
Reuse for Code-Level Generalization

Alison Teoh
Department of Computer Science

University of Maryland,
College Park, MD 20742, USA

alison@cs.umd.edu

ABSTRACT
This paper describes how code reuse combined with good
programming practices can also be used as a means to attain
code-level generalization of certain programs. It presents
some basic principles to be used when refactoring code for
reuse and presents a case study in which the functionality of
two AI planners are easily combined via application of these
principles.

1. INTRODUCTION
The concept of code reuse has been around for decades,
originally viewed as a ”silver bullet” for economical soft-
ware production. Reusing software assets could save time
and money as programmers would not have to waste work-
ing hours rewriting code that had previously been written.
Over the years, however, controversy has arisen regarding
whether or not the benefits outweight the drawbacks and
difficulties of practically incorporating code reuse in indus-
try. Similarly, there has been great debate over what should
be considered the best approaches to code reuse, and how
to measure the effectiveness of such practices.

Despite the controversies regarding code reuse, it is indis-
putable that many software systems bear similar properties
and employ many of the same theoretical constructs within
the underlying mechanics. In this work, we describe some
basic design principles to guide the restructuring of Lisp
code using the Common Lisp Object System (CLOS) for
effective reuse and attaining code-level generalization. We
focus on the well-known AI planning system SHOP2 [12] and
describe our work on refactoring the original SHOP2 imple-
mentation in order to emphasize code reuse in the light of
our design principles.

We then describe a case study in which we employed these
principles to easily generalize the functionality of the planner
SHOP2 into that of another planner ND-SHOP2 and effec-
tively incorporate support for planning in nondeterministic
domains. The generalization from SHOP2 to ND-SHOP2
has been theoretically demonstrated before in [7], along with
a broader class of AI planners in deterministic domains that
can be generalized to work effectively in nondeterministic
domains. Previously, this transformation involved the guide-
lines for the theoretical generalization of the deterministic
planner, which a programmer would then use to implement
the new, nondeterministic planner. However, by employing
a few basic principles of code refactoring, it is possible to
attain code-level generalization, in which the same code is

used to carry out the functionality of both planners.

2. RELATED WORK
Previous works describing code reuse have focused primarily
on aspects of business efficiency. Studies of the quality of
various metrics abound [2, 8, 13] as experts debate the sup-
posed benefits of reusing code. Factors that play into that
debate are the overhead of writing reusable code and the
issues associated with retrieving it later [9, 17]. With the
advent of object-oriented programming, the concept of code
reuse moved beyond simple copy-and-paste techniques and
into more generalized, systematic processes. The benefits
and drawbacks of code reuse ”in the small” versus large-
scale endeavors have been well-debated [4, 5, 6]. Similarly,
there has been a great deal of contention regarding the best
approach to code reuse, most of which has focused on modi-
fications to classical object-oriented programming languages
[14, 18, 16]. To the best of our knowledge, there has been
little research related specifically to the reuse of Lisp code.

3. PRINCIPLES OF REUSE
In order to refactor pre-written code, we consider the pro-
cess in two basic steps: “Modularization” and “Code-Level
Generalization,” which illustrate the concepts of functional
decomposition and knowledge engineering, respectively.

3.1 Modularization
Good programming practices always call for some level of
modularization [15]. While object-oriented languages inher-
ently enforce this somewhat through the concept of encapsu-
lation, functional programming often seems to breed large,
dense, one-file programs. Since functions are no longer tied
to specific classes, programmers using these languages often
lose sight of the importance that modularization bears on
readability and potential for reuse.

Large programs can often be broken into several subsystems,
each of which has potential to be reused in other projects.
These subsystems ought to be separated and arranged in a
sensical directory-style structure. Functions and classes of
similar nature and function should likewise be grouped to-
gether in the same file to maximize the probability that it
might be reused in entirety, as well as to enable quick loca-
tion of various functions and classes. There are many pack-
aging and system definition facilities freely available that
enable this modularization when programming in Lisp.

