uses a different visual cue to identify
humans. The efficiency was achieved via a multi-threaded
design with efficient inter-thread communication, and the
usage of a highly optimized software library. The system
has demonstrated a satisfactory performance on highly chal-
lenging video sequences. Our short term plan is to further
optimize our system and experiment with other algorithms.
Our long term plan is to extend the system to analyze human
activities and evaluate threats.

References

[1] Openthreads. http://openthreads.sourceforge.net/.
[2] H. G. Barrow. Parametric correspondence and chamfer

matching: two new techniques for image matching. InIn-
ternational Joint Conference on Artificial Intelligence, pages
659–663, 1977.

[3] D. Gavrila. Pedestrian detection from a moving vehicle. In
ECCV ’00: Proceedings of the 6th European Conference on
Computer Vision-Part II, pages 37–49, London, UK, 2000.
Springer-Verlag.

[4] A. Hampapur, L. Brown, J. Connell, , A. Ekin, N. Hass,
M. Lu, H. Merkl, S. Pankanti, A. Senior, C.-F. Shu, and Y. L.
Tian. Smart video surveillance.IEEE Signal Processing
Magazine, pages 38–51, March 2005.

[5] A. Hampapur, L. Brown, J. Connell, N. Hass, M. Lu,
H. Merkl, S. Pankanti, A. Senior, C.-F. Shu, and Y. Tian.
S3-r1: The ibm smart surveillance system-release 1. InACM
SIGMM workshop on Effective telepresence, 2004.

[6] I. Haritaoglu, D. Harwood, and L. Davis. w4: Real-
time surveillance of people and their activities.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
22(8):809–830, 2000.

[7] W. Hu, T. Tan, L. Wang, and S. Maybank. A survey on
visual surveillance of object motion and behaviors.IEEE
Transactions on Systems, Man, and Cybernetics-Part C: Ap-
plications and Reviews, 34:334–352, 2004.

[8] T. B. Moeslund and E. Granum. A survey of computer
vision-based human motion capture.Computer Vision and
Image Understanding, 81:231–268, 2001.

[9] V. Morellas, I. Pavlidis, and P. Tsiamyrtzis. Deter: Detec-
tion of events for threat evaluation and recognition.Machine
Vision and Applications, 15:29–45, 2003.

[10] Y. Ran, I. Weiss, Q. Zheng, and L. Davis. Pedstrian detec-
tion via periodic motion analysis.To Appear, International
Journal on Computer Vision.

[11] M. Spengler and B. Schiele. Towards robust multi-cue in-
tegration for visual tracking.Machine Vision and Applica-
tions, 14:50–58, 2003.

[12] S. Taylor. Intel Integrated Performance Primitives: How to
Optimize Software Applications Using Intel IPP. Intel Press,
2003.

[13] L. Wang, W. Hu, and T. Tan. Recent developments in human
motion analysis.Pattern Recognition, 36(3):585–601, 2003.

[14] G. Wolberg and S. Zokai. Robust Image Registration Using
Log-Polar Transform. InInternational Conference on Image
Processing, 2000.

[15] S. K. Zhou, R. Chellappa, and B. Moghaddam. Visual
tracking and recognition using appearance-adaptive model
in particle filters. IEEE Transactions on Image Processing,
13(11):1491–1506, November 2004.

7

