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Abstract. We consider the round complexity of a basic cryptographic
task: verifiable secret sharing (VSS). This well-studied primitive provides
a good “test case” for our understanding of round complexity in general;
moreover, VSS is important in its own right as a central building block
for, e.g., Byzantine agreement and secure multi-party computation.
The round complexity of perfect VSS was settled by Gennaro et al.
(STOC 2001) and Fitzi et al. (TCC 2006). In a surprising result, Pa-
tra et al. (Crypto 2009) recently showed that if a negligible probability
of error is allowed, the previous bounds no longer apply. We settle the
key questions left open by their work, and in particular determine the
exact round complexity of statistical VSS with optimal threshold. Let n
denote the number of parties, at most t of whom are malicious. Their
work showed that 2-round statistical VSS is impossible for t ≥ n/3. We
show that 3-round statistical VSS is possible iff t < n/2. We also give an
efficient 4-round protocol for t < n/2.

1 Introduction

The round complexity of cryptographic protocols is a central measure of their
efficiency, and has been the subject of intense study. In this work, we are inter-
ested in understanding the round complexity of verifiable secret sharing (VSS)
[2]. Here, there is a dealer who shares a secret among a group of n parties, at
most t of whom (possibly including the dealer) may be malicious. The require-
ments (roughly speaking) are that if the dealer is honest, then no information
about the dealer’s secret is revealed to the t malicious parties by the end of the
sharing phase; nevertheless, by the end of the sharing phase even a dishonest
dealer is irrevocably committed to some value that will be recovered by the hon-
est parties in the reconstruction phase. Furthermore, if the dealer is honest then
this committed value must be identical to the dealer’s initial input.

We focus on information-theoretic VSS, where the security requirements are
required to hold even when the malicious parties have unbounded computational
power. Here, two different possibilities can be considered: either the security re-
quirements hold perfectly (i.e., always), or the security requirements hold sta-
tistically but can possibly be violated with negligible probability. Assuming a
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broadcast channel, perfect VSS is possible if and only if t < n/3 [1, 4], while
statistical VSS is possible up to threshold t < n/2 [11].

The round complexity of perfect VSS has been extensively studied. For the
case of optimal threshold (i.e., t < n/3), Gennaro et al. [6] showed that 3 rounds1

are necessary and sufficient for perfect VSS, and gave an efficient 4-round proto-
col for the task. The 3-round VSS protocol by Gennaro et al. requires communi-
cation exponential in the number of players, but Fitzi et al. [5] later demonstrated
that an efficient 3-round protocol is possible. Katz et al. [7] showed that perfect
VSS could be achieved with optimal round complexity and, at the same time,
optimal use of the broadcast channel.

The 3-round lower bound of Gennaro et al. was generally believed to apply
also to the case of statistical VSS. It was therefore relatively surprising when Pa-
tra et al. [8] showed recently that statistical VSS could be realized in two rounds
for t < n/3. The protocol of Patra et al. does not apply when n/3 ≤ t < n/2,
and finding a minimal-round protocol for the optimal security threshold was left
open by their work. On the other hand, the work of Patra et al. proves that
2-round statistical VSS is impossible for t ≥ n/3, which obviously applies to our
setting as well.

Our results and organization of the paper. In this work we resolve the
round complexity of statistical VSS with optimal threshold t < n/2. We show
that 3-round statistical VSS is possible for any t < n/2. We also give an efficient
4-round protocol for t < n/2.

2 Model and Definitions

We consider the standard communication model where parties communicate in
synchronous rounds using pairwise private and authenticated channels. We also
assume a broadcast channel. (VSS is impossible for t ≥ n/3 unless broadcast
is assumed.) A broadcast channel allows any party to send the same message
to all other parties — and all parties to be assured they have received identical
messages — in a single round.

When we say a protocol tolerates t malicious parties, we always mean that
it is secure against an adversary who may adaptively corrupt up to t parties
during an execution of the protocol and coordinate the actions of these parties
as they deviate from the protocol in an arbitrary manner. Parties not corrupted
by the adversary are called honest. We always assume a rushing adversary; i.e.,
in any round the malicious parties receive the messages (including the broadcast
messages) sent by the honest parties before deciding on their own messages.

In our protocol descriptions we assume without loss of generality that parties
send properly formatted messages, as we may interpret an improper or missing
message as some default message.

1 Following the accepted convention, the round complexity of VSS refers to that of
the sharing phase.



We let F denote a finite field and set κ = log |F|. We require the dealer’s
secret to lie in F. In the case of statistical VSS, we allow error with probability
at most ε = 2−Θ(κ) and so κ can be treated as a security parameter. Note that
the dealer’s secret can be padded to lie in a larger field, if desired, to reduce the
probability of error.

Definition 1. A two-phase protocol for parties P = {P1, . . . , Pn}, where a dis-
tinguished dealer D ∈ P holds initial input s ∈ F, is a (1 − ε)-statistical VSS
protocol tolerating t malicious parties if the following conditions hold for any
adversary controlling at most t parties:

Privacy: If the dealer is honest at the end of the first phase (the sharing phase),
then at the end of this phase the joint view of the malicious parties is inde-
pendent of the dealer’s input s.

Correctness/Commitment: Each honest party Pi outputs a value si at the
end of the second phase (the reconstruction phase). Except with probability
at most ε, the following hold:

1. At the end of the sharing phase, the joint view of the honest parties
defines a value s′ such that si = s′ for every honest Pi.

2. If the dealer is honest throughout the execution, then s′ = s. ♦

Remark: Our definition of statistical VSS relaxes the correctness/commitment
requirement, but not the secrecy requirement. This is the definition that has been
considered previously in the literature, and is the definition that our protocols
achieve.

