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Abstract

Monocular depth estimation has recently progressed be-
yond ordinal depth to provide metric depth predictions.
However, its reliability in underwater environments re-
mains limited due to light attenuation and scattering, color
distortion, turbidity, and the lack of high-quality metric
ground-truth data. In this paper, we present a compre-
hensive benchmark of zero-shot and fine-tuned monocular
metric depth estimation models on real-world underwater
datasets with metric depth annotations, including FLSea
and SQUID. We evaluate a diverse set of state-of-the-art
Vision Foundation Models across a range of underwater
conditions and depth ranges. Our results show that large-
scale models trained on terrestrial data (real or synthetic),
while effective in in-air settings, perform poorly underwa-
ter due to significant domain shifts. To address this, we
fine-tune Depth Anything V2 with a ViT-S backbone encoder
on a synthetic underwater variant of the Hypersim dataset,
which we simulated using a physically based underwater
image formation model. Our fine-tuned model consistently
improves performance across all benchmarks and outper-
forms baselines trained only on the clean in-air Hypersim
dataset. This study provides a detailed evaluation and visu-
alization for monocular metric depth estimation in under-
water scenes, highlighting the importance of domain adap-
tation and scale-aware supervision for achieving robust and
generalizable metric depth predictions in challenging un-
derwater environments for future research.

1. Introduction

Monocular depth estimation in complex underwater envi-
ronments is critical for autonomous underwater vehicles
(AUVs) for applications such as navigation [37, 68], 3D
mapping [45, 64], localization [64, 76], object detection
[22, 69], and more. Unlike terrestrial robotics, under-
water robotics systems lack dense depth sensing solutions
[60]. While LiDARs [15, 39] and RGB-D cameras [20] are

widely used above water, their deployment for underwater
settings is severely limited by both hardware constraints and
high cost [77, 80]. Acoustic Sonar systems are a more com-
mon alternative for marine applications [21, 49, 60], but
their low spatial resolution due to constrained sensor ele-
vation poses challenges for dense depth perception without
additional sensor fusion [32, 48].

Recent advances in monocular depth estimation, particu-
larly those based on vision foundation models using Vision
Transformers (ViT) [16] and Dense Prediction Transform-
ers (DPT) [51], have achieved promising performance on
in-air datasets like NYUv2 [12] and KITTI [23]. These
models typically leverage large-scale real and synthetic
RGB-D data to learn powerful scene priors and for both
relative and metric depth prediction from a single image
[24, 43, 70, 71]. However, their performance degrades sig-
nificantly in underwater environments due to limited visi-
bility caused by light scattering, turbidity, and wavelength-
dependent attenuation [1, 34, 52]. Furthermore, while tra-
ditional multi-view methods such as stereo matching [8] or
SLAM [17, 61] can recover metric depth of the scene with
geometric cues, they require multiple frames and consis-
tent lighting, which are challenging to obtain underwater.
In contrast, monocular methods require only a single frame
for input, which offers much greater deployment flexibility
[41, 72]. However, their zero-shot reliability in underwater
settings remains a question [7, 74], not only due to the se-
vere domain shifts in environments [65], but also due to the
absence of geometric cues of the scene and the lack of accu-
rate ground-truth metric depth data for supervision [55, 73].

In this work, we aim to address this domain gap by
evaluating a diverse set of state-of-the-art monocular met-
ric depth estimation models on two real-world underwater
datasets with metric ground truth: FLSea [50] and SQUID
[5]. Additionally, we explore the effectiveness of the un-
derwater domain adaptation using a synthetically generated
underwater dataset for fine-tuning to improve the model’s
generalization in underwater performance.
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Contributions
Our paper presents a comprehensive benchmark and do-
main adaptation study of monocular metric depth estima-
tion in underwater environments. Our main contributions
are as follows:
• We conduct an extensive zero-shot evaluation of six state-

of-the-art monocular metric depth models with varying
parameter sizes — including five general-purpose vision
foundation models (Depth Anything V2 [71], Metric3D
V2 [30], UniDepth V2 [47], ZoeDepth [6], and Depth
Pro [7]) and one underwater-specific method (UW-Depth)
[18] — on two real-world underwater datasets with metric
ground truth: FLSea [50] and SQUID [5].

