
Reference-guided Assembly of Metagenomic Sequences 
 
Victoria Cepeda1,2,*, Bo Liu1,2, Mathieu Almeida2, Christopher M. Hill1,2, Mihai Pop1,2,* 
 
1Department of Computer Science, University of Maryland, College Park, Maryland, USA. 
2Center for Bioinformatics and Computational Biology, University of Maryland, College Park, 
Maryland, USA. 

*vcepeda@cs.umd.edu, mpop@umd.edu 

 
ABSTRACT 
Metagenomic studies have primarily relied on de novo approaches for reconstructing genes and 
genomes from microbial mixtures.  While database driven approaches have been employed in certain 
analyses, they have not been used in the assembly of metagenomic data.  This is in part due to the 
small size and biased coverage of public genome databases, but also due to the inherent 
computational cost of mapping tens of millions of reads to thousands of full genome sequences.  
 
Here we describe the first effective approach for reference-guided metagenomic assembly that can 
complement and improve upon de novo metagenomic assembly methods.  Combined with de novo 
assembly approaches, we show that MetaCompass is able to generate significantly better results than 
can be obtained by either comparative or de novo assembly independently. Using this approach we 
report improved assemblies for 688 metagenomic samples from the Human Microbiome Project.  

Introduction 
Microorganisms comprise the majority of Earth’s ecological diversity, and they play important 
functional roles in virtually all ecosystems. Particularly, human-associated microbial communities 
play a critical role in health and disease1. In many environments, however, more than 99% of the 
bacteria cannot be cultured by standard laboratory techniques2. Metagenomics involves the analysis 
of organismal DNA sequences obtained directly from an environmental sample, enabling studies of 
microorganisms that are not easily cultured in a laboratory. Metagenomic studies, pioneered in the 
early 2000s, have recently increased in number and scope due to the rapid advances of high-
throughput sequencing technologies, which permit large amounts of DNA to be sequenced quickly 
and cheaply. For example the MetaHit consortium generated about 500 billion raw sequences from 
124 human gut samples in its initial analysis3, and the Human Microbiome Project (HMP) has 
generated over 1,128 reference microbial genomes, 9,811 16S sequence datasets, and 1,260 whole 
metagenome sequence datasets from healthy subjects4 
 
The analysis of these vast amounts of data is complicated by the fact that reconstructing large 
genomic segments from metagenomic reads is a formidable computational challenge.  Even for single 
organisms, the assembly of genome sequences from sequencing reads is a complex task, primarily 
due to ambiguities in the reconstruction that are caused by genomic repeats5.  In metagenomic data, 
additional challenges arise from the non-uniform representation of genomes in a sample as well as 
from the genomic variants between the sequences of closely related organisms.  Despite advances in 
metagenomic assembly algorithms over the past years6–10, the computational difficulty of the 
assembly process remains high and the quality of the resulting data fairly low.   
 



As a result, many analyses of metagenomic data are performed directly on unassembled reads11–15, 
however the much shorter genomic context leads to lower accuracy.  For example, PhymmBL reports 
an accuracy of just 59% on 100bp reads, as compared to 78% for 1000 bp segments12.  The need for 
effective and efficient metagenomic assembly approaches remains high, particularly due to the fact 
that long read technologies (which partly mitigate the challenges posed by repeats) are not yet 
appropriate for metagenomic applications due to their high error rates and relatively high costs. 
 
Reference-guided, comparative assembly approaches have previously been used to assist the 
assembly of short reads when a closely related reference genome was available 16–19 Comparative 
assembly works as follows: short sequencing reads are aligned to a reference genome of a closely 
related species, then their reconstruction into contigs is inferred from their relative locations in the 
reference genome 20. This process overcomes, in part, the challenge posed by repeats as the entire 
read (not just the segment that overlaps adjacent reads) provides information about its location in the 
genome. 
 
Currently, tens of thousands of bacterial genomes have been sequenced, and the number is expected 
to grow rapidly in the near future. These sequenced genomes provide a great resource for performing 
comparative assembly of metagenomic sequences, however they have yet to be used for this purpose 
in no small part due to the tremendous computational cost of aligning the reads from a metagenomic 
project to the entire reference collection of bacterial genomes.  
 
In this paper we describe new algorithms and MetaCompass, a first assembly software package for 
the reference-assisted assembly of metagenomic data.  We rely on an indexing strategy to quickly 
construct sample-specific reference collections, and show that this approach effectively complements 
de novo assembly methods.  We also show that the combination of comparative and de novo 
assembly approaches can significantly boost the contiguity and completeness of metagenomic 
assembly, and use our new approach to provide an improved assembly of the data generated by the 
Human Microbiome Project 4. 

Results 

All assembly results were analyzed based on contiguity statistics, and also based on the number of 
complete genes found in the final assembly – a measure of how useful an assembly may be to 
downstream analyses. We distinguish between the total number of genes and the total number of 
phylogenetic marker genes – genes conserved across archaeal and bacterial organisms. The coverage 
of the set of marker genes has been used by the HMP and others3,21,22 as measure of the completeness 
of an assembly. 

Assembly of two artificial metagenomic samples 
We first evaluated MetaCompass by assembling two synthetic (also known as mock) microbial 
communities (even and staggered) created during the Human Microbiome Project from the purified 
genomic DNA of 20 bacteria, one archea and one eukaryota for which finished genome sequences 
were available4,23. Since the true genome sequences are known, this dataset allows us to fully 
quantify the quality of the genomic reconstruction. After sequence quality trimming, 6.29 and 7.46 
million Illumina reads with average length 61bp and 59bp were obtained for the even and staggered 
samples, respectively. We assembled these samples using MetaCompass with two different settings. 
First, since we knew all the genomes present in the samples, we did not perform reference genome 
selection (see Methods) before the assembly of these two samples. The assembly results 



(MetaCompass* row in Table 1) can be considered as an upper bound on the performance of any 
assembly tool, because we know the exact genomes from which the metagenomic reads were 
obtained. Then we allowed MetaCompass to estimate the composition of the samples (MetaCompass 
row in Table 1). The taxonomic compositions of the sequenced metagenomic reads from these two 
samples were estimated using MetaPhyler13 as shown in Supplementary Data 1, and the reference 
genomes were selected according to the depth of coverage estimated by MetaPhyler (see Methods). 
 