3 A Multiple-Verifier Information Checking Protocol

Our protocols rely on what is known as an information checking (sub)protocol
(ICP), a notion first introduced by Rabin and Ben-Or [11]. The traditional def-
inition of an ICP [11, 3] involves the dealer D, an intermediary INT , and a
verifier V. In an initial phase, the dealer gives a secret value s ∈ F to INT and
some verification information (that reveals nothing about s) to V. Later, INT
gives s to V along with a “proof” that s is indeed the value that INT received
initially from D.

The basic definition of ICP involves only a single verifier; Patra et al. [10,
9], extend this definition to allow every party in the network to act as a verifier.
Defining ICP in this way (i.e., enabling multiple verifiers) will be helpful when
we use it as a black box in our VSS protocols. Formally, an information checking
protocol (ICP) consists of three stages Distr, AuthVal, and RevealVal:

– Distr(D, INT , s) is initiated by D, using as input some value s. The algo-
rithm generates some authentication information (which includes s itself)
that is given to INT , as well as some verification information that is given
to each of the verifiers.



– AuthVal(D, INT , s) is initiated by INT after receiving the authentication
information from D. The information held by INT after this stage is called
D’s IC-signature and is denoted by ICSIG(D, INT , s).

– RevealVal(D, INT , s) is a sub-protocol in which all messages are broadcast.
Based on the broadcast messages, either ICSIG(D, INT , s) is accepted or
rejected by all honest verifiers (with high probability).

We require ICP to satisfy the following properties:

1. Correctness1: If D and INT are honest, then every honest verifier accepts
ICSIG(D, INT , s) during RevealVal.

2. Correctness2: If INT is honest then at the end of AuthVal, INT possesses
an ICSIG(D, INT , s), which will be accepted in RevealVal by each honest
verifier, except with probability 2−Ω(κ).

3. Correctness3: If D is honest then during RevealVal, with probability at
least 1− 2−Ω(κ), ICSIG(D, INT , s) revealed as some s′ 6= s by a corrupted
INT will be rejected by each honest verifier.

4. Secrecy: If D and INT are honest, then till the end of AuthVal, the adver-
sary has no information about s.

3.1 An ICP protocol

Here we reproduce a simplified version of the ICP protocol (from Patra et al.,
[10, 9]) tolerating t < n/2 malicious parties, such that Distr requires one round
and AuthVal and RevealVal require two rounds each. We omit the proofs due to
space limitations.
Distr(D, INT , s):
Round 1:

1. D sends the following to INT :
(a) A random degree-t polynomial F (x) over F, with F (0) = s. Let INT

receive F ′(x) as the polynomial with F ′(0) = s′. 2

(b) A random degree-t polynomial R(x) over F. Let INT receive R(x) as a
t-degree polynomial R′(x).

2. D privately sends the following to each verifier Pi:
(a) (αi, vi, ri), where αi ∈ F\{0} is random (all αi’s are distinct), vi = F (αi)

and ri = R(αi).

AuthVal(D, INT , s):
Round 1: INT chooses a random d ∈ F \ {0} and broadcasts (d,B(x)) where
B(x) = dF ′(x) +R′(x).

Round 2:D checks dvi+ri
?
= B(αi) for i = 1, . . . , n. IfD finds any inconsistency,

he broadcasts sD = s.
The polynomial F ′(x) (when D does not broadcast sD in round 2 of AuthVal)

or sD (broadcast by D in round 2 of AuthVal) as held by INT is denoted by
ICSIG(D, INT , s).

2 If INT is honest, then F ′(x) = F (x).



RevealVal(D, INT , s):
Round 1: INT broadcasts ICSIG(D, INT , s) (i.e., he reveals D’s secret con-
tained in ICSIG(D, INT , s) as s′ = sD or as s′ = F ′(0)).
Round 2: Verifier Pi broadcasts Accept if one of the following conditions holds.
(Otherwise, Pi broadcasts Reject.)

1. ICSIG(D, INT , s) = s′, and s′ = sD.
2. ICSIG(D, INT , s) = F ′(x), and one of the following holds.

1. C1 : vi = F ′(αi); OR
2. C2 : B(αi) 6= dvi + ri (B(x) was broadcasted by INT during AuthVal).

Local Computation (By Every Verifier): If at least t + 1 verifiers have
broadcasted Accept during round 2 of RevealVal then accept ICSIG(D, INT , s)
and output s′ or F ′(0) (depending on whether ICSIG(D, INT , s) is s′ or F ′(x)).
Else reject ICSIG(D, INT , s).

In our protocols, we use AuthVal(1), AuthVal(2) to denote the first round and
second round of AuthVal respectively. Similarly RevealVal(1), RevealVal(2) are
used for RevealVal. By ICPsh(X,Y, s), we mean an execution Distr(X,Y, s) fol-
lowed by AuthVal(X,Y, s). In order to make the presentation clearer, we some-
times use ICPrec(X,Y, s) in place of RevealVal(X,Y, s). Also, in an execution
ICPsh(X,Y, s), we say that X conflicts with Y , if X had to broadcast correc-
tional information in AuthVal(2)(X,Y, s). Lastly we say that “(F (x), d, B(x)) is
consistent with (α, v, r)” if at least one of the following holds:

1. F (α) = v.
2. B(α) 6= dv + r.

4 3-Round Statistical VSS with Optimal Resilience

In this section, we present a 3-round statistical VSS protocol with optimal re-
silience. Although the complexity of the protocol is exponential in terms of the
number of parties, the protocol proves optimality of the lower bound from [8].
We also show an efficient 4-round statistical VSS protocol in Section 5.