3.2 Code-level Generalization



3.2.1 Language Matters
The Common Lisp Object System (CLOS) [1] incorporates
the object-oriented paradigm into the Common Lisp frame-
work. CLOS allows users to define class objects and hierar-
chies of those objects, much like in any other object-oriented
system. A key difference, however, is that CLOS allows for
multiple inheritance, meaning an object can simultaneously
be an instance of two different classes.

Another aspect of CLOS that sets it apart from other object-
oriented systems is that methods are not assigned to classes,
operating on message-passing. Instead, generic functions are
declared, and methods associated with the generic function
dictate class-specific operations to be performed. When a
method with a given name is called, all methods associated
with the generic function are examined; a dispatcher selects
the most relevant choice based on the classes of the objects
specified in the parameter list.

In addition to multiple dispatch, another unique feature of
CLOS’s generic method system is the ability to combine and
chain methods. The interactions of various method are spec-
ified by the method roles assigned: a defined method may
specify that it perform some function before, after, or around
the primary method in order to carry out implementation
of the generic method. This feature allows responsibilities
in overall method functionality to be split between a class
and its superclass as the method defined in each takes on a
different role.

3.2.2 CLOSification
In order to attain code-level generalization in the way we
intend, code implemented in the Common Lisp framework
must be refactored so as to make use of the properties of the
CLOS. This refactoring process is affectionately referred to
as “CLOSification” and primarily involves redefining structs
as classes and defining generic functions for those methods
that require dispatch. One of the key factors in this step
is identifying which objects control the method that should
be chosen when a function is called; it is unlikely that the
dispatcher need examine the entire list of method parame-
ters in order to choose that method which is best-suited to
a given situation.

4. CASE STUDY - SHOP2 & ND-SHOP2
4.1 The Planners
We began with the implementation of a forward-chaining de-
terministic planner, SHOP2 [12], which was implemented in
Common Lisp. In a work published in 2004 [7], Kutur and
Nau claimed that nondeterministic forward-chaining plan-
ners were simply generalizations of their previously-established
deterministic counterparts. They then presented a technique
for generating the nondeterministic planner ND-SHOP2 from
the framework of SHOP2. The basis for their process of non-
determinizing planners is based on an abstraction of forward-
chaining planning procedure, FCP. FCP and the correspond-
ing nondeterministic version, ND-FCP are shown in Fig-
ure 1[7].

SHOP2 is an instance of the FCP procedure as follows: the
planning engine subsystem of SHOP2 itself performs a sim-
ple forward-chaining procedure as that represented in FCP.

In SHOP2, a problem consists of an initial state, a task
network which encodes the goals of the planning problem,
and a domain description. This domain description contains
user-defined methods that can decompose the tasks in the in-
put network into smaller subtasks. The α action-generation
function that decreases the relevant search space in FCP is
implemented in SHOP2 through use of these methods. More
specifically, given a state s and a task network w, the plan-
ner applies its methods to w to determine which actions are
applicable in state s. Applying these actions modifies w.
SHOP2 nondeterministically chooses one of those actions,
and applies it in s to generate a successor state. It then
continues with the current task network until a solution is
found – i.e., until there are no tasks left to be accomplished
in the world. ND-SHOP2 operates in much the same way,
except that applying an action in state s produces a nonde-
terministic result. Thus, application of any action generates
a set of possible successor states.

In this case study, we outline the restructuring of the SHOP2
code in accordance with the principles outlined in Section 3
and then demonstrate how we were easily able to incorporate
the nondeterministic functionality of ND-SHOP2 into the
code.

4.2 SHOP2 Modularization
SHOP2 was originally implemented entirely within one file,
several thousand lines long. Some attempts at modulariza-
tion had previously been made, but the organization was
not thorough or systematic. Our first step was to restruc-
ture the code in a sensical way. Once the code had been
split into various files, we packaged the files using Another
System Definition Facility (ASDF), a freely available piece
of software for use with Common Lisp. Figure 2 illustrates
the reorganization and modularization of the SHOP2 code.

We began by ensuring that all functions and classes within
a file were related and that the file was named sensically.
For example, all functions that had to do with parsing the
domain and problem specified by the user were moved to
single file named “input.lisp.” By following through with
this process, all SHOP2 code was disseminated between a
couple dozen files.

