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Abstract

Detecting Deepfakes uploaded to the internet will be-
come a crucial task in the coming years as Deepfakes con-
tinue to improve. An undetected Deepfake video could have
immense negative consequences on our society because of
the pace and spread of information consumption. A gen-
eral Deepfake could be applied to videos across information
platforms to identify whether a video is authentic. Wanting
to tackle this problem, I attempted to create a general de-
tector using Deep Learning techniques. I was able to im-
prove the accuracy of today’s best detection models on this
particular dataset using two different models. In addition I
implemented a recurrent network inspired by other authors
to evaluate its generalizability on the multi-faker dataset 1
was working with. A generalized Deepfake detector was not
found.

1. Introduction

In this paper, I describe the methods I used to try to cre-
ate a generic Deepfake detector. Deepfakes are videos that
have been manipulated in some way that changes the per-
ception of the watcher. Deepfakes fall under a big umbrella
of general manipulation to videos but this paper focuses on
Deepfakes in which human faces have been edited (here on
referred to as Deepfakes). Deepfakes that edit faces in/into
videos can be very damaging to him or her. An actor (i.e.
the origin) can make a victim (i.e. the face that is being
edited in/into a video) say anything. The audience would
then perceive that the actor/origin is doing something he or
she never would. Given how important faces are for hu-
mans, this type of fake video can have a significant impact
on public opinion of the victim and could forever damage
their reputation.

There are two main approaches of creating Deepfakes
today. These are facial expression manipulation and facial
identity manipulation. Facial expression manipulation al-
lows transferring facial expressions of an actor to victim

while preserving the victim’s identity in the video. Facial
identity manipulation is where an victim’s face is placed on
top of the actors faces so that it seems that the victim is the
one in the video.

In the following sections, I describe the dataset used
in this research, previous work in this field that provide
a benchmark for working toward this goal, the training
pipeline developed, methodologies, results, and finally, fu-
ture work.

2. Dataset

Face Forensics [[1] provides a video dataset of news
anchors with 1000 videos. Each video has 4 versions;
Pristine, Face2Face, FaceSwap and DeepFakes (note the
big F here for the faker), where the 3 changed versions is
the name of the ’faker’ that was used to manipulate/replace
the face in the video. This dataset exists in 3 versions where
the video can be Raw, High Quality (compression rate of
23) or Low Quality (compression rate of 40). All training,
testing and validation was done using the High Quality
dataset. Every faker has their own unique way of creating
Deepfakes.

Face2Face is a facial reenactment system that per-
forms facial expression manipulation. Face2Face transfers
facial expressions from an actor to a victim while keeping
the identity of the victim in the video the same using
computer graphics techniques. [2]]

FaceSwap is a facial identity manipulation tool where
the entire face of an actor is replaced with a victims face.
FaceSwap only needs a set of images to extract the victims
face which makes it very easy to use. FaceSwap applies
face alignment, Gauss Newton optimization and image
blending when swapping faces.[3]]

DeepFakes uses an encoder-decoder network trained
to generate the victim’s face that matches the facial
expressions of the actor. Because Deepfakes applies a



Deep Learning approach, DeepFakes requires much more
data than the computer graphics approaches above to get
reasonable results.[4]

Because this dataset is built using multiple different
fakers, it allows us to use it to evaluate how well the models
generalize by training on one faker and testing it on another.

Each approach described in later sections required differ-
ent data formats and inputs. All the methods described in
this paper, except 'RNN on Facial Landmarks’, shared the
following preprocessing method. Any additional prepro-
cessing methods will be described in their respective sec-
tions.

Figure 1. Examples of the same frame for different fakes; Top Left:
Pristine, Top Right: Face2Face, Bot Left: FaceSwap, Bot Right:
DeepFakes

2.1. Preprocessing

Working with videos is generally considered difficult be-
cause of the amount of data and processing required. The
amount of processing needed to decode the video repeat-
edly required looking into other options. Because I only
care about the faces in the video, the dataset would end up
being cropped images of the face in the video. To prepare a
video the following steps were performed:

1. Extract facial landmark locations for every frame in the
videos.

2. Compute a square face detection bounding box while
maintaining the aspect ratio of the face.

3. Crop the square face detection bounding box from the
image frame.

4. Resize cropped face to 1282128 pixels.
5. Save cropped face to disk.

An example cropped image from the same frame from
the same video but a different faker can be seen in figure [T}

2.2. Data split

The dataset includes 1000 distinct Pristine videos. The
dataset is split 70/15/15 for Training, Validation and Test-
ing sets. Having a well balanced dataset is important when
training a network. Imbalances might lead to the network
being more inclined to predict the class that has more dat-
apoints and would need to be accounted for by using regu-
larization terms during training.