In our 3-round VSS protocol, the dealer additively shares the secret s into(
n−1
t

)
shares. Loosely speaking, each of the

(
n−1
t

)
shares correspond to a t-sized

subset in P − {D}. Then the dealer runs a “VSS-like” subprotocol to share sm
amongst the players in the t-sized subset Sm ⊆ P − {D}. In the reconstruction
phase, the shares corresponding to each subset are reconstructed first. These
shares, in turn, are used to reconstruct the original secret s.

We begin by describing a subroutine that we call U-VSS.

4.1 U-VSS

The goal of the U-VSS sub-routine, is to achieve VSS-like functionality for a
subset U (with |U | = t) of the player set P. In particular, we want correctness
and commitment property to hold as in the definition of VSS. However, the
privacy requirement needs to met only when all players in U ∪ {D} are honest.

Informally, the 3 rounds of the U -VSS protocol can be described as follows:



– In Round 1, D sends the secret s to all players in U . Players in U exchange
random pads with each other.

– In Round 2, each player in U authenticates his share (via AuthVal). In addi-
tion he also broadcasts the secret masked with random pads received from
other players in U . Players in U also authenticate random pads received from
each other.

– In Round 3, D resolves conflicting broadcasts (if necessary, by broadcasting
s to all players). Players finish authenticating their shares with D and their
random pads with one another.

Unfortunately the U -VSS protocol described above does not guarantee commit-
ment as such because players in U might (pretend to) have conflicts over random
pads, thereby having an option to reveal different random pads in the reconstruc-
tion phase. To see this, consider the case when n = 5 and t = 2. Without loss of
generality, let U = {P2, P3}. In round 3, P2 might (or pretend to) be unhappy
(i.e., the AuthVal(2) check fails) with P3’s authentication of random pad r23 (sent
by P2 to P3). This would result in P2 broadcasting F (2)(x) and r23. Similarly P3

might (or pretend to) be unhappy with P2 over r32. Note that other players have
no information about r23 and r32. In this case, players in P − (U ∪ {D}) cannot
distinguish (by the end of the sharing phase) between the following 3 cases:

1. (D and P2 are dishonest.) P2 broadcasted incorrect authentication infor-
mation for r32 (thereby making P3 unhappy over r32) and pretends to be
unhappy over P3’s broadcast related to r23.

2. (D and P3 are dishonest.) P3 broadcasted incorrect authentication infor-
mation for r23 (thereby making P2 unhappy over r23) and pretends to be
unhappy over P2’s broadcast related to r32.

3. (P2 and P3 are dishonest.) Both pretend to be unhappy over each other’s
broadcast related to random pads r23 and r32.

Note that in Case (3), an honest D cannot detect any foul play by end of
the 2nd round. 3 If we are in Cases (1) or (2), then we have dishonest majority
in U ∪ {D}. Thus a dishonest D could take sides with either P2’s reveal or with
P3’s reveal in the reconstruction phase. Depending on which player he supports,
different secrets could be reconstructed. Note that the players in P − (U ∪ {D})
may not be able to tell whether P2 or P3 is honest and whose version of the
secret they need to output.

However, in executions where there are no unresolved mutual conflicts, U -
VSS does achieve the desired VSS properties. Looking back at the n = 5, t = 2
case, we motivate our definition of mutual conflict in the general case:

Definition 2. A mutual conflict is said to exist in an execution of U-VSS if

3 If we allowed one more round, then Case (3) can be resolved in the following way.
When any player broadcasts a “correction” value on a random pad, D will broadcast
the secret s in the fourth round. With this modification, commitment can be achieved
easily.



1. Some Pi broadcasted rij , F
(i)(x) for some Pj; and

2. Pj also broadcasted rji, F
(j)(x); and

3. D did not broadcast s in round 3 of the sharing phase. ♦

To begin with, we want our U-VSS protocol to satisfy the following weak
property: If there is no mutual conflict in an execution of U-VSS, then:

– If all players in U ∪{D} are honest, then no information about s is revealed
to players in P − (U ∪ {D}) at the end of the sharing phase.

– If D is honest, then D is not discarded in the sharing phase. Also, if there
is no mutual conflict then the value shared by D is reconstructed with high
probability.

– There exists a value s′, such that D is committed to s′ at the end of the
sharing phase. This s′ is reconstructed in the reconstruction phase.

4.2 A Protocol for U-VSS

We present a protocol for U -VSS protocol which satisfies the above requirements.
Inputs: Let P = {P1, . . . , Pn} denote the set of players and let D = P1 be the
dealer with input s. Let U ⊂ P be the target subset with |U | = t.
Sharing Phase:
Round 1:

1. Execute ICPsh(D,Pi, s). for every party Pi in the subset U . Let Pi receive s
fromD as s(i). Denote the polynomials used in Distr(D,Pi, s) by F (i)(x), R(i)(x)
(both are random t-degree polynomials with F (i)(0) = s(i)).

2. For each pair (Pi, Pj) from subset U , party Pi picks a random value rij and
executes ICPsh(Pi, Pj , rij) for every Pj ∈ U ∪ {D}. Let Pj receive rij from
Pi as r′ij .

Round 2: Each Pi ∈ U ∪ {D} broadcasts aij := s(i) + rij and bij := s(i) + r′ji
for every Pj ∈ U ∪ {D}.
Round 3:

1. If for some Pi, Pj ∈ U ∪ {D}, aij 6= bji or aji 6= bij , then D broadcasts s.

2. If Pi conflicts with Pj , then he broadcasts rij , F
(i)(x).

Local Computation: D is discarded if for some Pi, Pj ∈ U ∪ {D}, aij 6= bji
or aji 6= bij , and D did not broadcast s.
Reconstruction Phase: If D broadcasted s in round 3 of the sharing phase,
then each player Pi sets s(i) := s and outputs s and terminates.