• We construct a large-scale synthetic underwater dataset
by applying a physics-based underwater image formation
model [1] to the photorealistic Hypersim RGB-D dataset
[53] of simulated indoor scenes with per-pixel ground
truth labels, enabling low-cost, in-domain supervision for
monocular metric depth estimation.

• We fine-tune Depth Anything V2 (ViT-S) [71] on our syn-
thetically generated underwater version of the Hypersim
dataset [53] and demonstrate consistent zero-shot monoc-
ular metric estimation improvements across all bench-
marks compared to the baseline fine-tuned on the clean
in-air Hypersim dataset [53], highlighting the effective-
ness of domain-adaptive synthetic training.

• We provide both qualitative and quantitative comparisons
across diverse underwater conditions using distinct subset
scenes from the FLSea [50] and SQUID [5] datasets, an-
alyzing model robustness and failure cases, and offering
insights for future research in underwater perception.

2. Related Work
2.1. Monocular Metric Depth Estimation
Monocular depth estimation has made significant progress
in recent years with the increasing availability of large-scale
RGB-D datasets [12, 23] and the promising performance
of transformer-based vision model architectures [16, 51].
These advancements have extended the development of
general-purpose vision foundation models to predict metric
depth of a scene in addition to relative depth from a sin-
gle RGB image [6]. Recent state-of-the-art models such as
Depth Anything V2 [71], ZoeDepth [6], and Metric3D V2
[30] all adopt an encoder–decoder architecture [62], where
a ViT-based [16] or a convolutional-based [67] encoder ex-
tracts high-level scene features and a task-specific decoder
predicts dense depth maps [51]. Many of these models
are trained using synthetic datasets with ground-truth per-
pixel metric depth for supervision, such as Hypersim [53]
and SceneNet [38], alongside a large-scale, unlabeled real-
world dataset for self-supervised learning with a teacher-
student architecture through knowledge distillation [29]. As

a result from training, the models demonstrate robust per-
formance for dense depth predictions across both indoor
and outdoor in-air scenes by learning strong geometric and
semantic priors [71].

2.2. Depth Estimation Benchmarks
Standard benchmarks for monocular depth estimation in-
clude NYU Depth v2 (indoor) [12] and KITTI (outdoor)
[23], which provide dense metric ground truth for terrestrial
scenes. However, few works provide an evaluation of state-
of-the-art models in underwater conditions with real metric
depth. Our work fills in this gap by evaluating six represen-
tative metric depth estimation models (Depth Anything V2
[71], Metric3D V2 [30], UniDepth V2 [47], ZoeDepth [6],
Depth Pro [7], UW-Depth [18]) on two real-world under-
water datasets (FLSea [50] and SQUID [5]) with consistent
qualitative visualizations and quantitative metrics (e.g., Ab-
sRel, δ1) [19, 28].

2.3. Model Scaling and Inference Trade-offs
Scaling vision models via larger ViT backbones (e.g., ViT-
S, ViT-B, ViT-L, ViT-G) generally improves depth predic-
tion accuracy [9, 16, 59, 79]. However, larger models also
lead to higher latency in training and inference, and more
extensive memory demands, which limit their deployment
for real-time applications [4]. Evaluating models across
sizes helps identify trade-offs between inference efficiency
and accuracy, which is critical for embedded systems such
as autonomous underwater vehicles (AUVs), which are of-
ten hardware-constrained [72].

2.4. Underwater Depth Estimation
Underwater scenes pose unique challenges for depth esti-
mation due to complex light interactions with water. The
visibility in underwater imagery is often limited, caused by
issues such as wavelength-dependent attenuation, backscat-
ter, turbidity, and non-uniform illumination [2, 25]. While
acoustic sensors such as sonar are commonly used for un-
derwater range sensing, they suffer from low spatial res-
olution due to limited elevation coverage [48]. Monoc-
ular metric depth estimation methods designed specifi-
cally for underwater environments, such as UW-Depth
[18], are often trained on real-world underwater datasets.
However, the scarcity of large-scale, high-quality metric
ground-truth data limits model complexity and generaliza-
tion. As a result, these methods often adopt lightweight en-
coder–decoder architectures optimized for speed rather than
dense accuracy, and their performance tends to degrade out-
side their training domain [40].