We compare the performance of MetaCompass with that of five widely used de novo assemblers: 
IDBA-UD8, MEGAHIT24, SOAPdenovo210, SPAdes25, and Velvet7. Compared with the other 
assemblers, MetaCompass produced significantly larger contigs and increased the number of 
predicted complete genes and marker genes. Note that here we are not trying to prove that 
MetaCompass is better than de novo assemblers, and actually in this particular setting, the 
comparison is not fair because our reference collection contains the exact genomes present in the 
samples. Rather, we are trying to show that the performance of MetaCompass can be excellent if the 
reference collection contains genomes highly similar to those in the metagenomic sample being 
assembled. 
 
When dealing with large-scale data sets, run time is also a very important factor determining the 
applicability of a computational tool. Here, we evaluated the runtime performance of MetaCompass 
on an eight-core computer with 8 GB of memory for the even and staggered metagenomic samples 
mentioned above using single and multiple threads (see “MetaCompass 1 iteration” in Table 2). The 
comparative approach is slower than most de novo assemblers, however not substantially, and it has 
similar running time compared to one of the most effective metagenomic assemblers (IDBA-UD). 
Running multiple iterations of MetaCompass' consensus routine (see Methods) led to a modest 
increase in runtime.  

Assembly of stool microbiome data 
Mock communities are valuable for providing a baseline of performance but do not capture the true 
complexities of real datasets. To evaluate MetaCompass in a realistic setting, and to compare it to the 
results that can be obtained by de novo assembly, we analyzed two real stool metagenomic samples 
from the MetaHIT Project, obtained from healthy individuals.  
 
The reference collection matters. To assess the effect of the reference collection used by 
MetaCompass, we also augmented our database with 241 genomes reconstructed directly from 
MetaHIT samples26 (Supplementary Data 2). This addition significantly boosted the performance of 
MetaCompass, as seen in Table 3 (rows labeled MetaCompass* as compared to rows labeled 
MetaCompass). 
 
Comparative and de novo approaches complement each other. We assembled the two stool 
samples with the de novo assembler SOAPdenovo2, a newer version of the assembler originally used 
to reconstruct these samples as part of the MetaHIT project.  The contigs produced by the de novo 
assembly were smaller than those generated by MetaCompass, as evidenced both by the smaller 
maximum size, and smaller contigs needed to cover the most contiguous segments (the top 1-10Mbp) 
of the assembly. The comparison is even more striking when restricted to just those contigs from the 
de novo assembly that can be mapped to the reference genomes used by MetaCompass (rows labeled 
SOAPdenovo2* in Table 3). For these sequences, which are closely related to genomes available in 
the MetaCompass’ reference database, MetaCompass can assemble larger contigs, more reads, and 



cover more total DNA than SOAPdenovo2.  At the same time, SOAPdenovo2 can assemble novel 
organisms, leading to more reads and a total amount of DNA in the final assembly.   
 
To further explore the complementarity between the comparative and de novo approaches, we 
compared the number of reads included in the two assemblies.  Across the two stool datasets a total 
of 109.1 million reads were assembled by either assembler.  The majority (61%) was shared by the 
two assemblies, 7% were only assembled by MetaCompass, and 32% were only found in the 
SOAPdenovo 2 assembly, corresponding to the metagenomic sequences not found in the 
MetaCompass reference database.  Combining the two approaches (see Methods) results in a final 
assembly that outperforms both by all metrics (total sequence covered, reads used, and contig sizes, 
Hybrid rows in Table 3).  
 
Improvements from iterative assembly. Differences between the sequences being assembled and 
the reference genome used by MetaCompass can degrade the performance of the comparative 
assembly process. Iterative assembly (see Methods) can improve the quality of the reconstruction. 
Each iteration increases assembly contiguity and improves the number of reads that can be mapped to 
the final assembly, though the performance gains start plateauing after just 3 iterations (see 
Supplementary Data 3). The improved assembly quality comes at the cost of increases in runtime 
(Table 2). 	

MetaCompass can reconstruct complete bacterial genomes.  As it is clear from the results shown 
above, MetaCompass can make effective use of reference genomes to effectively reconstruct related 
sequences from microbiome samples. In certain cases, the MetaCompass reconstruction can span 
entire microbial genomes.  In the staggered mock community, the MetaCompass assembly includes a 
1.9Mbp contig that almost perfectly matches the full length of the Staphylococcus epidermidis 
genome. In real metagenomic datasets - four retroauricular crease samples from the HMP project 
(NCBI accessions SRS024655, SRS024596, SRS013258, SRS046688) - MetaCompass reconstructed 
within each, a contig of length 2.56 Mbp closely related to the genome Propionibacterium acnes. 
Each contig is 99% identical to the reference genome Propionibacterium acnes KPA171202 
(GenBank Accession: NC_006085), bacterium commonly found on skin surfaces, and which has a 
fairly small pan genome27. 

Reassembly of the data generated by the Human Microbiome Project 
To further explore the benefits and limits of comparative approaches for metagenomic assembly, we 
re-analyzed with MetaCompass 688 metagenomic samples from the HMP Project. These samples 
cover 15 different body sites all coming from healthy individuals.  As above, for each sample we 
generated both a comparative-only assembly, and a hybrid assembly that merges the comparative 
assembly with a de novo assembly of the same data. We ran MetaCompass using 3 iterations and 24 
threads. Overall, MetaCompass effectively complemented the de novo assemblies, with the hybrid 
assembly outperforming the results obtained by SOAPdenovo2 - a newer version of the assembler 
used in the HMP project (Figure 1).  The comparative assembly alone produced worse results than 
the original de novo assembly, an expected outcome given the fact that many host associated 
microbes have yet to be isolated or sequenced, and are thus not available in public databases.  The 
comparative assembly performed better in terms of the number of marker genes completely 
reconstructed, likely due to the ubiquity and relatively high level of conservation of these genes.  
 
