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Abstract

Anonymity, although often a desired property in a communications network, is still very much an open
problem, as existing protocols tend to suffer from unreasonable overhead or pathological vulnerability
to attack and abuse by malicious users. In this paper, we explore k-anonymity, a refinement of the
problem in which participants attempt to “hide in a crowd” of size k, such that no initiator of an action
may be pinpointed as such with any certainty greater than 1/k. We survey several existing protocols
and provide two of our own, which we believe provide unique solutions to some of the more difficult
problems associated with k-anonymous communication, particularly the issue of identifying and removing
malicious participants. We also analyze the proposed protocols in terms of several known attacks against
anonymizing overlays, provable guarantees of k-anonymity, efficiency, and overhead.

1 Introduction

Secure correspondence is a desirable property in a
communications network. Three capabilities such a
network should provide are authentication, obfusca-
tion, and anonymity. The first two of these are heavily
researched and are largely solved: public key infras-
tructures (PKIs) allow for authentication, while ob-
fuscation is provided by data encryption. Anonymity,
however, is still very much an open problem. In order
to reliably send messages between communicants, it is
generally necessary to know their identities. Further-
more, existing protocols suffer from one of two defi-
ciencies: unreasonable overhead, in the form of persis-
tent noise[8], topological constraints[1, 2], or through-
put limitations[2]; or pathological vulnerability to at-
tack and abuse by malicious users[3, 4].

In this paper, we restrict ourselves to consid-
ering a refinement of the anonymity problem: k-
anonymity[12]. In k-anonymity, the goal is to “hide
in a crowd” - that is, to guarantee that the cardinal-
ity of the set of possible initiators of an action cannot
be reduced below k. We present two protocols that
provide sender k-anonymity, which we call Protocol-1
and Protocol-2.

Protocol-1 borrows ideas from both Crowds[6]
and Tor[13]. It uses recursive path extension in or-
der to establish a fixed ad-hoc tunnel through a set
of sender-selected peers. Communications and re-
sponses are layer encrypted and routed along the
peers in the path. A mechanism for misbehavior de-

tection allows the sender to detect and expel Byzan-
tine peers along the path without leaking information
about its identity. As a result, Protocol-1 is robust
against many of the attacks that plague Crowds[6].

Protocol-2 provides stronger anonymity guaran-
tees than Protocol-1 at the cost of requiring peers
to organize themselves into fixed logical rings, simi-
lar to those seen in [2]. Communications are layer-
encrypted and routed to a sender-selected exit node.
The exit node engages the recipient, encrypts its re-
sponse, and routes it along the ring back to the
sender. We use a pairwise key exchange during con-
struction of the overlay in order to eliminate the need
for a PKI. Like Protocol-1, we use a misbehavior de-
tection mechanism to allow participants to identify
and expel Byzantine peers. The mechanism is partic-
ularly novel because Byzantine agreement is not re-
quired to verify accusations. Instead, accusations are
treated as self-sacrificial actions by which the accus-
ing peer sacrifices itself in order to eliminate a Byzan-
tine peer. By eliminating both the accuser and the
accused, we provide a disincentive for misbehaving
peers to accuse innocent peers and we guarantee that
colluding peers are not able to acquire control of the
ring.

We provide an analysis of both protocols in terms
of resilience to a variety of known attacks against
anonymizing overlays, as well as a few that we un-
covered during the process of designing the proto-
cols. Such attacks tend to take one of two possible
avenues: they either seek to deanonymize the partic-

1



ipants of such an overlay by linking a sender with a
specific query or message, or they attempt to deny
service entirely to said participants. We also examine
the guarantees of provable k-anonymity provided by
the protocols, using Chernoff bounds to compute the
probability of being in an anonymous set of cardinal-
ity k, given that some fraction f of the participating
nodes are malicious. Finally, we explore the useful-
ness of the protocols in terms of efficiency, network
resource usage, and computation and storage require-
ments for the participating nodes.