Because the length of the videos in our dataset can vary
between fakers, it could make the dataset unbalanced. To
ensure a 50/50 balance of classes (Pristine/Fake), I only
extract frames that exist in both fakers. For example, if Pris-
tine video has 120 frames but faker video has 100, only 100
frames were extracted from the Pristine.

3. Related Work

Previous work in this area is well summarized in
FaceForcensics++[1]]. The authors compile the results of
previous methods which shows that they currently have the
best accuracy. In that paper, the authors use a XceptionNet
based on separable convolutions with short-cut connec-
tions. They fine tune their network after initializing it with
pretrained ImageNet weights. A comparison of their results
and my results will be discussed in the results section.

The authors of report good results when training a
Recurrent Neural Network (RNN) on a feature map from
an InceptionV3 network pretrained on ImageNet. They
report results on a custom dataset which makes it hard to
compare their results to mine and evaluate their ability
to generalize between fakers. In my search for a generic
Deepfake detector I implemented their network to compare
it to other methods and see if they had indeed created a
generic Deepfake detector.

4. Training pipeline

All the methods that are described in this paper were
implemented using Python and TensorFlow [6]. Some
methods take advantage of existing architectures like
InceptionV4[7]], ResNet50[8]] and 13D[9]. The models all
have in common that their outputs are a softmax of two out-
put nodes what predict whether the input was Pristine or
Fake.

When training, a train faker was selected and the paths
to that fakers dataset. One iteration over that dataset (one



epoch) was followed by a prediction pass using the vali-
dation set. The validation sets for all fakers were passed
through one by one so that the accuracy for different fakers
could be monitored. Early stopping was used by selecting
the epoch with the best validation accuracy.

5. Methodologies

In this section I will describe the methods I took to work
toward a generic Deepfake detector. For each method, I de-
scribe the general idea, preprocessing step, the model used,
and then the results.

5.1. RNN on facial landmarks

One method attempted was training a Recurrent neural
network (RNN) on the facial landmarks in the video. Facial
landmarks are points (x, y coordinates) in the frame that
build up a face, like the tip of the nose, points around
the jaw, mouth, eyes and eyebrows. A sequence of these
coordinates would be the input to the model and the output
would be a prediction if the sequence was Pristine or Fake.

Preprocessing: To extract all of the coordinates from
the 4000 videos, each frame had to be passed through
a face detector. The face detector generated 64 facial
landmarks for each face in the frame. If the detector did not
detect a face in the frame, no further frames were processed
of that video so that only consecutive frames of datapoints
were included. If the face detector detected multiple faces,
the largest face was always selected. These points were
then dumped into a pickle binary storage file.

Model: As input, the model took in a sequence of 64
coordinates (128 vector). The sequence length was config-
ured in my tests to 24 which was passed through a 25 node
wide RNN layer followed by a single fully-connected layer
with 25 nodes. Different configurations of the layer sizes
were attempted without any notable change in the results.

Results: This model unfortunately did not end up
learning anything. In hindsight, a much larger network was
most likely needed here. This network needed to be able
to capture what natural facial expressions and the transi-
tion between expressions are from the facial landmarks
coordinates. When this approach was implemented and
trained, the model was unable to learn what these natural
face movements looked like. A network of this size most
likely had no chance to be able to capture that and was
most likely the reason for it’s failure. This will be part of
future work to attempt this approach again.

Another reason for why this model did not work could
have been the video quality. When a frame is passed one by
one through the face detector, the low quality video makes
it difficult to get precise landmark coordinates. The low

quality might introduce jitters into the data, making it quite
noisy.

Finally, data normalization would have been necessary.
The coordinates individually have no real meaning to the
network; only the relation of the points between sequences
matters in this approach. It should not matter if the face is
in the top left or top right but they would have drastically
different coordinates. Subtracting the first 64 coordinates
from all of the coordinates in the sequence would have been
the first approach to attempt.

5.2. InceptionV4

Following the same ideas as in [1], I implemented
a network to predict Fakes for frame-by-frame cropped
faces using an InceptionV4 model from the slim models
package [10]. Before training, the model was initialized
using the pretrained weights that were trained on ImageNet.

Preprocessing: The cropped face was resized to 2992299
and the RGB values were normalized to the range [—1, 1].
During a prediction pass, no data augmentation was
performed. During training, the input was randomly aspect
ratio distorted, cropped, flipped horizontally and color
distorted.

Model: As stated earlier, the model used here was
the InceptionV4 model but where the last layer (output
layer) was cut off and fitted with two output nodes. In
between the InceptionV4 model and the output nodes, I
put a 0.5 dropout layer followed by a batch normalization
layer. When I trained this model I did not freeze any of the
layers, on the contrary of what was done in [[1], and trained
all of the weights in the network from the first epoch.