The relative performance of comparative and de novo assembly approaches varied across body-sites 
due to the specific characteristics of the microbial communities being reconstructed.  In stool (Figure 



2), de novo assembly vastly outperformed MetaCompass across all metrics. Stool samples have very 
low human DNA contamination, leading to a much higher depth of coverage within the microbiome, 
factor that benefits de novo assembly.  Furthermore, many bacteria, especially within the healthy gut 
microbiome, are anaerobic, hence difficult to culture and are underrepresented in sequence databases.  
For these bacteria the comparative approach is unsuitable.   In the nares (Figure 1), the samples 
exhibit high levels of human DNA contamination, leading to much smaller sequence coverage of the 
microbiome.  Here the de novo approach has limited effectiveness and MetaCompass generates better 
assemblies across all metrics. In vaginal samples (Figure 1), the human contamination is high, but the 
lower complexity of the normal microbiome allows for effective de novo assembly. The lower 
complexity of the community, and the fact that many members of the normal vaginal flora have been 
sequenced, leads to a smaller difference in performance between MetaCompass and the de novo 
assembly.  In all situations, the hybrid, comparative + de novo assembly outperforms either approach, 
leading to a better assembly of the original data. 

Discussion 
We have described MetaCompass, a comparative metagenomics assembly method that relies on an 
indexing strategy to construct sample-specific reference collections. We show that comparative and 
de novo assemblies provide complementary strengths, and that combining both approaches 
effectively improves the overall assembly, providing a consistent increase in the quality of the 
assembly. The benefit of comparative assembly is highly dependent on the data available in the 
reference database as well as on the overall complexity of the microbial community being 
reconstructed.  As the number of genomes in public databases is increasing, comparative approaches 
such as ours will be increasingly valuable for reconstructing near-complete genome sequences from 
metagenomic data.  Already, using available genome sequences, we were able to improve upon the 
assembly of the data generated by the Human Microbiome Project, and the improved assemblies have 
been made available through the HMP DACC at http://hmpdacc.org/HMASM/. 
 
Here we used the taxonomic profiling tool MetaPhyler as an index for the publicly available 
microbial genomes.  Compared to whole-genome indices, the MetaPhyler index is based on just 31 
phylogenetic marker genes commonly found in bacteria, thus providing a much more compact and 
efficient data-structure.  Since MetaPhyler, and other similar tools14,28 are designed for much broader 
use cases than that targeted here, it is likely that better performance in both memory and speed can be 
achieved by an indexing strategy designed specifically for the purpose of comparative metagenomic 
assembly, and we plan to explore such strategies in future work. 
 
Also, we would like to note that comparative assembly provides new opportunities for the 
development of sequence alignment approaches that optimize the combined time of index creation 
and alignment.  Most of the recent developments in sequence alignment have assumed index 
construction to be a one-time off-line operation, trading off a computationally intensive indexing 
approach for more efficient queries. 
 
MetaCompass is released freely under an open source license at 
http://www.cbcb.umd.edu/software/metacompass . 
 

Methods 
Methods overview. MetaCompass operates in a two-step fashion. First we use MetaPhyler13 to 
estimate the depth of coverage for all the genomes in the reference database that are closely related to 



genomes in the metagenomic sample. Second, the genomes that are sufficiently well covered by reads 
(minimum 1% of abundance and coverage 0.5x) are selected as a sample-specific reference set to 
guide the assembly. These genomes are indexed, and then the metagenomic reads are aligned to 
them. The resulting read alignments are then used to construct contigs, and an iterative assembly step 
is used to refine these contigs. In a final, optional step, the comparative assembly is combined with a 
de novo assembly of the same dataset.  The details of each analysis step are described below. 
 
Selecting reference genomes. While comparative assembly approaches have already been described 
for single genomes19,29 their use in metagenomic data is complicated by the fact that we do not know 
which reference genomes to use from among the tens of thousands of genomes now available in 
public databases. In principle one could simply index all available reference genomes and align to 
them the metagenomic reads. Building efficient indexes for large reference collections is 
computationally challenging for the most widely used short read aligners30,31. In addition, using an 
index comprised of all the genomes currently available requires a significant amount of memory 
during mapping, which may limit the usability of the tool in practice. For assembly, however we only 
need to use the genomes that are actually present in a sample. To identify these genomes, we rely on 
MetaPhyler, a taxonomic classification tool that indexes a collection of 31 bacterial core genes.  The 
MetaPhyler index is much smaller than a whole-genome index, yet still allows us to identify which 
genomes have related sequences in the sample being assembled.  The number of reads mapping to a 
particular gene within a genome can be used to estimate the depth of coverage of that genome in a 
sample.  Only genomes estimated to be present at high enough abundance (minimum 1% of 
abundance) are retained for use as a reference during comparative assembly.  
 
Aligning reads to reference sequences. The results presented in the paper are based on aligning the 
reads to the selected reference genomes with Bowtie 232 (parameters: --sam-nohead --sam-nosq --
end-to-end --quiet -k 30 -p 12). However, our whole comparative assembly pipeline is designed and 
developed in a modular way such that any read mapping tool can be used. 
 
Building contigs. In its simplest form, the comparative assembly approach involves mapping the 
reads to a genome and using their relative placement within this genome to guide the construction of 
contigs19.  In the context of metagenomic data, however, this process is complicated by the fact that 
individual reads may map to multiple reference genomes, some of which are highly similar to each 
other.  Adequately dealing with this ambiguity is critical for effective assembly.  If all read mappings 
are retained, allowing a read to be associated with multiple reference genomes, the resulting assembly 
will be redundant, reconstructing multiple copies of the homologous genomic regions.  If for each 
read a random placement is selected from among the multiple equivalent matches, none of the related 
genomes may recruit enough reads to allow assembly, thereby leading to a fragmented 
reconstruction.  Assigning reads to genomes according to their estimated representation in the sample 
(determined, e.g., based on the number of reads uniquely mapped to each genome), may bias the 
reconstruction towards the more divergent reference genomes, which may lead to an overall poorer 
reconstruction of the genomic regions shared across related genomes.  Here we propose a parsimony-
driven approach – identifying the minimal set of reference genomes that explains all read alignments.     
 
Formally, this problem can be framed as a set cover problem, an optimization problem which is NP-
hard. To solve this problem, we use a greedy approximation algorithm, which iteratively picks the set 
of genomes that covers the greatest number of unused reads. It can be shown that this greedy 
algorithm is the best-possible polynomial time approximation algorithm for the set cover problem33. 
 



Given a set of reference genomes, selected as described above, a set of shotgun reads, and the 
alignment between each read and reference genome, the process of creating contigs is 
straightforward. For each nucleotide base of each reference genome, we look at the bases from the 
reads that are mapped to this locus, and pick the nucleotide with the highest depth of coverage as the 
consensus. In addition, to introduce an insertion, its depth of coverage should be higher than half of 
that of its neighbor nucleotides. Nucleotides from a reference sequence that do not match any base 
from the reads are discarded from the consensus sequence. Minimum depth of coverage and length 
for creating contigs can be specified through the program command-line options.  