2.5. Synthetic Data for Model Training
To address the lack of ground truth underwater data, re-
cent research has turned to synthetic data generation using

2



physics-based rendering [3]. The underwater image forma-
tion model [1, 25] simulates critical optical effects such as
attenuation and backscatter, allowing in-air RGB-D datasets
to be transformed into realistic underwater imagery. This
approach has been adopted widely in image restoration and
enhancement tasks, where obtaining ground-truth color-
corrected underwater images is practically infeasible [26].
By allowing supervised training with per-pixel metric depth
and controlled variation in water conditions, this synthetic-
to-real strategy serves as an effective tool for domain adap-
tation and model pretraining across various underwater vi-
sion tasks [65].

2.6. Domain Adaptation in Vision
Domain adaptation methods aim to improve model general-
ization across data distributions by aligning features, styles,
or learned representations for a new domain [46]. In un-
derwater vision, where the domain shift from terrestrial im-
agery is severe, prior work has employed strategies such as
CycleGAN-based image translation for underwater image
enhancement tasks [26, 78]. The authors of Atlantis: En-
abling Underwater Depth Estimation with Stable Diffusion
[73] also propose a pipeline for generating underwater im-
agery for depth estimation with a diffusion model [13] and a
control-net-based approach for training underwater relative
depth estimation models [75]. However, such approaches
introduce significant overhead in data preparation and add
complexity to multi-stage pipelines, which slows down both
training and inference for the model.

In contrast, we adopt a forward supervised adaptation
strategy [42] by fine-tuning a general-purpose monocular
depth model (Depth Anything V2 [71]) on a synthetic un-
derwater dataset generated using a physics-based rendering
pipeline to generalize its performance for the underwater
metric depth domain. Our supervised fine-tuning strategy
(SFT) is lightweight, requiring no auxiliary networks for
synthetic data generation, and freezes the early encoder lay-
ers to retain the strong pre-trained scene understanding pri-
ors while adapting the decoder and late encoder layers to
underwater-specific image statistics with labeled data [33].

3. Methods
3.1. Overview
This section outlines our methodology for benchmarking
and fine-tuning monocular metric depth estimation in un-
derwater environments. Our pipeline consists of:
1. Zero-shot evaluation of existing models: We bench-

mark a diverse set of six state-of-the-art monocular
metric depth estimation models, five of which are
general-purpose foundation models and the other one
is underwater-specific, on two real-world underwater
datasets (FLSea [50] and SQUID [5]).

2. Synthetic dataset generation: To address the scarcity
of real-world underwater metric ground truth, we cre-
ate a synthetic underwater dataset by applying a physics-
based underwater image formation model to an existing
clean in-air synthetic RGB-D dataset (Hypersim [53]).
This simulates various underwater imaging conditions
while preserving high-quality per-pixel metric depth [1].

3. Domain adaptation via supervised fine-tuning: We
fine-tune a pretrained ordinal depth foundation model
(Depth Anything V2 [71]) using the synthetic underwa-
ter Hypersim [53] dataset to adapt the model for predict-
ing underwater metric depth. This approach enables the
model to learn underwater-specific visual cues while re-
taining the generalization ability from pretraining.

3.2. Benchmark Models
We evaluate six state-of-the-art monocular metric depth es-
timation models, of which five are general-purpose vision
foundation models and one is an underwater-specific ap-
proach. All models are assessed in a zero-shot setting us-
ing publicly available pretrained weights. For in-domain
adaptation, we select Depth Anything V2 (ViT-S) [71] as
our fine-tuning baseline and explore its performance on the
real-world underwater benchmarks.

• Depth Anything V2 [71]: A transformer-based depth
foundation model originally trained for general-purpose
ordinal depth estimation, which can also be fine-tuned for
in-domain metric depth estimation. It employs a ViT [16]
encoder and DPT [51] decoder and supports multiple en-
coder scales (ViT-S, ViT-B, ViT-L). We evaluate all three
variants that the authors fine-tuned on the clean Hypersim
dataset and use ViT-S for our synthetic training.

• Depth Pro [7]: A foundation model for zero-shot metric
monocular depth and focal length estimation optimized
for efficient inference on resource-constrained platforms
to provide high-resolution depth maps with unparalleled
sharpness and high frequency details.