The planner had previously been conceptualized as a combi-
nation of subsystems, so the next step was simply a matter
of organizing the files into folders that accurately reflected
their functions in the planner. All files with functions hav-
ing to do with input parsing, printing plans, etc were moved
to a folder that represented the I/O system. Files contain-
ing functions that perform the actual plan generation were
clustered together in the “planning-engine” folder. We con-
tinued grouping files in this manner until everything but the
top-level files were organized in subdirectories.

4.3 SHOP2 CLOSification
As mentioned earlier in Section 3, the first step was re-
defining structs as classes. We then identified the functions
over which we would like to dispatch methods and defined
a generic function. Methods were then implemented to dis-
patch over the desired object. It was at this point that we
started adding support for functionality that we would like
to see in the future. Figure 4 shows the definition of a generic



Figure 1: The abstract planning procedure FCP. The deterministic version appears on the left and the
nondeterministic version appears on the right. Note that the underlined lines in the nondeterministic version
correspond with the pseudocode in the nondeterministic FCP description.

Figure 2: This is an illustration of the reorganization applied to the SHOP2 code. The code began as a single
file and was split into subsystems.



Figure 3: This is an illustration of how method dispatch works in CLOS.

(defgeneric get-top-tasks (searchtype List)
(:documentation“returns the list of top-tasks in the Main
List according to searchtype”))
%
%
(defmethod get-top-tasks ((searchtype left2right-search) L)
This method implements the generic get-top-tasks function
by returning the left-most “top tasks”)
%
%
(defmethod get-top-tasks ((searchtype left2right-search) L)
This method implements the generic get-top-tasks function
by returning the right-most “top tasks”)

Figure 4: Definition of a generic function and two
methods which implement it. Methods are dis-
patched on the type of the searchtype object.

function and then two methods which implement that func-
tion. Figure 3 illustrates the knowledge flow of the method
dispatching process.

For example, SHOP2 performs planning over hierarchical
task networks (HTNs) and automatically assumes that task
decomposition will take place in a left-to-right manner. A
function called ”get-top-tasks” is responsible for examining
the list of remaining tasks in the network and returning
the tasks furthest to the left that have yet to be decom-
posed into subtasks. However, we have reason to believe
that it may be interesting to research the performance of a
right-to-left decomposition; this choice would be made at the
user’s discretion, specified by creation of an object of type
Searchtype. We implemented a searchtype class which then
became superclass to two object classes, ”left2right-search”
and ”right2left-search.”We were then able to specify method
dispatch over the ”get-top-tasks” function, according to the
type of Searchtype object passed to the function call.

4.4 Applying Functionality from ND-SHOP2
After refactoring the SHOP2 code, we were ready and able
to simply add methods that dispatch over the domain and
incorporate nondeterministic capabilities into the SHOP2
planner. As noted previously, the general planner procedure
remains the same as in a deterministic setting with the small
change that lists of states need be considered rather than a
single state. The primary changes came in the form of rec-
ognizing the different type of domain, and then dispatching

as appropriate.

In SHOP2 there is a group of methods that perform vari-
ous aspects of the search function in planning. The search
is broken into three cases depending on the type of the
next task to be completed: null, primitive, and nonprimi-
tive. Each case is taken care of with its own “seek-plans”
function. During the CLOSification phase of the SHOP2
refactoring, these methods were written so as to dispatch
over the domain of the current problem. In this way, once
the new domains are recognized as being nondeterministic,
the function dispatcher merely directs the planner to the
method that had been implemented specifically to deal with
that domain. Since the ND-SHOP2 planner was already
written in full, we did not have to implement the nondeter-
ministic methods from scratch, but simply add them to the
appropriate SHOP2 files. (In the case where new functional-
ity is added to a project but not pre-written elsewhere, it is
simply a matter of implementing the new methods.) Other
methods perform identically for planning in either type of
domain, so we were able to reuse these methods without any
modification whatsoever.