Improving assembly through iteration. Differences between the genome being assembled and the 
corresponding reference sequence may bias the reconstruction towards the reference sequence, 
leading to an imperfect assembly.  Iterative assembly approaches have previously been effectively 
used to improve assembly quality16,17 and we use this strategy here as well. Iterative assembly works 
as follows: (1) map shotgun reads to the original reference genomes; (2) create contigs based on the 
reads that are aligned; (3) use the newly created contigs and their surrounding sequences from the 
original genomes as new reference sequences, and iterate until the assemblies can not be improved 
further.  By default, MetaCompass runs three rounds of iterative assembly. 

Combining comparative and de novo assemblies. Comparative and de novo assembly approaches 
are complementary - comparative approaches are much more tolerant to repeats (the most significant 
challenge in genome assembly) and are effective at even low depths of coverage, while de novo 
approaches can assemble novel sequences not found in public databases.   To leverage the 
complementary strengths of these tools, we use the light-weight assembler minimus234 to directly 
combine the contigs generated from the two approaches. The default parameters used by MetaAmos: 
(1) minimum overlap length is 100bp; (2) overlap similarity cutoff is 95%. 
 
Gene prediction and marker gene detection. The genes were predicted in the contigs using 
MetaGeneMark 35(v2.7d) with the “MetaGeneMark_v1.mod” model parameter file and using the 
option “-n” to remove partial genes containing long strings of “N”. The completion status of the 
genes (complete, lack 5’, lack 3’ and lack both) was defined by detecting all the common start codon 
(“ATG”, “TTG”, “GTG”) and stop codon (“TAA”, “TAG”, “TGA”) of prokaryotic genes.  
The 40 universal single copy marker genes36,37 were detected on the predicted genes using the 
standalone version of fetchMG (v1.0) http://www.bork.embl.de/software/mOTU/)38. 

Datasets used in our experiments. The Illumina reads of the even and staggered metagenomic 
samples of mock community from the Human Microbiome Project were downloaded from the NCBI 
SRA with BioProject ID 48475.  

The Illumina reads of 688 metagenomic samples from the Human Microbiome Project were 
downloaded from the HMP Data Analysis and Coordination Center (www.hmpdacc.org).  
 
The Illumina reads of two human gut microbial communities from Denmark (MH0012 female sample 
and MH0030 male sample) were downloaded from the MetaHIT project (http://www.metahit.eu/). 
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Table 1. Assembly of the even and staggered mock metagenomic sample from Human 
Microbiome Project. The rows labeled “*” indicate that we directly provided MetaCompass the 
correct reference genomes, bypassing the automatic reference selection procedure. “Size to XXMbp” 
represents the size of the largest contig C such that the sum of all contigs larger than C exceeds XX 
Mbp. The percent of reads assembled (“Mapped reads (%)”) is calculated by mapping reads back to 
the contigs using Bowtie 2. Missing values (“-”) indicate that total assembly size is smaller than the 
corresponding cumulative assembly size. 
 

Dataset Tool # 
Contigs 

Total 
Size 
(Kbp) 

Max 
Size 
(Kbp) 

Size to 
1Mbp 
(Kbp) 

Size to 
4Mbp 
(Kbp) 

Size to 
10Mbp 
(Kbp) 

Mapped 
reads 
(%) 

# 
Complete 
genes 

#  
Complete 
Marker 
genes 

Even 

IDBA-UD 15,948 21,233.9 41.9 22.2 8.8 2.1 72.9 11,124 150 

MetaCompass 26,002 36,292.6 996.5 624.8 187.9 16.63 86.2 21,475 298 

MetaCompass* 30,186 38,481.4 910.8 391.2 157.13 16.84 88.13 21,914 305 

MEGAHIT 21,070 14,689.6 22.7 4.1 1.5 0.5 62.7 4,670 56 

SOAPdenovo2 6,917 3,264.0 8.3 0.5 - - 7.9 640 3 

SPAdes 23,075 24,515.9 61.2 31.6 12.0 2.4 76.5 12,383 171 

Velvet 641 351.6 6.5 - - - 7.1 125 - 

Staggered 

IDBA-UD 8,320 15,575.7 132.6 54.1 21.9 1.8 79.4 10,265 142 

MetaCompass 4,170 18,309.4 785.3 473.7 139.4 39.8 84.1 15,093 213 

MetaCompass* 3,542 18,866.4 785.3 473.7 155.0 40.7 84.1 15,962 215 

MEGAHIT 6,910 10,386.5 107.1 53.4 16.6 0.34 60.8 6,736 98 

SOAPdenovo2 5,580 6,529.9 27.0 5.7 1.5 - 46.9 3,253 34 

SPAdes 13,219 16,403.6 46.3 20.4 6.7 1.3 80.8 8,784 126 

Velvet 4,684 2,123.2 8.4 0.4 - - 21.1 345 1 

 

  



Table 2. Run time for assemblers on mock metagenomic samples. 
 
Assembler 

Even Staggered 
Run time with # threads (mm:ss) Run time with # threads (mm:ss) 
1 2 4 8 1 2 4 8 

MetaCompass 1 iteration 35:08 28:39 20:42 16:52 31:34 27:00 17:34 16:34 
MetaCompass 2 iterations 45:34 32:56 23:58 19:34 41:33 31:12 21:09 19:11 
MetaCompass 3 iterations 51:52 34:51 25:55 21:36 56:00 36:19 24:25 20:30 
IDBA-UD 39:32 27:28 19:32 16:00 42:29 27:17 18:32 16:34 
MEGAHIT - 17:50 06:02 03:22 - 26:51 07:57 04:47 
SPAdes 09:22 06:02 03:53 02:59 36:22 25:56 23:36 23:17 
SOAPdenovo2 02:42 02:14 01:47 01:28 02:46 02:08 01:48 01:41 
Velvet 02:13 01:43 01:16 01:00 30:10 02:12 02:08 01:08 
  



Table 3. Assembly statistics of comparative assembly (MetaCompass), de novo assembly 
(SOAPdenovo2) and a hybrid approach on 2 samples from the MetaHIT project. The rows 
labeled MetaCompass contain results obtained with reference genomes from the RefSeq database 
alone. The rows labeled MetaCompass* indicates that comparative assembly used, in addition, 
reference genomes reconstructed from stool samples in the MetaHIT project. The rows labeled 
SOAPdenovo2* show the statistics for only those contigs from the SOAPdenovo2 assembly that can 
be mapped to reference genomes. “Size to XXMbp” represents the size of the largest contig C such 
that the sum of all contigs larger than C exceeds XX Mbp. Missing values (-) indicate that total 
assembly size is smaller than the corresponding cumulative assembly size. 
        