If there is a mutual conflict then each player (in P) outputs ⊥ and the
reconstruction phase terminates. Else,

1. Each Pi ∈ U executes ICPrec(D,Pi, s) and each Pj ∈ U ∪ {D} executes
ICPrec(Pi, Pj , rij).

2. D broadcasts the secret s.

Local Computation Construct GOOD in the following way: For Pi ∈ U , include
Pi in GOOD if



1. Pi is successful in revealing s(i).

2. For each Pj that did not conflict with Pi, Pi is successful in revealing r′ji.

3. For every r′ji revealed by Pi in the previous step, aji = s(i) + r′ji holds.

4. If r′ij was successfully revealed by any Pj , aij = s(i) + r′ij holds.

Compute s′ as follows:

1. If GOOD is empty, then s′ := s, where s is D’s broadcast in Step 2.

2. Else pick any Pi ∈ GOOD and assign s′ := s(i).

Output s′.

4.3 Proofs

We show that the U-VSS protocol presented above satisfies the necessary re-
quirements through a series of claims.

The following claim is proved by means of a standard argument. We omit
the proof due to space limitations.

Claim 1. If all players in U ∪ {D} are honest, then no information about s is
revealed to players in P − (U ∪ {D}) at the end of the sharing phase.

It is easy to see that an honest D is never discarded in the sharing phase.

Claim 2. If there is no mutual conflict then the value shared by honest D, say
s, is reconstructed with high probability.

Proof. Since only the values held by Pi ∈ GOOD are reconstructed, we need
to argue that a dishonest Pi is contained in GOOD only if he reveals s(i) = s.
This is easily shown since when D is honest, by Correctness3, every successful
reveal is equal to s.

Claim 3. If D is not discarded, then for all honest Pi, s
(i) = s′ for some s′.

Proof. Assume that honest players Pi, Pj ∈ U received shares s(i), s(j), with
s(i) 6= s(j). Then in round 2, aij is not equal to bji. Therefore, D has to broadcast
s, otherwise he is discarded. Consequently every Pi sets s(i) := s′ (see Local
Computation).

The following claim can be easily verified.

Claim 4. If D is not discarded, and does not broadcast s in the sharing phase,
then with high probability, all honest players in U are contained in GOOD.

Claim 5. If there is no mutual conflict, then there exists a value s′ such that D
is committed to s′ at the end of the sharing phase. This s′ is reconstructed in
the reconstruction phase.



Proof. WhenD is honest, the claim follows from Claim 2. AssumeD is dishonest.
If D is discarded in the sharing phase, then the claim trivially holds. In the
following, we assume that D is not discarded. Since D is dishonest and U ∪{D}
contains (t + 1) players, there exists an honest Pj ∈ U . From Claim 3, we have
that all honest players received the same share s′ = s(j) (Pj ’s share) from D.
We now show that if there is no mutual conflict, then s′ is reconstructed.

The idea is to show that any Pi ∈ U is contained in GOOD only if he re-
veals s(i) as s′. This would prove the claim, since all honest players are already
contained in GOOD (follows from Claim 4).

For the sake of reaching a contradiction, assume that Pi ∈ U successfully
reveals s(i) 6= s′. We consider two cases:
Case 1: Pj did not conflict with Pi.
By Correctness3, with high probability, Pi can successfully reveal r′ji only as

rji. Since Pj used rji to compute aji, it holds that aji 6= s(i) + r′ji for s(i) 6= s′.
Hence in this case, Pi will not be included in GOOD.
Case 2: Pi did not conflict with Pi.
By Correctness2, with very high probability, it holds that Pj successfully re-
vealed r′ij that he received. Since D is not discarded, aij = bji = s′+r′ij . Observe

that the condition “aij = s(i) + r′ij” will not be satisfied for s(i) 6= s′. Hence in
this case, Pi will not be included in GOOD.

The cases discussed above are sufficient since there are no mutually conflicting
parties in U , i.e., we do not have to consider the case when both Pi and Pj
broadcast the random pads which they had used.

4.4 Building Statistical VSS for t < n/2 from U-VSS

In the previous section we saw how U -VSS gives us the desired VSS properties
when there is no mutual conflict. In this section, we’ll develop techniques to
cope up with executions in which there is mutual conflict. Let’s first look at the
n = 5, t = 2 case. There’s a small trick that we can use to achieve commitment:
First observe that a mutual conflict arises when at least 2 parties in U ∪ {D}
are corrupted. Since U = {P2, P3} and t = 2, all players in P − (U ∪ {D}) are
honest. (For higher n, this is not the case, and hence the difficulty is amplified.)
Since conflicting P2, P3 would have revealed their polynomials F (2)(x), F (3)(x)
(with F (2)(0) 6= F (3)(0)) respectively, the reveals for the set U is fixed. Since
P4 and P5 are honest, the “check points” are also fixed! The key observation is
that for an honest D (Case (3)), dishonest P2, P3 will not be able to guess the
honest “check points” correctly. If D is honest then at least one of the revealed
polynomials is not consistent with any of the honest “check points” except with
negligible probability. So one of P2, P3’s reveal will not be Accepted.