• Metric3D V2 [30]: A geometric foundation model for
zero-shot metric depth and surface normal estimation
from a single image with the proposed canonical camera
space transformation module to address metric ambiguity.

• UniDepth V2 [47]: A universal transformer model for
zero-shot monocular metric depth estimation that predicts
3D point clouds directly from a single image without re-
quiring camera intrinsics. It employs a self-promptable
camera module and geometric invariance losses to pre-
dict a dense camera representation for conditioning depth
features and enhancing generalization across domains.

• ZoeDepth [6]: A scale-aware model that combines ordi-
nal and metric depth cues using a lightweight bin-adjusted
head and latent classifier. It is trained on multiple relative
and metric datasets to achieve strong zero-shot general-
ization and scale consistency across domains. Their flag-
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ship model, ZoeD-M12-NK, is used for our experiments.
• UW-Depth [18]: A lightweight, domain-specific model

trained on underwater datasets such as FLSea [50]. It in-
corporates sparse feature priors to mitigate scale ambi-
guity for underwater metric depth estimation and is opti-
mized for real-time inference on embedded systems.

3.3. Synthetic Underwater Dataset Generation
To enable supervised fine-tuning in underwater conditions,
we generate a synthetic underwater training set based on the
Hypersim [53] RGB-D dataset, which provides a dense set
of photorealistic indoor scenes and corresponding ground-
truth metric depth.

We apply the simplified underwater image formation
model for ambient illumination, assuming the camera re-
sponse is equivalent to the delta function [1]. This formu-
lation accounts for wavelength-dependent attenuation and
backscattering. Specifically, we use the wideband approxi-
mation of their model, expressed as [10, 27, 56]:

Ic = Jc · e−βcz +B∞
c · (1− e−βcz), (1)

where Ic is the observed underwater intensity in chan-
nel c ∈ {R,G,B}, Jc is the clear scene radiance, βc is the
wideband attenuation coefficient for channel c, B∞

c is the
wideband veiling light (backscatter at infinity), and z is the
range (depth) from the camera. This model captures both
the exponential attenuation of the direct signal and the ac-
cumulation of backscattered light.

We simulate multiple Jerlov water types from open (I,
II, III) to coastal ocean classes (1C to 9C) with varying βc

and B∞
c to represent different optical properties and beam

absorption levels of ocean water [58]. The resulting dataset
consists of paired underwater RGB images and their clean
metric depth maps. All images preserve the original pixel
alignment and camera intrinsics from Hypersim [53].

RGB Depth Type I Type II Type III

Type 1C Type 3C Type 5C Type 7C Type 9C

Figure 1. Examples from our synthetic underwater dataset. Top
row: clean RGB image, ground-truth depth, and Jerlov open-ocean
classes (I, II, III). Bottom row: simulations with increasing atten-
uation in coastal ocean classes (1C to 9C), representing progres-
sively turbid conditions [58].

3.4. Fine-Tuning Depth Anything on Synthetic Data
We use a supervised fine-tuning strategy using our synthetic
underwater dataset in order to adapt the Depth Anything V2

[71] model to the unique underwater imagery domain [65].
This dataset includes varying visual distortions typical of
underwater scenes, which each image is one of the Jerlov
water classes we saw earlier. Our goal is to enable the model
to generalize to the real underwater environment while re-
taining the strong priors learned from large-scale terrestrial
RGB-D and unlabeled data.

We use the ViT-S variant of Depth Anything V2 [71] as
our baseline and initialize it with the official relative depth
checkpoint. To retain previously learned features, we freeze
the first half of the Vision Transformer encoder and allow
only the remaining encoder layers and DPT-style decoder to
update during training, which is conducted in a supervised
regression setting with the following configuration [11, 51]:
• Optimizer: AdamW [36] with weight decay of 10−2

• Learning rate: 5×10−6 with cosine annealing scheduler
[35]

• Warm-up: Linear warm-up for the first 4 epochs [31]
• Epochs: 20 total
• Batch size: 4 (constrained by GPU memory)
• Loss function: SiLogLoss [19] — a scale-invariant loga-

rithmic loss, commonly used for metric depth regression.
• Max depth: 20 meters (used for scaling model output)

We train the model using image–depth pairs at a reso-
lution of 518 × 518. To enhance robustness for underwa-
ter domain adaptation, we apply physically consistent color
augmentations, including random illumination changes to
simulate under- and overexposure in real-world underwater
settings, as well as grayscale conversion to encourage the
model to focus on structural cues rather than color varia-
tions caused by water conditions [57, 63].