Dataset Assembly tool # Contigs Total Size 
(Kbp) 

Max 
Size 
(Kbp) 

Size to 
1Mbp 
(Kbp) 

Size to  
4Mbp  
(Kbp) 

Size to 
10Mbp 
(Kbp) 

Mapped 
reads  
(%) 

#  
Complete 
genes 

#  
Complete 
marker 
genes 

MH0012 

MetaCompass 16,662 32,389.5 117.7 65.8 34.5 12.2 5.8 19,369 379 

MetaCompass* 44,374 113,725.6 810.4 620.0 270.4 141.4 41.4 79,791 1707 

SOAPdenovo2 11,3291 125,428.0 101.1 58.5 30.9 17.9 68.9 50,476 756 

SOAPdenovo2* 35,691 55,200.7 81.0 34.2 18.6 10.8 35.8 25,530 506 

Hybrid 121,008 211,924.7 810.4 620.0 270.4 147.9 74.9 117,283 1980 

MH0030 

MetaCompass 5,004 3,000.6 33.2 0.9 - - 2.2 988 40 

MetaCompass* 34,619 47,300.8 602.4 302.3 88.8 29.6 39.9 28,644 749 

SOAPdenovo2 14,580 12,058.9 63.3 5.8 1.7 0.5 30.9 3,822 55 

SOAPdenovo2* 6,476 6,419.3 18.3 4.6 1.0 - 17.4 2,225 55 
Hybrid 42,686 55,474.5 602.4 302.3 88.8 30.5 53.1 30,996 750 

 
  



Figure 1. Comparative assembly of metagenomic samples from the HMP Project. The boxplots 
include 688 metagenomic samples from all body sites, 137 stool samples, 87 nares samples and 51 
posterior fornix samples.  
 

 



Supplementary Data 1. Taxonomic compositions of the even and staggered 
mock samples estimated by MetaPhyler based on the Illumina shotgun reads.
Coverage indicates the sum of the average depths of coverage of the genomes
within a genus.

Genus level %Abundance Coverage %Abundance Coverage
Acinetobacter 10.5 3061 0.4 147
Bacillus 0.55 159 0.23 85
Bacteroides 7.55 2202 0.02 6
Clostridium 2.35 685 0.84 310
Deinococcus 32.99 9617 0.2 73
Enterococcus 1.57 457 0 1
Escherichia 0.7 203 3.87 1425
Helicobacter 6.36 1853 0.22 82
Listeria 2.58 751 0.05 20
Methanobrevibacter 1.21 352 6.39 2349
Neisseria 4.58 1335 0.19 69
Propionibacterium 5.84 1702 0.31 115
Pseudomonas 0.52 151 1.45 532
Rhodobacter 2.45 713 16.31 5999
Shigella 0.29 84 1.3 479
Staphylococcus 9.59 2796 54.1 19904
Streptococcus 8.52 2485 12.08 4445

Even Staggered

 



Supplementary Data 2. MetaHIT genomes included to augment MetaCompass database of
reference genomes.
MGS Sample Taxon ID (NCBI)Scientific Name
MGS:2 MH0020 1262912 Parabacteroides sp. CAG:2
MGS:4 MH0014 1263075 Escherichia coli CAG:4
MGS:9 V1.CD35-1 1262967 Ruminococcus sp. CAG:9
MGS:12 V1.UC16-0 1263078 Eubacterium hallii CAG:12
MGS:13 MH0072 1263104 Roseburia intestinalis CAG:13
MGS:14 MH0012 1263090 Odoribacter splanchnicus CAG:14
MGS:15 MH0067 1263105 Roseburia inulinivorans CAG:15
MGS:18 O2.UC11-0 1262941 Roseburia sp. CAG:18
MGS:19 V1.UC25-0 1263070 Coprococcus comes CAG:19
MGS:20 MH0061 1262738 Bacteroides sp. CAG:20
MGS:24 MH0006 1263012 Firmicutes bacterium CAG:24
MGS:25 O2.UC9-0 1262984 Lachnospiraceae bacterium CAG:25
MGS:27 V1.UC11-5 1263068 Clostridium leptum CAG:27
MGS:29 MH0002 1262694 Alistipes sp. CAG:29
MGS:36 MH0002 1263079 Eubacterium rectale CAG:36
MGS:37 O2.UC49-2 1262757 Blautia sp. CAG:37
MGS:38 V1.CD41-0 1262889 Eubacterium sp. CAG:38
MGS:41 V1.UC4-5 1263021 Firmicutes bacterium CAG:41
MGS:42 V1.UC25-0 1263074 Dorea longicatena CAG:42
MGS:45 MH0115 1262947 Roseburia sp. CAG:45
MGS:50 O2.UC17-2 1262949 Roseburia sp. CAG:50
MGS:51 O2.UC37-0 1262979 Tannerella sp. CAG:51
MGS:52 V1.UC54-0 1262758 Blautia sp. CAG:52
MGS:57 V1.UC55-0 1262962 Ruminococcus sp. CAG:57
MGS:62 MH0003 1262828 Clostridium sp. CAG:62
MGS:64 V1.UC14-1 1262981 Erysipelotrichaceae bacterium CAG:64
MGS:65 MH0030 1.26E+12 Firmicutes bacterium CAG:65
MGS:67 MH0012 1263036 Alistipes putredinis CAG:67
MGS:68 MH0006 1263035 Alistipes finegoldii CAG:68
MGS:69 V1.CD36-0 1263059 Bifidobacterium longum CAG:69
MGS:72 O2.UC27-2 1263077 Eubacterium eligens CAG:72
MGS:74 MH0012 1262897 Faecalibacterium sp. CAG:74
MGS:80 MH0002 1263080 Eubacterium siraeum CAG:80
MGS:81 V1.CD18-3 1262842 Clostridium sp. CAG:81
MGS:83 O2.UC23-0 1262992 Firmicutes bacterium CAG:83
MGS:86 V1.CD4-0 1262895 Eubacterium sp. CAG:86
MGS:89 V1.UC15-3 - -
MGS:95 MH0006 1262988 Firmicutes bacterium CAG:95
MGS:100 MH0038 1262940 Roseburia sp. CAG:100
MGS:102 O2.UC1-2 1262998 Firmicutes bacterium CAG:102
MGS:105 V1.CD15-3 1262872 Dorea sp. CAG:105
MGS:108 MH0012 1262950 Ruminococcus sp. CAG:108
MGS:114 V1.UC55-0 1263001 Firmicutes bacterium CAG:114
MGS:116 MH0006 1263095 Paraprevotella clara CAG:116
MGS:118 V1.CD15-3 1262978 Tannerella sp. CAG:118
MGS:122 V1.UC23-0 1262773 Clostridium sp. CAG:122
MGS:126 MH0014 1263106 Ruminococcus gnavus CAG:126
MGS:127 MH0012 1262774 Clostridium sp. CAG:127
MGS:129 V1.UC26-4 1263003 Firmicutes bacterium CAG:129
MGS:131 MH0137 1262862 Coprococcus sp. CAG:131
MGS:132 V1.CD35-1 1263065 Clostridium clostridioforme CAG:132
MGS:138 MH0003 1262775 Clostridium sp. CAG:138
MGS:139 V1.UC48-0 1262986 Proteobacteria bacterium CAG:139
MGS:145 V1.CD31-0 1263005 Firmicutes bacterium CAG:145
MGS:146 V1.UC30-0 1262879 Eubacterium sp. CAG:146
MGS:147 V1.UC31-0 1263061 Blautia hydrogenotrophica CAG:147
MGS:149 V1.UC11-5 1262776 Clostridium sp. CAG:149
MGS:154 MH0012 1263034 Akkermansia muciniphila CAG:154
MGS:156 O2.UC35-0 1262880 Eubacterium sp. CAG:156