For general t, n, when we encounter a mutual conflict in an U -VSS execution,
all players in P − (U ∪ {D}) are not necessarily honest. So instead of assigning
a “check point” to each player, we assign a “check point” to each t-sized subset
via an U -VSS protocol. In addition, to avoid the problems caused by mutual
conflicts, only those U-VSS executions in which is no mutual conflict are used to



generate the verification points in the reconstruction phase. The reason behind
using U-VSS to share the “check points” is that now checking for Consistency is
made public (i.e., dishonest players can no longer arbitrarily broadcast Accept or
Reject to force a favorable outcome). U-VSS executions with no mutual conflict,
guarantee agreement over the revealed check points. This results in an agreement
over which of the revealed polynomials are actually consistent. There might be
two conflicting polynomials both of which satisfy all the check points. However at
the end of the sharing phase, the outcome of the check for Consistency is fixed! If
two conflicting polynomials do pass the Consistency test, then ⊥ is reconstructed.
Note that this does not violate the commitment property of VSS since whether
⊥ is reconstructed is fixed at the end of the sharing phase. (We assume that ⊥
represents a default element in F). Also, dishonest players could possibly reveal
incorrect polynomials in the reconstruction phase. We prove that our statistical
VSS protocol is robust against such adversarial behavior.

4.5 A 3-round protocol for VSS

Inputs: Let P = {P1, . . . , Pn} denote the set of players and let D = P1 be the

dealer with input s. Let T
def
= 2t − 1.

Sharing Phase: D additively shares s into s1, . . . , sK where s1, . . . , sK are
random subject to s = s1 + s2 + . . . + sK . The following U-VSS executions are
run in parallel.

1. Iterate over all t-sized subsets Sm: Execute U-VSS(D,Sm, sm).

2. For each player subset Sk of size t, D picks “check points” (α
(m,i)
k , v

(m,i)
k =

Fm(α
(m,i)
k ), r

(m,i)
k = Rm,i(α

(m,i)
k )) and sends it to Sk (to check for the poly-

nomials revealed by each Pi ∈ Sm). Execute U-VSS(D,Sk, (α
(m,i)
k , v

(m,i)
k , r

(m,i)
k ))

for all Pi ∈ Sm, and for every t-sized subset Sm.

Local Computation: D is discarded if at least one of the following hold:

1. D is discarded in some execution of U-VSS(D,Sk, (α
(m,i)
k , v

(m,i)
k , r

(m,i)
k )).

2. D is discarded in some execution of U-VSS(D,Sm, sm).

Reconstruction Phase: Let B def
= {Sm | D broadcasted sm}. Let

Am,i
def
= {Sk | There are no mutual conflicts in an execution of

U-VSS(D,Sk, (α
(m,i)
k , v

(m,i)
k , r

(m,i)
k ))}

Reconstruction phase consists of the following 2 rounds:
Round 1: Iterate over all Sm, and every Pi ∈ Sm: Execute reconstruction

phase of U-VSS(D,Sm, sm), and U-VSS(D,Sk, (α
(m,i)
k , v

(m,i)
k , r

(m,i)
k )) (for each

Sk ∈ Am,i).
Round 2: Reveals started in round 1 are completed in this round. Also D
broadcasts sm for each Sm.



Local Computation: Let

Cm
def
= {F (i)

m (x) | Pi ∈ Sm broadcasted F (i)
m (x) and mutually conflicted

with some Pj ∈ Sm in the sharing phase}

All players reconstruct ⊥ if for any Sm:

1. There is a player Pi ∈ Sm with F
(i)
m (x) ∈ Cm and (F

(i)
m (x), d

(i)
m , B

(i)
m (x))

consistent with (α
(m,i)
k , v

(m,i)
k , r

(m,i)
k ), for all Sk ∈ Am,i; AND

2. There is a player Pj (6= Pi) ∈ Sm with F
(j)
m (x) ∈ Cm, F

(i)
m (0) 6= F

(j)
m (0)

and (F
(j)
m (x), d

(j)
m , B

(j)
m (x)) consistent with (α

(m,j)
k , v

(m,j)
k , r

(m,j)
k ) for all Sk ∈

Am,j .
If ⊥ is not reconstructed, then for each Sm 6∈ B construct GOODm in the

following way: Include Pi ∈ Sm in GOODm if

1. Pi is contained in GOOD corresponding to the execution U-VSS(D,Sm, sm).

2. (F
(i)
m (x), d

(i)
m , B

(i)
m (x)) is consistent with (α

(m,i)
k , v

(m,i)
k , r

(m,i)
k ) for all Sk ∈

Am,i (where F
(i)
m (x), d

(i)
m , B

(i)
m (x) are internal variables in ICPsh(D,Pi, sm)

corresponding to U-VSS(D,Sm, sm) with Pi ∈ Sm). Let s
(i)
m = F

(i)
m (0).

Compute s′m (which is D’s commitment to Sm) as follows:

1. For Sm ∈ B, set s′m to be the one broadcasted by D during round 3 of the
sharing phase.

2. For Sm 6∈ B, pick any Pi ∈ GOODm and set s′m = s
(i)
m . If GOODm is empty,

then s′m = sm, where sm is D’s broadcast in round 2 of reconstruction phase.

Reconstruct D’s secret as s′ =
∑K
m=1 s

′
m.

4.6 Proof of Correctness for 3-Round-VSS

We now prove that 3-Round-VSS satisfies all the properties required of a statis-

tical VSS protocol. Let T
def
= 2t − 1.

The following lemma is proved by means of a standard argument. We omit
the proof due to space limitations.

Lemma 1. (Secrecy) Protocol 3-round-VSS satisfies perfect secrecy.

Lemma 2. (Correctness) Protocol 3-Round-VSS satisfies (1 − ε)-correctness
property.

Proof. It is easy to see that an honest D is never discarded in the sharing phase.
We now show that with high probability, ⊥ is not reconstructed whenever D is
honest.