5. CONCLUSION
Code reuse has been a point of interest for decades. The goal
of this paper was to introduce and demonstrate a different
aspect of code reuse than that which is generally considered.
In this paper we presented some basic principles for refac-
toring Common Lisp code such that it might be generalized
at the code-level and gain added functionality with minimal
adjustment. We discussed the importance of modulariza-
tion for maximum readability and reuse. We also looked
into the object-oriented concepts made possible in Common
Lisp through CLOS and discussed how these features can be
taken advantage of in order to attain potential for code-level
generalization. Finally, we presented a case study in which
we took two planners which had previously been shown to
be theoretical generalizations of each other and easily in-
corporated the functionality of the second into the actual
code of the first. This added functionality actually gener-
alizes the capabilities of the planner without adding a lot
of additional code, demonstrating that good programming
practices in conjunction with code reuse can indeed result
in code-level generalization.

6. REFERENCES
[1] L. G. DeMichiel and R. P. Gabriel. The common lisp

object system: an overview. In European conference



on object-oriented programming on ECOOP ’87, pages
151–170, London, UK, 1987. Springer-Verlag.

[2] P. Devanbu, S. Karstu, W. Melo, and W. Thomas.
Analytical and empirical evaluation of software reuse
metrics. In ICSE ’96: Proceedings of the 18th
international conference on Software engineering,
pages 189–199, Washington, DC, USA, 1996. IEEE
Computer Society.

[3] A. Dozsa, T. Gı̂rba, and R. Marinescu. How lisp
systems look different. In CSMR, pages 223–232.
IEEE, 2008.

[4] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and
A. P. Black. Traits: A mechanism for fine-grained
reuse. ACM Trans. Program. Lang. Syst.,
28(2):331–388, 2006.

[5] R. L. Glass. Facts and Fallacies of Software
Engineering. Addison-Wesley Professional, 2002.

[6] R. E. Grinter. From local to global coordination:
lessons from software reuse. In GROUP ’01:
Proceedings of the 2001 International ACM
SIGGROUP Conference on Supporting Group Work,
pages 144–153, New York, NY, USA, 2001. ACM.

[7] U. Kuter and D. Nau. Forward-chaining planning in
nondeterministic domains. In AAAI-2004, 2004.

[8] W. C. Lim. Why the reuse percent metric should
never be used alone, 1999.

[9] J. Long. Software reuse antipatterns. SIGSOFT Softw.
Eng. Notes, 26(4):68–76, 2001.

[10] A. Mockus. Large-scale code reuse in open source
software. In FLOSS ’07: Proceedings of the First
International Workshop on Emerging Trends in
FLOSS Research and Development, page 7,
Washington, DC, USA, 2007. IEEE Computer Society.

[11] D. Nau, T.-C. Au, O. Ilghami, U. Kuter,
H. Munoz-Avila, J. W. Murdock, D. Wu, and
F. Yaman. Applications of shop and shop2. IEEE
Intelligent Systems, 20(2):34–41, 2005.

[12] D. Nau, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu,
and F. Yaman. Shop2: An htn planning system.
Journal of Artificial Intelligence Research, 20:379–404,
2003.

[13] D. L. Nazareth and M. A. Rothenberger. Assessing
the cost-effectiveness of software reuse: a model for
planned reuse. J. Syst. Softw., 73(2):245–255, 2004.

[14] G. Neumann and U. Zdun. Enhancing object-based
system composition through per-object mixins. In
APSEC ’99: Proceedings of the Sixth Asia Pacific
Software Engineering Conference, page 522,
Washington, DC, USA, 1999. IEEE Computer Society.

[15] P. Norvig. Tutorial on good lisp programming style. In
Proceedings of the Lisp Users and Vendors
Conference, 1993.

[16] J. Palsberg and M. I. Schwartzbach. What is type-safe
code reuse? In ECOOP ’91: Proceedings of the
European Conference on Object-Oriented
Programming, pages 325–341, London, UK, 1991.
Springer-Verlag.

[17] R. Sindhgatta. Using an information retrieval system
to retrieve source code samples. In ICSE ’06:
Proceedings of the 28th international conference on
Software engineering, pages 905–908, New York, NY,

USA, 2006. ACM.

[18] N. Soundarajan and S. Fridella. Inheritance: From
code reuse to reasoning reuse. In ICSR ’98:
Proceedings of the 5th International Conference on
Software Reuse, page 206, Washington, DC, USA,
1998. IEEE Computer Society.