MGS:157 V1.UC11-5 1262692 Alistipes sp. CAG:157
MGS:161 O2.UC32-2 1262881 Eubacterium sp. CAG:161
MGS:164 V1.UC56-0 1263102 Prevotella copri CAG:164
MGS:167 V1.UC21-0 1262777 Clostridium sp. CAG:167
MGS:177 V1.UC26-0 1262952 Ruminococcus sp. CAG:177
MGS:180 V1.UC5-3 1262882 Eubacterium sp. CAG:180
MGS:194 MH0006 1263008 Firmicutes bacterium CAG:194
MGS:196 MH0038 1262690 Acinetobacter sp. CAG:196
MGS:202 O2.UC52-2 1262884 Eubacterium sp. CAG:202
MGS:207 MH0147 1262914 Phascolarctobacterium sp. CAG:207
MGS:212 V1.CD20-4 1263009 Firmicutes bacterium CAG:212
MGS:217 O2.UC49-2 1262779 Clostridium sp. CAG:217
MGS:218 V1.CD18-0 1263072 Dialister invisus CAG:218
MGS:224 V1.UC14-1 1263067 Clostridium hathewayi CAG:224
MGS:227 V1.UC2-4 1263010 Firmicutes bacterium CAG:227
MGS:230 V1.UC55-4 1262782 Clostridium sp. CAG:230
MGS:234 V1.CD36-0 1263058 Bifidobacterium bifidum CAG:234
MGS:235 V1.CD17-0 1262854 Coprobacillus sp. CAG:235
MGS:236 O2.UC37-2 1263110 Streptococcus thermophilus CAG:236
MGS:238 MH0012 1263011 Firmicutes bacterium CAG:238
MGS:239 V1.UC25-1 1262705 Azospirillum sp. CAG:239
MGS:241 MH0062 1262911 Oscillibacter sp. CAG:241
MGS:242 O2.UC48-0 1262783 Clostridium sp. CAG:242
MGS:245 O2.UC47-0 1262784 Clostridium sp. CAG:245
MGS:251 O2.UC2-0 1262886 Eubacterium sp. CAG:251
MGS:253 MH0122 1262785 Clostridium sp. CAG:253
MGS:255 MH0011 1262923 Prevotella sp. CAG:255
MGS:257 V1.CD21-0 1262756 Blautia sp. CAG:257
MGS:259 MH0075 1263062 Butyrivibrio crossotus CAG:259
MGS:260 V1.CD15-3 1262706 Azospirillum sp. CAG:260
MGS:264 O2.UC30-0 1262786 Clostridium sp. CAG:264
MGS:265 V1.CD41-0 1262787 Clostridium sp. CAG:265
MGS:267 MH0142 1262684 Acetobacter sp. CAG:267
MGS:268 MH0054 1262693 Alistipes sp. CAG:268
MGS:269 V1.CD24-0 1262788 Clostridium sp. CAG:269
MGS:274 V1.CD29-0 1262888 Eubacterium sp. CAG:274
MGS:276 V1.UC14-1 1262699 Anaerostipes sp. CAG:276
MGS:277 MH0035 1262790 Clostridium sp. CAG:277
MGS:279 MH0020 1262924 Prevotella sp. CAG:279
MGS:287 MH0006 1263101 Phascolarctobacterium succinatutens CAG:287
MGS:288 MH0120 1262791 Clostridium sp. CAG:288
MGS:289 V1.UC38-0 1262851 Collinsella sp. CAG:289
MGS:290 MH0098 1262767 Catenibacterium sp. CAG:290
MGS:298 V1.UC54-0 1262876 Eggerthella sp. CAG:298
MGS:302 V1.UC12-0 1262793 Clostridium sp. CAG:302
MGS:306 V1.CD28-0 1262794 Clostridium sp. CAG:306
MGS:307 MH0175 1262795 Clostridium sp. CAG:307
MGS:308 O2.UC47-0 1263016 Firmicutes bacterium CAG:308
MGS:313 MH0157 1263017 Firmicutes bacterium CAG:313
MGS:314 MH0012 1262970 Subdoligranulum sp. CAG:314
MGS:317 V1.CD21-0 1262873 Dorea sp. CAG:317
MGS:318 MH0011 1262761 Butyrivibrio sp. CAG:318
MGS:321 MH0014 1263018 Firmicutes bacterium CAG:321
MGS:324 MH0097 1262969 Staphylococcus sp. CAG:324
MGS:325 MH0083 1263033 Acidaminococcus intestini CAG:325
MGS:338 V1.UC30-0 1262868 Cryptobacterium sp. CAG:338
MGS:341 V1.UC12-0 1263019 Firmicutes bacterium CAG:341
MGS:343 MH0099 1262796 Clostridium sp. CAG:343
MGS:344 V1.CD7-4 1262691 Akkermansia sp. CAG:344
MGS:345 MH0038 1263020 Firmicutes bacterium CAG:345
MGS:349 O2.UC41-2 1262797 Clostridium sp. CAG:349
MGS:352 MH0148 1262798 Clostridium sp. CAG:352
MGS:353 O2.UC58-0 1262955 Ruminococcus sp. CAG:353
MGS:354 MH0025 1262799 Clostridium sp. CAG:354