The only possibility of ⊥ getting reconstructed is when there exist two mutu-

ally conflicting players Pi, Pj ∈ Sm (with Sm 6∈ B) such that (F
(i)
m (x), d

(i)
m , B

(i)
m (x)),

(F
(j)
m (x), d

(j)
m , B

(j)
m (x)) are consistent with (α

(m,i)
k , v

(m,i)
k , r

(m,i)
k ), (α

(m,j)
l , v

(m,j)
l , r

(m,j)
l )

(respectively) for all Sk ∈ Am,i and Sl ∈ Am,j . Since D is honest, at least one



of Pi, Pj has to be dishonest (otherwise they wouldn’t conflict on random pads
and broadcast their polynomials).

The key point is that there is at least one set, say Sl(6= Sm) which contains
only honest players. Since all the players are honest, there is no mutually con-
flicting pair in Sl. As a result, Sl ∈ Am,i ∩ Am,j . By Claim 1, no information

is revealed about (α
(m,i)
l , v

(m,i)
l , r

(m,i)
l ), (α

(m,j)
l , v

(m,j)
l , r

(m,j)
l ). Also the correct

values (α
(m,i)
l , v

(m,i)
l , r

(m,i)
l ), (α

(m,j)
l , v

(m,j)
l , r

(m,j)
l ), as shared by D, are revealed

in the reconstruction phase of the corresponding U-VSS protocols (follows from
Claim 2). So if a dishonest player, say Pi is able to discard an honest D by

revealing F
(i)
m (x) 6= Fm(x), then he must have guessed α

(m,i)
l (follows from the

proof of Correctness3). This happens with negligible probability.

Given that ⊥ is not reconstructed, a dishonest Pi revealing F
(i)
m (x) 6= Fm(x)

can be in GOODm only if he guessed α
(m,i)
l where Sl is the set of honest players (as

described above). Again, this happens with negligible probability. Correctness
follows immediately.

Claim 6. If a corrupted D is not discarded, then for every Sm, at least one
honest player is contained in GOODm with very high probability.

Proof. First, let us fix an Sm. By Claim 5 (commitment property for U-VSS),

we have that for every tuple (α
(m,i)
k , v

(m,i)
k , r

(m,i)
k ) ∈ Cm, the exact tuple was

held by (all) the honest player(s) in Sk. This essentially makes every verification
“check point” behave as if it were possessed by an honest player. Now, from the
proof of Correctness2 for ICP 4 , each honest player in Sm is consistent with
“check points” in Cm with high probability (1− 1

|F|−1 ).

Suppose there are k honest players in Sm. By the above argument, the claim
can fail for a given Sm, only if it fails for each honest player in Sm. This hap-
pens with probability at most 1

(|F|−1)k
5. Since there are

(
t+1
k

)(
t−1
t−k
)

such Sm,

the probability that the claim fails for any one such Sm is bounded by t2k

|F|k .

Summing over all k, we see that D can cause the claim to fail for any one Sm
with probability at most 2t2

|F| = 2−Θ(κ). Hence the claim holds.

Lemma 3. (Commitment) Protocol 3-Round-VSS satisfies (1−ε)-commitment
property.

Proof. For an honest D, the lemma follows from Lemma 2. In the following,
we assume that D is dishonest. First we show that whether or not, ⊥ is recon-
structed, is fixed at the end of the sharing phase. Note that the polynomials in

4 The proof is identical since in both cases we are dealing with a dishonest D
and an honest intermediary. In both cases, the dealer wasn’t unhappy with
AuthVal(1)(D,Pi, s), where s is the dealer’s secret.

5 We have used the fact that a corrupt D’s ability to cause failure for a particular
honest player is independent of his ability to cause failure for a different honest
player. This is true because D can cause failure for an honest Pi ∈ Sm, only by
guessing d

(i)
m (follows from the proof of Correctness2). A different honest player

Pj ∈ Sm, chooses d
(j)
m independent of d

(i)
m . Hence our argument is justified.



Cm are taken from the sharing phase. Also, the “check points” for these polyno-
mials are fixed at the end of the sharing phase (by the commitment property of
U-VSS proved in Claim 5). Therefore, the decision of whether ⊥ is reconstructed,
is fixed at the end of the sharing phase. Since ⊥∈ F (by our assumption), we
achieve commitment even when ⊥ is reconstructed.

We prove commitment in the case when ⊥ is not reconstructed. By Claim 6,
we now need to prove that for each Sm 6∈ B, the share held by honest player(s),

say s′m = s
(j)
m for some honest Pj , will be reconstructed with high probability

(Recall that, by Claim 3, all honest players in U = Sm(6∈ B) have the same
share).

Let us assume (for the sake of reaching a contradiction) that some dishonest

Pi ∈ Sm successfully reveals some s
(i)
m 6= s

(j)
m . Let amij , b

m
ij , r

m
ij be the internal

variables used in U-VSS(D,Sm, sm) with Pi, Pj ∈ Sm. We consider two cases:
Case 1: Pj did not broadcast rmji in round 3 of the sharing phase.
By Correctness3, with very high probability, Pi can successfully reveal rm′ji

only as rmji . Since Pj computed amji := s
(j)
m + rmji , it holds (with high probability)

that amji 6= s
(i)
m + rm′ij for s

(i)
m 6= s

(j)
m . Hence in this case, Pi will not be included

in GOODm.
Case 2: Pi did not broadcast rmij in round 3 of the sharing phase.
By Correctness2, with very high probability, it holds that Pj revealed rm′ij as

the random pad that he used in computing bmji := s
(j)
m + rm′ij . Since Sm 6∈ B,

and since D is not discarded, we have amij = bmji . Therefore, the condition “amij =

s
(i)
m + rm′ij ” will not be satisfied for any s

(i)
m 6= s

(j)
m . Hence in this case, Pi will not

be included in GOODm.
We do not have to consider the case when both Pi, Pj broadcasted the random

pads which they had used (in round 3). This is because if some Pi revealed

F
(i)
m (x) (with F

(i)
m (0) 6= s′m) consistent with the all the revealed “check points”,

then ⊥ will be reconstructed. Hence an honest Pj ’s share (i.e., s
(j)
m = s′m) is

reconstructed always. Given this, commitment follows immediately.