Our supervised fine-tuning strategy enables the model
to learn underwater-specific visual cues while retaining
general-purpose scene priors from pretraining. By leverag-
ing synthetic data aligned with underwater image formation
physics, the fine-tuned model achieves more reliable metric
depth estimation in challenging underwater environments.

3.5. Evaluation Datasets
We evaluate all models on two real-world underwater
datasets containing RGB images paired with metric ground-
truth depth:
• FLSea [50]: A large-scale dataset collected in controlled

underwater environments using diver-operated cameras
and photogrammetry software (Agisoft Metashape) to
generate ground-truth metric depth via SFM [44]. We fo-
cus on six key subsets from two scenes:
– Canyon: u canyon and flatiron, totaling 5,369

images. These subsets capture natural rocky reef struc-
tures at water depths of 4–7 meters.

– Red Sea: big dice loop,
cross pyramid loop, coral table loop,
and sub pier, totaling 6,919 images. These scenes
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include both natural structures and large man-made
objects such as coral tables, piers, and concrete blocks,
with water depths ranging from 3–8 meters.

• SQUID [5]: A smaller but more challenging dataset with
longer depth ranges and larger areas of featureless back-
ground, consisting of 57 stereo image pairs with metric
ground-truth depth computed from stereo triangulation
[8, 14]. The dataset covers four subset scenes collected
across different marine environments in Israel:
– Tropical Red Sea:

* Katzaa — coral reef, 10–15 meters deep.
* Satil — shipwreck site, 20–30 meters deep.

– Temperate Mediterranean Sea:
* Nachsolim — rocky reef, 3–6 meters deep.
* Michmoret — rocky reef, 10–12 meters deep.

All predictions are rescaled to match the dataset-specific
depth units. Quantitative evaluations are performed using
standard depth estimation metrics, as detailed in Section 4.

4. Experiments
4.1. Evaluation Setup
We evaluate all models on two real-world underwater
datasets: FLSea [50] and SQUID [5]. For each model, we
use official pre-trained weights and perform zero-shot infer-
ence unless otherwise specified. Depth Anything V2 [71] is
additionally fine-tuned on our synthetic underwater dataset.
When applicable, we evaluate model variants using differ-
ent ViT encoder sizes (ViT-S, ViT-B, ViT-L).

4.2. Metrics
We report standard monocular depth estimation metrics,
widely used in prior work [19, 28]:
• AbsRel (Absolute Relative Error): 1

|T |
∑

i∈T
|di−d̂i|

di

• δ1: Percentage of predictions satisfying δ =

max(di

d̂i
, d̂i

di
) < 1.25

Here, di and d̂i represent the ground-truth and pre-
dicted depths, respectively. Metrics are computed only on
valid (non-zero) ground-truth pixels and follow the dataset-
specific evaluation protocols.

4.3. Zero-Shot Benchmarking Results
We first evaluate all models with official pre-trained weights
to compare zero-shot performance to underwater scenes.
Table 1 summarizes the results across both datasets.

Notably, several models come with specific limitations in
the zero-shot setting. Metric3D V2 [30] performance varies
with input resolution, and we exclude its ViT-L variant due
to hardware constraints during inference. Depth Anything
V2 [71], while trained primarily on ordinal depth, provides
competitive results but requires further in-domain only fine-
tuning to predict metric depth. UW-Depth [18] is trained on

10 subsets of the FLSea [50] dataset and two held-out test
sets (u canyon and sub pier). To avoid evaluation with data
leakage, we omit its quantitative results on FLSea [50].

4.4. Effect of Synthetic Fine-Tuning

We fine-tune Depth Anything V2 (ViT-S) [71] on our syn-
thetic underwater dataset and compare its performance to
the baseline fine-tuned for in-domain metric depth predic-
tion on the clean Hypersim [53] dataset with the maximum
depth scale of 20 meters. This experiment evaluates the ef-
fectiveness of forward domain adaptation using synthetic
underwater data. Quantitative improvements are summa-
rized in Table 2.