MGS:356 MH0111 1262800 Clostridium sp. CAG:356
MGS:357 V1.UC39-0 1262869 Dialister sp. CAG:357
MGS:364 V1.CD7-0 1262983 Lachnospiraceae bacterium CAG:364
MGS:368 O2.UC11-2 1262877 Eggerthella sp. CAG:368
MGS:373 O2.UC26-0 - -
MGS:377 V1.UC4-5 1263086 Megamonas funiformis CAG:377
MGS:397 MH0012 1262976 Sutterella sp. CAG:397
MGS:398 V1.UC13-0 1262852 Collinsella sp. CAG:398
MGS:403 O2.UC50-2 1262958 Ruminococcus sp. CAG:403
MGS:411 MH0173 1262802 Clostridium sp. CAG:411
MGS:413 MH0053 1262803 Clostridium sp. CAG:413
MGS:417 O2.UC3-0 1262804 Clostridium sp. CAG:417
MGS:433 MH0096 1262806 Clostridium sp. CAG:433
MGS:435 MH0012 1262695 Alistipes sp. CAG:435
MGS:437 V1.UC10-2 1263051 Bacteroides pectinophilus CAG:437
MGS:439 MH0043 1262899 Fusobacterium sp. CAG:439
MGS:440 MH0145 1262807 Clostridium sp. CAG:440
MGS:451 MH0100 1262809 Clostridium sp. CAG:451
MGS:452 MH0151 1262810 Clostridium sp. CAG:452
MGS:460 MH0157 1263024 Firmicutes bacterium CAG:460
MGS:462 V1.CD38-0 1262740 Bacteroides sp. CAG:462
MGS:465 V1.UC19-0 1262811 Clostridium sp. CAG:465
MGS:466 V1.CD27-0 1263025 Firmicutes bacterium CAG:466
MGS:470 O2.UC37-2 1262812 Clostridium sp. CAG:470
MGS:471 V1.CD15-3 1262948 Roseburia sp. CAG:471
MGS:472 MH0030 1262904 Mycoplasma sp. CAG:472
MGS:474 MH0006 1262926 Prevotella sp. CAG:474
MGS:475 MH0048 1263026 Firmicutes bacterium CAG:475
MGS:484 V1.UC40-0 1262759 Brachyspira sp. CAG:484
MGS:485 O2.UC60-0 1262927 Prevotella sp. CAG:485
MGS:488 V1.UC26-0 1262959 Ruminococcus sp. CAG:488
MGS:495 MH0035 1262987 Proteobacteria bacterium CAG:495
MGS:508 V1.UC9-0 1262815 Clostridium sp. CAG:508
MGS:510 MH0012 1262816 Clostridium sp. CAG:510
MGS:514 MH0009 1262696 Alistipes sp. CAG:514
MGS:520 MH0012 1262929 Prevotella sp. CAG:520
MGS:521 V1.UC2-4 1262977 Sutterella sp. CAG:521
MGS:524 MH0097 1262817 Clostridium sp. CAG:524
MGS:528 V1.UC6-0 1262700 Anaerotruncus sp. CAG:528
MGS:534 MH0143 1263027 Firmicutes bacterium CAG:534
MGS:536 O2.UC44-2 1263028 Firmicutes bacterium CAG:536
MGS:542 V1.UC13-3 1262687 Acidaminococcus sp. CAG:542
MGS:545 MH0009 1262742 Bacteroides sp. CAG:545
MGS:552 MH0143 1263029 Firmicutes bacterium CAG:552
MGS:555 MH0009 1263030 Firmicutes bacterium CAG:555
MGS:561 V1.UC49-1 1263089 Odoribacter laneus CAG:561
MGS:563 MH0053 1262961 Ruminococcus sp. CAG:563
MGS:567 MH0104 1262820 Clostridium sp. CAG:567
MGS:568 MH0004 1262821 Clostridium sp. CAG:568
MGS:571 MH0107 1262822 Clostridium sp. CAG:571
MGS:582 MH0115 1262997 Firmicutes bacterium CAG:582
MGS:590 MH0077 1262825 Clostridium sp. CAG:590
MGS:592 MH0168 1262931 Prevotella sp. CAG:592
MGS:594 MH0137 1262826 Clostridium sp. CAG:594
MGS:603 MH0035 1262891 Eubacterium sp. CAG:603
MGS:605 MH0099 1262855 Coprobacillus sp. CAG:605
MGS:617 MH0046 1262933 Prevotella sp. CAG:617
MGS:621 V1.UC26-4 1263100 Peptostreptococcus anaerobius CAG:621
MGS:628 MH0099 1262829 Clostridium sp. CAG:628
MGS:631 O2.UC52-0 1262996 Firmicutes bacterium CAG:631
MGS:632 MH0065 1262830 Clostridium sp. CAG:632
MGS:633 MH0143 1262744 Bacteroides sp. CAG:633
MGS:634 O2.UC38-0 1263083 Klebsiella variicola CAG:634
MGS:646 V1.CD21-0 1262995 Firmicutes bacterium CAG:646