Validation Set

Deepfakes | Face2Face | FaceSwap
(%‘-3 Deepfakes 99.4% 52.07% 49.29%
-g Face2Face | 53.73% 98.31% 50.34%
= FaceSwap | 50.84% 51.15% 98.65 %

Table 1. Validation accuracy from training the InceptionV4 net-
work on a single faker, frame-by-frame

Results: Table 1, shows the accuracy for the validation set
on InceptionV4 model. The prediction is which ever node
has a higher value after performing softmax on the two out-
put nodes. Accuracy is the percentage of predictions that
match the datapoints label. These results shown in in ta-
ble 1 were the best validation accuracy and it only took 3-4
epochs of training, or 13 hours, depending on the faker. I
only needed 4 epochs because I only needed to fine-tune the
model.
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Figure 2. Graph showing the average prediction (1 on left axis
means all predictions would be Fake while 0 would mean all pre-
dictions are Pristine) over all the Face2Face training set and all
of the fakers validation set when training the InceptionV4 model.
Pink: Face2Face-Train, Gray: Face2Face-Val, Green: DeepFakes-
Val, Orange: FaceSwap-Val

Given a dataset set of a specific faker, training a model
to detect that faker is fairly easy. But the model does not
generalize between fakers at all.

The trained model is only staying around 50% for fak-
ers it is not being trained on because it starts to only predict
Pristine. This can be visualized in Figure 2 where the av-
erage prediction is plotted. The average prediction tells us
what average Fake prediction is over the entire fake dataset
for a given epoch. If the average prediction goes close to 0,
almost none of the datapoints are being predicted as Fake.

This, and the accuracy, tells us that the model latches
on to features of the faker that characterizes only that faker
and does not characterize any other faker.

Note: The average prediction start at 0 in figure [2] for
non-training fakers because after the first epoch, the model
is already at 97.82% validation accuracy. At that point the
model has already been tuned to detect the specific faker
and predicts only Fake for that faker.

5.3. Kinetic-13D

In section[5.2] an entire dimension of the dataset was not
used at all. When frames are passed though the network
one by one, the time dimension is completely ignored. The
Kinetics-I3D[9] is a network that takes in sequences of
RGB frames as a single datapoint.

Preprocessing: The number of frames in a sequence
used was 79 with an image size of 224x224. During
training, custom data augmentation was applied which
included a 50% random chance to do a horizontal flip,
random rotation, random scaling and random cropping,
random color distortion and random Gaussian noise.
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Figure 3. Graph showing the average prediction over all the
Face2Face training set and all of the fakers validation set when
training the 13D model. Pink: Face2Face-Train, Gray: Face2Face-
Val, Green: DeepFakes-Val, Orange: FaceSwap-Val

Model: The original Kinetic-I3D model takes in 2
streams of inputs, a sequence of frames stacked in time
order and the optical flow of those frames. In action
classification, which Kinetic-I3D is used for, optical flow
adds a lot of information because it allows for easier
tracking of movement between frames.

After generating optical flows for a couple of videos in
the dataset, it was decided that it would likely not add much
information when detecting Deepfakes. The computational
requirements of creating the optical flow sequence for all
the videos was also a factor. The sequence of images be-
comes quite large in memory so I could only fit a batch size
of 3 on my RTX 2080 TT at one time. Keeping the model
simple and runnable was more important for me than us-
ing the optical flow frames. The code for the Kinetic-13D
was cloned from deepminds github repository[11] with mi-
nor edits to only use RGB frames and support for 2 output
nodes.

Validation Set

DeepFakes | Face2Face | FaceSwap
g DeepFakes | 99.17% 56.61% 50.26%
£ | Face2Face | 67.92% 98.41% 46.56%
= FaceSwap 51.25% 53.44% 98.41%

Table 2. Results from training the Kinect-I3D network on a single
faker

Results: The 13D model was not able to generalize either
but did get much better results than expected. I3D does
generalize marginally better between Face2Face and Deep-
Fakes as can be seen on the first two rows in table 2]

The better generalization can also be seen in the average
prediction plot in figure [3] when compared to figure 2] The



Validation Set

Deepfakes | Face2Face | FaceSwap
an‘j Deepfakes | 83.40% 52.34% 48.49%
£ | Face2Face | 56.72% 75.78 % 56.04%
= FaceSwap 53.63% 55.78% 77.40%

Table 3. Validation accuracy from training the RNN on Feature
Maps on a single faker with feature maps from ResNet50

average prediction for the fakers that are not being trained
are not as close to 0 as when InceptionV4 was trained.

5.4. RNN on Feature Maps

Authors of [5] reported great results using a very simple
model. In their paper, they only report a single accuracy
on their entire custom dataset. Wanting to investigate their
generalizability, I implemented and tested their approach on
the FaceForensics++ dataset so that it could be compared
fairly. Because I was not getting the same results they were
getting, I decided to run multiple different experiments with
different pretrained models and different model configura-
tions to figure out what worked best for my dataset.