4.5. Qualitative Results

We present qualitative comparisons of predicted depth maps
on representative scenes from FLSea [50] and SQUID [5].
Figure 2 showcases zero-shot performance across all bench-
marked models using their strongest performing variants,
highlighting differences in detail boundary preservation and
robustness to underwater artifacts. Figure 3 compares the
Depth Anything V2 (ViT-S) [71] baseline with our fine-
tuned model, demonstrating the visual impact and effective-
ness of synthetic-to-real domain adaptation [65, 66].

5. Discussion

5.1. Zero-Shot Model Performance

Our results demonstrate that general-purpose monocular
depth models—such as Depth Anything V2 [71] and
UniDepth V2 [47]—perform reasonably well on under-
water imagery in a zero-shot setting. However, perfor-
mance varies significantly across underwater conditions.
On datasets with clearer water and narrower depth ranges
(e.g., FLSea [50]), models retain moderate accuracy. In
contrast, performance degrades in more turbid or visually
degraded scenes, such as SQUID [5], with higher AbsRel
errors and lower δ1 accuracy [19, 28]. Furthermore, mod-
els like ZoeDepth [6] and Depth Pro [7], while robust on
benchmarks like NYU-V2 [12] and KITTI [23], experience
a significant performance drop when applied to underwa-
ter settings. This highlights the difficulty of transferring
terrestrial-trained models to underwater domains without
explicit adaptation. This is further supported by the perfor-
mance of the UW-Depth [18] model trained on real-world
underwater data with a compact MobileNet V2 backbone
[54], yet achieving greater performance than the other larger
models. Overall, UniDepth V2 [47] performs exceptionally
well on the FLSea [50] dataset, achieving δ1 accuracy above
90% and the lowest AbsRel errors across all benchmarked
models [19, 28].
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Model FLSea-Canyon FLSea-Red Sea SQUID
AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

ZoeDepth 1.5907 0.2345 1.3335 0.2109 1.3214 0.0968
Metric3D V2 (ViT-S)† 1.5331 0.0967 0.8130 0.2136 1.3059 0.1680
Depth Pro 0.9858 0.1557 0.3888 0.3772 3.2185 0.1678
UW-Depth† – – – – 0.4948 0.3446
Depth Anything V2 (ViT-S)† 0.3576 0.4463 0.2569 0.4722 0.5242 0.2054
Depth Anything V2 (ViT-B)† 0.2447 0.5696 0.2471 0.4301 0.4495 0.2649
Depth Anything V2 (ViT-L)† 0.2269 0.6363 0.2307 0.4812 0.3390 0.2896
UniDepth V2 (ViT-S) 0.2233 0.6763 0.1524 0.8122 0.4012 0.4789
UniDepth V2 (ViT-B) 0.1276 0.8844 0.1045 0.9167 0.3638 0.4725
UniDepth V2 (ViT-L) 0.1156 0.9109 0.0932 0.9439 0.3222 0.5201

Table 1. Zero-shot performance comparison across FLSea-Canyon [50], FLSea-Red Sea [50], and SQUID [5] datasets. †Models marked
with this symbol are not strictly zero-shot for metric depth. Bold indicates best performance.

Model (ViT-S) FLSea-Canyon FLSea-Red Sea SQUID
AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

Baseline DA V2 0.3576 0.4463 0.2569 0.4722 0.5242 0.2054
Fine-tuned DA V2 (Ours) 0.3620 0.4683 0.2266 0.6170 0.4465 0.3204

Table 2. Performance of Depth Anything V2 (ViT-S) [71] before and after fine-tuning on synthetic underwater data across FLSea-Canyon
[50], FLSea-Red Sea [50], and SQUID [5] subsets. Bold indicates best performance.

5.2. Effectiveness of Synthetic Fine-Tuning
Fine-tuning Depth Anything V2 (ViT-S) [71] on our
physics-based synthetic underwater dataset yields consis-
tent improvements across real-world test sets. Quantita-
tively, fine-tuning reduces absolute errors and improves
threshold accuracy on all SQUID [5] scenes and most
FLSea [50] subsets. Qualitatively (Fig. 3), the model learns
to recover better structural details, suppresses noisy predic-
tions in low-contrast areas, and improves depth continuity
in visually degraded regions. This underscores the utility
of synthetic domain adaptation for underwater vision tasks
where collecting metric-labeled real data is costly or infea-
sible [26, 52, 65].