MGS:649 V1.CD35-0 1262900 Fusobacterium sp. CAG:649
MGS:665 MH0115 1263071 Coprococcus eutactus CAG:665
MGS:678 V1.UC55-4 1262831 Clostridium sp. CAG:678
MGS:698 MH0126 1262856 Coprobacillus sp. CAG:698
MGS:702 MH0135 1262747 Bacteroides sp. CAG:702
MGS:709 MH0158 1262748 Bacteroides sp. CAG:709
MGS:710 MH0013 1262833 Clostridium sp. CAG:710
MGS:715 MH0183 1262834 Clostridium sp. CAG:715
MGS:719 O2.UC34-0 1263084 Lactobacillus amylovorus CAG:719
MGS:729 MH0021 1262835 Clostridium sp. CAG:729
MGS:755 V1.CD19-0 1262935 Prevotella sp. CAG:755
MGS:762 V1.UC36-0 1262837 Clostridium sp. CAG:762
MGS:768 V1.CD19-0 1262838 Clostridium sp. CAG:768
MGS:770 MH0006 1262751 Bacteroides sp. CAG:770
MGS:776 MH0146 1262906 Mycoplasma sp. CAG:776
MGS:777 MH0124 1262974 Succinatimonas sp. CAG:777
MGS:780 O2.UC1-2 1262839 Clostridium sp. CAG:780
MGS:782 MH0090 1262863 Coprococcus sp. CAG:782
MGS:788 V1.UC49-1 1262909 Odoribacter sp. CAG:788
MGS:791 MH0012 1262993 Firmicutes bacterium CAG:791
MGS:793 MH0102 1262840 Clostridium sp. CAG:793
MGS:798 MH0102 1262841 Clostridium sp. CAG:798
MGS:815 MH0137 1262901 Fusobacterium sp. CAG:815
MGS:822 V1.UC55-0 1263032 Firmicutes bacterium CAG:822
MGS:826 MH0124 1262857 Coprobacillus sp. CAG:826
MGS:831 MH0143 1262698 Alistipes sp. CAG:831
MGS:841 O2.UC24-2 1262894 Eubacterium sp. CAG:841
MGS:873 O2.UC60-0 1262936 Prevotella sp. CAG:873
MGS:877 MH0090 1262907 Mycoplasma sp. CAG:877
MGS:878 MH0118 1262686 Acholeplasma sp. CAG:878
MGS:884 V1.UC36-0 1262990 Firmicutes bacterium CAG:884
MGS:891 MH0057 1262937 Prevotella sp. CAG:891
MGS:914 MH0143 1262846 Clostridium sp. CAG:914
MGS:917 MH0143 1262688 Acidaminococcus sp. CAG:917
MGS:924 MH0069 1262938 Prevotella sp. CAG:924
MGS:927 O2.UC40-2 1262753 Bacteroides sp. CAG:927
MGS:933 O2.UC37-2 1262980 Veillonella sp. CAG:933
MGS:956 MH0144 1262908 Mycoplasma sp. CAG:956
MGS:964 V1.CD6-4 1262848 Clostridium sp. CAG:964
MGS:967 MH0067 1262849 Clostridium sp. CAG:967
MGS:977 MH0143 1262685 Acetobacter sp. CAG:977
MGS:988 MH0174 1262708 Bacillus sp. CAG:988
MGS:1000 MH0096 1262768 Clostridium sp. CAG:1000
MGS:1013 V1.UC11-5 1262769 Clostridium sp. CAG:1013
MGS:1031 V1.CD20-4 1262917 Prevotella sp. CAG:1031
MGS:1058 V1.CD19-0 1262918 Prevotella sp. CAG:1058
MGS:1060 MH0044 1262734 Bacteroides sp. CAG:1060
MGS:1138 MH0038 1262896 Faecalibacterium sp. CAG:1138
MGS:1185 MH0107 1262921 Prevotella sp. CAG:1185
MGS:1320 MH0057 1262922 Prevotella sp. CAG:1320
MGS:1329 V1.CD10-0 1263063 Clostridium bartlettii CAG:1329
MGS:1427 O2.UC20-2 1262874 Eggerthella sp. CAG:1427
MGS:1435 MH0124 1262867 Corallococcus sp. CAG:1435
MGS:5226 O2.UC43-0 1262930 Prevotella sp. CAG:5226



Supplementary Data 3. Assembly statistics after improving comparative assembly through iterative mapping on mock
metagenomic samples and 2 samples from the MetaHIT project.
Dataset # Iterations # Contigs Total Size(Kbp)Max Size(Kbp)Size at 1Mbp (Kbp)Size at 2Mbp (Kbp)Size at 4Mbp (Kbp)Size at 10Mbp (Kbp)Mapped reads (%) # Complete genes # Complete core genes

1 26002 36292.6 996.5 624.9 391.2 188.0 16.63 86.2 21475 298
2 25822 37011.9 1960.7 1960.7 688.1 266.5 21.01 86.39 22119 335
3 25786 37052.5 1960.7 1960.7 688.1 266.5 21.01 86.37 22160 336
1 30186 38481.4 910.8 391.2 347.2 157.1 16.84 88.13 21914 305
2 29631 39125.8 1960.7 1960.7 688.1 266.5 20.82 88.29 22554 340
3 29598 39158.3 1960.7 1960.7 688.1 266.5 20.82 88.26 22584 342
1 4170 18309.4 785.3 473.7 250.2 139.4 39.8 84.08 15093 213
2 7567 20831.7 1160.0 1160.0 915.0 243.4 58.95 84.69 16151 228
3 7620 21003.7 1160.0 1160.0 915.0 257.0 62.27 84.72 16260 228
1 3542 18866.4 785.3 473.7 250.2 155.0 40.69 84.12 15962 215
2 3725 19289.2 1160.0 1160.0 870.9 233.4 59.63 84.39 16185 226
3 3750 19320.9 1160.0 1160.0 870.9 257.0 62.52 84.42 16205 226
1 41228 106812.1 810.4 348.7 283.5 219.9 111.5 40.34 25770 642
2 43826 112434.5 810.4 620.0 342.3 270.4 135.09 41.02 28076 718
3 44374 113725.6 810.4 620.0 342.3 270.4 141.42 41.38 28644 749
1 33670 43988.0 566.9 287.2 159.9 72.4 19.27 38.88 73914 1463
2 34396 46683.4 602.4 302.3 240.4 75.9 27.86 39.71 78704 1660
3 34619 47300.8 602.4 302.3 240.4 88.8 29.59 39.95 79791 1707

The rows labeled “*” indicate that we directly provided MetaCompass the correct reference genomes, bypassing the automatic reference selection procedure.

mock even

mock stg

MH0030

MH0012

mock even*

mock stg*