Preprocessing: Additional data preprocessing was required
for this approach as the RNN’s input was not images, but
rather the feature map (intermediate output) from a pre-
trained network. For each pretrained network, I passed all
of the cropped faces through the model and stored the fea-
ture maps into TFRecords. TFRecords are binary storage
formats which offer great speed and is a go-to storage for-
mat when working with Tensorflow.

Finally the feature maps needed to be combined into se-
quences to form the datapoints. For that I decided that the
length of the sequence would be 100 because they reported
in [5]] that the longer the sequence, the more accurate their
model was. The sequences were created with a step of 50,
meaning that the 50" frame of a video would be the 15!
frame in the second datapoint.

Since I had been working with other models than the
authors of [3] I wanted to try using feature maps from other
models. Using InceptionV4, ResNet50 and VGG, loaded
with pretrained weights trained on ImageNet, I generated
feature maps for every frame in my dataset from all 3
models. Out of all experiments, ResNet50 was the fastest
to train, showed the most stable learning plots, and best
accuracy.

Model: After running the experiments described above, the
best performing model was the following. Using feature
maps from ResNet50, the dimensions of the input to my
RNN model was [100,2048]. The RNN layer had 2048
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Figure 4. Graph showing the average prediction over the Deep-
Fakes training set and all the fakers validation set when training
the RNN model. Orange: DeepFakes-Train, Blue: DeepFakes-
Val, Pink: Face2Face-Train, Green: FaceSwap-Val

hidden layers followed by a 0.5 dropout layer. Next came
a 512 fully connected with 0.01 L2 weight regularizer
followed by a 0.5 dropout layer and then finally the output
layer. For training a learning rate of 0le — 5 with the Adam
Optimizer.

Results: Table [3| shows the results from training the best
performing model at its best performing epoch on different
fakers. After training on all fakers individually, this model
was not able to generalize either. Even though the trained
models do not start exclusively predicting Pristine for the
other fakers they were not trained on, the RNN model does
not get any better at predicting other fakers. As seen in
figure [4] the average prediction for other fakes gets down to
about the same as the I3D model except it does not show
any indication of generalizability.

Another reason I expect I am not getting the same re-
sults is that my dataset is of lower quality (lower resolu-
tion). Their dataset is from videos online and from movies
which can be retrieved of much higher quality. This would
play a big factor in the accuracy my implementation is able
to produce.

6. Result

In this section we will compare the results between the
methods and compare them to the published accuracies.
Authors of [5] created their own fake dataset which I did
not have access to which makes it hard to compare their re-
sults to mine. Their best results were using a sequence of
4080 frames which resulted in test accuracy of 97.1%. Also,
the authors make no indication of cropping out faces so the
input into the pretrained models for feature map generation
vary also.

Table [] shows the results reported in FaceForensics++
[1]] along side my best results. As can be seen there, my



DeepFakes Face2Face FaceSwap Other
RNN on Feature Map* [3]] N/A N/A N/A 97.1%
FaceForensics++ [[1]] 98.85% 98.36% 98.23% N/A
Kinetic-I3D (Mine) 99.17% 98.41% 98.41% N/A
RNN on Feature Map (Mine) 83.40% 75.78% 77.40% N/A
InceptionV4 (Mine) 99.4% 98.31% 98.65 % N/A

Table 4. Comparison results from two state of the art papers and my methods. Faker column indicates that the model was trained and
tested on that faker. This comparison is equivalent to what is being compared in [1]. The video quality is high quality (compression rate
is 23). No generalizability is being compared between fakers. * notes that results reported in paper not entirely comparable but used as a

reference point.

models beat their results by a small margin. Common across
all of the approaches attempted is that they all latch on to
specifics features of the faker on which they are trained.
This can be seen in previous plots where the models stop
predicting Fakes for validations sets of fakers that they are
not trained on. The reason I believe this happens is that it
is easier for the model to latch on to these specific features
than it is to latch on to features that identify a non-edited
face.

One approach to tackle this issue is to provide the model
with more hand picked features. For example the approach
described in section [5.]]RNN on Facial Landmarks has po-
tential to work. Using partial facial landmarks has been
shown to work in the past. For example, [12] the authors
trained a model only using the eyes of the subjects and by
that were able to identify fakes.

7. Future Work

As 1 have been working on this research topic for al-
most a year, and although the results are great in compari-
son with current literature, the desired results have not been
achieved. At the time of this writing, many different com-
petitions in this field are popping up like Facebooks Deep-
fake Detection Challenge. [13] I plan to partake in these
challenges and continue to work on this topic in the com-
ing future. Future work will also include attempting the
RNN on Facial Landmarks again using what I have learned
through this research.
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