5.3. Qualitative Observations
Across zero-shot and fine-tuned visual depth map compar-
isons (Fig. 2 and Fig. 3), we observe:
• UniDepth V2 [47]: Among all evaluated models,

UniDepth V2 [47] consistently delivers the best overall
performance across all benchmarks. It produces accurate
metric depth maps with fine structural details and strong
generalization ability to varying underwater conditions.

• Depth Anything V2 (fine-tuned) [71]: The baseline
Depth Anything V2 [71] ranks just behind UniDepth V2
[47], showing strong metric scale accuracy but slightly
less precise boundary detail. After fine-tuning the ViT-
S variant on our synthetic underwater dataset, the model

exhibits improved structural consistency, sharper depth
boundaries, and more accurate metric depth predictions.

• UW-Depth [18]: While the compact backbone design
limits spatial resolution and leads to loss of structural de-
tail in predicted depth maps, the model still provides rea-
sonably accurate metric scale predictions, especially in
scenes similar to its training distribution.

• Metric3D V2 [30]: The ViT-L variant of this model visu-
ally performs on par with UniDepth. However, it is diffi-
cult to confirm its exact performance without any quanti-
tative evaluation, highlighting one of our key limitations.

• ZoeDepth [6] and Depth Pro [7]: While producing rel-
atively smooth depth maps with decent edge boundary
preservation, these models tend to have more inaccura-
cies in metric scale prediction compared to others.

5.4. Model Trade-offs

Transformer-based models with larger encoders (e.g., ViT-
L) typically offer better zero-shot accuracy and general-
ization. However, they also introduce extra computational
overhead, which can make them less practical for real-time
deployment on embedded systems [54]. Lightweight mod-
els such as UW-Depth [18] provide a viable speed-accuracy
trade-off, which suggests a gap between compact model ef-
ficiency and underwater robustness.
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FLSea: Canyon
RGB GT UW-Depth† Metric3D-L† DA V2-L† Depth Pro UniDepth-L ZoeDepth

FLSea: Red Sea
RGB GT UW-Depth† Metric3D-L† DA V2-L† Depth Pro UniDepth-L ZoeDepth

SQUID: Satil
RGB GT UW-Depth† Metric3D-L† DA V2-L† Depth Pro UniDepth-L ZoeDepth

SQUID: Nachsolim
RGB GT UW-Depth† Metric3D-L† DA V2-L† Depth Pro UniDepth-L ZoeDepth

SQUID: Michmoret
RGB GT UW-Depth† Metric3D-L† DA V2-L† Depth Pro UniDepth-L ZoeDepth

SQUID: Katzaa
RGB GT UW-Depth† Metric3D-L† DA V2-L† Depth Pro UniDepth-L ZoeDepth

Figure 2. Qualitative comparisons on 6 underwater scenes from two real-world underwater datasets: FLSea and SQUID. Each group shows the RGB input, ground-truth (GT),
UW-Depth† [18], Metric3D V2† [30], Depth Anything V2 (ViT-L)† [71], Depth Pro [7], UniDepth V2 (ViT-L) [47], and ZoeDepth [6]. UniDepth V2 (ViT-L) [47] consistently
produces the most accurate metric depth maps with fine edge details across all datasets. Depth Anything V2 (ViT-L) [71] also performs competitively, particularly in near-range
scenes (<20 meters), but shows softer boundaries and more artifacts at longer ranges. Metric3D V2 (ViT-L) [30] outputs visually sharpest maps, but its metric depth scale
accuracy is unclear due to the lack of its quantitative results in our study. Depth Pro [7] is affected the most by texture-less regions in the background, leading to poor structural
recovery for the foreground. ZoeDepth [6] and UW-Depth [18] both underperform due to their limited model capacity and training domain scope.

5.5. Limitations and Future Work

While synthetic fine-tuning notably improves performance,
several challenges remain:
• Performance significantly degrades in extreme condi-

tions, such as highly turbid water, low-light scenes, or
regions with texture-less backgrounds.