The theorem follows from Lemmas 1, 2 and 3.

Theorem 1. There exists a 3-round statistical VSS protocol tolerating t < n/2
malicious parties.

5 Efficient 4-Round Statistical VSS with Optimal
Resilience

We now design a 4-round sharing, 2-round reconstruction (2t + 1, t) statistical
VSS with polynomial communication complexity. In the protocol, D selects a
random symmetric bivariate polynomial F (x, y) such that F (0, 0) = s and sends
fi(x) to Pi. At the end of the sharing phase, if D is not discarded then every
honest Pi holds a degree t polynomial fi(x) such that for every pair of honest
parties (Pi, Pj), fi(j) = fj(i). This implies that if D is not discarded, then the



fi(x) polynomials of the honest parties define a symmetric bivariate polynomial
FH(x, y). Moreover in the protocol, it is ensured by using the properties of ICSig
that no corrupted Pi will be able to disclose f ′i(x) 6= fi(x) in the reconstruction
phase. Hence irrespective of whether D is honest or corrupted, reconstruction of
s = FH(0, 0) is enforced. To achieve all the properties of VSS, D gives ICSig
to individual parties, and concurrently every individual party gives ICSig to
every other party. The protocol is somewhat inspired by the VSS protocol of [3].
As the ICP proposed in [3] takes one round in Distr, 3 rounds in AuthVal and 2
rounds in RevealVal, the VSS of [3] takes at most eleven rounds in the sharing
phase.

5.1 The Protocol

Inputs: The dealer has a secret s. Let D be the dealer and let F (x, y) be a
symmetric bivariate polynomial of degree t in each variable. Let F (0, 0) = s.
Sharing Phase
Round 1: Let fi(x) be defined as F (i, x). Let rij ∈R F for each Pi, Pj . Execute
ICPsh(D,Pi, fi(j)), ICPsh(Pi, Pj , rij) and ICPsh(Pi, D, rij). Let the corresponding
values received be f ′i(j), r

′
ij and rDij .

Round 2:

1. Pi broadcasts aij = f ′i(j) + rij and bij = f ′i(j) + r′ji.

2. D broadcasts aDij = fi(j) + rDij and bDij = fi(j) + rDji .
3. If Pi received f ′i(x) which is not a polynomial of degree t, then Pi executes

ICPrec(D,Pi, f
′
i(j) for all j.

Round 3:

1. If D conflicts with Pi or aij 6= aDij or aij =⊥, then D broadcasts fDi (x) =

fi(x) and executes ICPrec(Pi, D, r
D
ik) and ICPrec(Pk, D, r

D
ki) for all k.

2. If Pi conflicts with Pj or aij 6= bji or aji 6= bij or aij 6= aDij or bij 6= bDij , then
Pi executes ICPrec(D,Pi, f

′
i(j)) and ICPrec(Pj , Pi, r

′
ji).

3. If Pi conflicts with D, then he executes ICPrec(D,Pi, f
′
i(k)), for all k.

Round 4: Corresponding ICPrec executions are completed in this round.
Local Computation: D is discarded if for some Pi, Pj , at least one of the
following does not hold:

1. {f ′i(k)}k lie on a t-degree polynomial.

2. fDi (j) = fDj (i) = f ′i(j) = f ′j(i).

3. aDij = bDji = fDj (i) + rDij .

4. All ICPrec(D,Pi, r
D
ij ) reveals were successful (i.e., at least t+ 1 accepts were

broadcasted).

Reconstruction Phase: Every Pi executes (if they haven’t already) ICPrec(D,Pi, fi(j)),
ICPrec(Pj , Pi, rji) for all Pj .
Local Computation: Let Pi ∈ U if D broadcasted fDi (x). Construct Rec in
the following way:



1. Pi ∈ Rec if Pi ∈ U. In this case, define f ′i(x) = fDi (x).

2. Pi ∈ Rec if he successfully executed ICPrec(D,Pi, fi(j)) for all j, and they lie
on a t-degree polynomial.

Delete Pi 6∈ U from Rec if

1. Pi successfully revealed f ′i(j) and f ′i(j) 6= fDj (i) for some Pj ∈ U.

2. Pj successfully revealed r′ij and f ′i(j) + r′ij 6= aij .

3. If for some Pj , Pj did not conflict with Pi and bij − r′ji 6= f ′i(j).

Reconstruct a symmetric bivariate polynomial F ′(x, y) of degree t from {f ′i(x)}Pi∈Rec.
Output s′ = F ′(0, 0).

5.2 Proofs

Note that in our 4-Round-VSS protocol, ICP properties Correctness1, Cor-
rectness2, Correctness3 hold for concurrent executions of ICP(Pi, Pj , rij) and
ICP(Pi, D, rij). Also when D is honest, Secrecy holds for concurrent executions
of ICP(Pi, Pj , rij) and ICP(Pi, D, rij).

The following lemma is proved by means of a standard argument.

Lemma 4. (Secrecy) Protocol 4-round-VSS satisfies perfect secrecy.