• We only fine-tuned Depth Anything V2 (ViT-S) [71];
other backbone variants and models (e.g., UniDepth [47])
could also benefit from synthetic adaptation.

• Our synthetic dataset is limited to Hypersim-based indoor
geometry [53]; future work could incorporate more di-

verse 3D structures and scene ranges. Also, simulating
additional real-world underwater phenomena with stable
diffusion and using unlabeled underwater images for self-
supervised training could enhance model generalization
for the underwater setting as well [73].

Overall, our benchmark highlights both the promise and
limitations of monocular depth estimation in underwater
conditions and provides understanding for further explo-
ration in data simulation, cross-model adaptation, and real-
world deployment in future research.
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FLSea: Canyon FLSea: Red sea
RGB GT Baseline Fine-tuned (Ours) RGB GT Baseline Fine-tuned (Ours)

SQUID: Satil SQUID: Nachsolim
RGB GT Baseline Fine-tuned (Ours) RGB GT Baseline Fine-tuned (Ours)

SQUID: Michmoret SQUID: Katzaa
RGB GT Baseline Fine-tuned (Ours) RGB GT Baseline Fine-tuned (Ours)

Figure 3. Qualitative comparison between the baseline (Depth Anything V2 ViT-S [71]) and our fine-tuned model using synthetic un-
derwater data on six scenes from two real-world datasets: FLSea [50] and SQUID [5]. Each group shows the RGB input, ground-truth
(GT), zero-shot baseline prediction, and prediction after fine-tuning. Our synthetically fine-tuned models produce much sharper depth
boundaries and a more accurate metric depth scale with improved robustness for adapting underwater domain than the baseline models
across all scenes, especially in turbid and low-contrast regions seen in the SQUID[5] dataset with high scattering and color distortion.

6. Conclusion

In this work, we presented a comprehensive benchmark of
monocular metric depth estimation models for underwater
environments, comparing a diverse set of state-of-the-art
general-purpose and domain-specific approaches across two
challenging real-world datasets: FLSea [50] and SQUID
[5], each representing distinct underwater conditions in
terms of visibility, depth ranges, and scene complexity. Our
goal was to evaluate the models’ zero-shot generalization
capability and explore whether physics-based synthetic data
can effectively enable underwater domain adaptation.

We developed a synthetic data generation pipeline that
simulates realistic underwater RGB images from Hyper-
sim [53] using a physics-based underwater image forma-
tion model [1] to address the lack of large-scale, annotated
high-quality real-world underwater datasets. This pipeline
incorporates varying wavelength-dependent attenuation and
backscattering, generating paired RGB-depth data across
multiple Jerlov water types [58].

Our results reveal that while general-purpose models
(e.g., UniDepth V2 [47], Depth Anything V2 [71], Met-
ric3D V2 [30], ZoeDepth [6]) show moderate zero-shot per-
formance in clear water scenes with narrow depth ranges
and textural information, their accuracy drops significantly
in visually degraded or turbid conditions. Among all mod-
els evaluated, UniDepth V2 [47] achieves the best zero-shot
performance across all datasets, particularly in preserving
metric scale and structural consistency.

We further demonstrate that fine-tuning Depth Anything

V2 (ViT-S) [71] on our synthetic underwater dataset im-
proves both quantitative and qualitative performance, espe-
cially in low-visibility scenarios, where the baseline fails
to extract structural details. The fine-tuned model produces
sharper boundaries, better depth consistency, and more ac-
curate metric predictions, confirming the effectiveness of
using synthetic data for underwater domain adaptation.

Overall, our benchmark reveals the difficulty of trans-
ferring general-purpose depth models trained with mainly
terrestrial data to underwater settings and the potential of
synthetic data to bridge this domain gap. Future directions
include: (1) extending fine-tuning to additional backbone
variants (e.g., ViT-L, MobileNetV2, etc) and models like
UniDepth [47], (2) incorporating more diverse and dynamic
underwater scenes, and (3) more detailed evaluation of in-
ference speed and accuracy trade-off to help select the ap-
propriate model on resource-constrained platforms for real-
time deployments. All of these efforts will be critical to
enhance the robustness of monocular metric depth models
in practical real-world underwater applications.
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