Claim 7. If D is not discarded and Pi is honest, then for every Pj ∈ U, f ′i(j) =
fDj (i).

Proof. If Pi ∈ U, then f ′i(x) = fDi (x), and since D is not discarded, the claim
holds. Now let Pi 6∈ U. Recall that Pj ∈ U because D conflicted with Pj (over
some value fj(k)) OR because ajk 6= aDjk OR ajk =⊥. As a result D reveals
rij (Round 3 Step 1). Recall that Pi 6∈ U. Therefore, w.h.p, his reveals are
successful. Now there are two cases to consider. First, if Pi conflicts with D, then
he reveals f ′i(k) as well (Round 3 Step 3). If f ′i(j) 6= fDj (i), then D is discarded
(see Local Computation). On the other hand, if Pi did not conflict with D,
then D has to reveal the correct value of rij (follows from Correctness3), i.e.
rDij = rij . Since Pi 6∈ U, we have aDij = aij . Therefore, for an honest Pi, we have

aDij − rDij = aij − rij = f ′i(j). If aDij − rDij 6= fDj (i), then D is discarded (see Local

Computation). Therefore, f ′i(j) = fDj (i).

Claim 8. If D is not discarded and Pi is honest, then Pi ∈ Rec.

Proof. If Pi ∈ U, then Pi ∈ Rec by construction. Honest Pi 6∈ U successfully
reveals f ′i(j)) for all j. We now show that none of rules that delete Pi from Rec
apply to an honest Pi.

1. By Claim 7, we have that for each Pj ∈ U, f ′i(j) = fDj (i).
2. Since revealed r′ij is equal to rij w.h.p (by Correctness3), aij = f ′i(j)+r′ij .
3. If Pj did not conflict with Pi, then an honest Pi will be successful in revealing

the pad r′ji (by Correctness2). Hence bij − r′ji = f ′i(j).

Claim 9. If D is not discarded, then f ′i(j) = f ′j(i) for every honest Pi, Pj .



Proof. Recall that when Pi ∈ U, f ′i(x) = fDi (x). When both Pi and Pj are in
U, then the claim follows directly. Now suppose Pi, Pj 6∈ U. For honest Pi, Pj
, if f ′i(j) 6= f ′j(i), then aij 6= bji and aji 6= bij . Consequently, Pi, Pj would
have successfully revealed f ′i(j), f

′
j(i) respectively (by Correctness2). Since we

assume that D is not discarded, the claim follows in this case too.
Lastly, consider the case when exactly one of Pi, Pj is contained in U. W.l.o.g,

let Pi 6∈ U,Pj ∈ U. If f ′i(j) 6= fDj (i), then Pi would have been deleted from Rec.
But by Claim 8, we have honest Pi ∈ Rec. Therefore, the claim must hold.

Recall that there are at least t + 1 honest players, and by Claim 8 all of
them are contained in Rec. By Claim 9, the shares of these honest players are
consistent. The following claim is now easy to see:

Claim 10. If D is not discarded then all honest parties are consistent with an
unique t-degree symmetric bivariate polynomial, say FH(x, y).

Claim 11. If D is not discarded and Pi ∈ Rec, then f ′i(x) is consistent with
FH(x, y).

Proof. By Claim 7, for every Pi ∈ U, fDi (x) is consistent with all the honest
players’ shares. This implies that f ′i(x) is consistent with FH(x, y).

Now let Pi 6∈ U. Since Pi ∈ Rec, we have f ′i(j) = fDj (i) for every Pj ∈
U (otherwise, Pi is deleted from Rec). Therefore, if f ′i(x) is inconsistent with
FH(x, y), then f ′i(j) 6= f ′j(i) must hold for some honest Pj 6∈ U. If aij 6= bji
or aji 6= bij , then Pi, Pj would reveal f ′i(j), f

′
j(i) respectively. Since D was not

discarded, we have f ′i(j) = f ′j(i). For the rest of the proof, we assume aij = bji
and aji = bij .

If Pi had a conflict with Pj , then Pi reveals f ′i(j). If Pj also had a conflict
with Pi, then Pj would have revealed f ′j(i). Since D was not discarded, we have
f ′i(j) = f ′j(i). On the other hand, if Pj did not have a conflict with Pi, then Pi
would have to reveal r′ji = rji (follows from Correctness3) Since Pj is honest,
bij − rji = f ′j(i). If Pi ∈ Rec, then bij − r′ji = f ′i(j). Since r′ji = rji, this shows

that f ′i(j) = f ′j(i). Hence f ′i(x) is consistent with FH(x, y).
On the other hand if Pi did not have a conflict with Pj , an honest Pj would

successfully reveal r′ij . Since aij = bji = f ′j(i) + r′ij , Pi would have to reveal
f ′i(x) such that f ′i(j) = f ′j(i), otherwise aij 6= f ′i(j) + r′ij , and Pi will be deleted
from Rec.

Since FH(x, y) can be computed from the joint view of the honest parties at
the end of the sharing phase, the following claim holds.

Claim 12. If D is not discarded, then FH(x, y) will be reconstructed in the
reconstruction phase. Moreover, this FH(x, y) is fixed at the end of the sharing
phase.

It is easy to see that an honest D is never disqualified. Given this, the next
two lemmas follow directly from Claim 12, and the theorem follows from Lemmas
4, 5 and 6.



Lemma 5. (Correctness) Protocol 4-Round-VSS satisfies (1 − ε)-correctness
property.

Lemma 6. (Strong Commitment) Protocol 4-Round-VSS satisfies (1 − ε)-
strong commitment property.

Theorem 2. There exists an efficient 4-round sharing, 2-round reconstruction
(2t+ 1, t) statistical VSS protocol.
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