The remainder of the paper is structured as fol-
lows. In Section 2, we summarize several existing pro-
tocols and note their limitations. Section 3 formalizes
the problem, presents our goals, and introduces our
adversarial assumptions. We give a detailed descrip-
tion of our protocols in section 4 and we provide an
analysis of security and robustness in section 5. In
section 6, we conclude and discuss avenues for future
work.

2 Background

2.0.1 Terminology

Three types of anonymity have been defined in pre-
vious work[24, 6, 2]: sender anonymity, recipient
anonymity, and relationship anonymity. We adopt
the definitions of [24]. Sender anonymity implies
that is impossible to link any message to a particular
sender or to link any sender to a particular message.
Receiver anonymity similarly implies that it is impos-
sible to link any message to a particular recipient or
to link and recipient with a particular message. Rela-
tionship anonymity is a weaker version of anonymity.
It implies that it is impossible to establish that a par-
ticular sender and a particular recipient are engaged
in a communication with one another, though it may
be clear that each is engaged in communication with
someone. A system that has all three of the above
properties can be considered fully anonymous[2].

k-anonymity provides a weaker guarantee on
anonymity than full anonymity. In [12], k-anonymity
is defined as the inability to distinguish one individ-
ual’s information from the information of at least
k − 1 other individuals. Ahn, Bortz, and Hopper
adapt this definition to the domain of anonymous
communications[25]: sender (recipient) k-anonymity
is the inability to distinguish the sender (recipient)
of a communication from at least k − 1 other hon-
est participants. Wang, Ning, and Reeves suggest an
alternative definition[2]: the sender (recipient) of a
communication cannot be linked to that communica-
tion with probability greater than 1

k .

Anonymous communication systems distinguish
between unlinkability and unobservability[29]. Un-
linkability means that two items of interest in a sys-
tem are no more or less likely to be related after an
attacker observes them than they are based solely on
a priori information. Unobservability means items of
interest are indistinguishable from other items of the
same type. In terms of anonymous systems, unlinka-
bility implies that an attacker cannot associate a user
with a message even if he observes both, while unob-
servability implies that an attacker cannot determine
when a user is using the system or when a communi-
cation is occurring.

2.0.2 Previous Work

Much of the work on anonymous communication sys-
tems can be traced back to Chaum’s seminal efforts:
mixnet[18] and DC-net[19]. In mixnet, senders en-
crypt their messages with the public key of a trusted
server, called a mix, and forward the messages to the
server. The server collects a batch of encrypted mes-
sages, decrypts them, and forwards them to the recip-
ients. An attacker cannot link any decrypted message
output by the mix with any encrypted message sent
to the mix. Mixminion is an example of a system that
uses this approach[14]. DC-net[19] provides provably
secure multiparty communication without the need
for a trusted third party. However, DC-net suffers
from collisions: only a single party may communicate
during any time-slot. DC-net also imposes a heavy
burden on the underlying network, requiring O(N2)
protocol messages for each transmitted communica-
tion.

Tor is a circuit-based anonymous communication
service that allows users to establish a tunnel through
a closed set of onion routers [13]. Senders negoti-
ate a session key with each server on the circuit to
wrap messages in layered encryption. This enables
the system to provide perfect forward secrecy and in-
tegrity checking. MorphMix[10] takes a similar ap-
proach. However, these systems are difficult to scale
and they are brittle in the face of node failures, which
makes predecessor attacks possible[17]. Murdoch and
Danezis demonstrate how the anonymity provided by
Tor can be compromised using traffic analysis[4].

Several proposals attempt to harness peer-to-peer
networks to address scalability problems, including
Crowds[6], Hordes[7], Tarzan[9], Herbivore[11], and
Salsa[27]. These systems suffer from intrinsic issues
in peer-to-peer systems, such as high node churn. A
more recent proposal by Li et al. addresses node
churn by exploring multiple pathways through a set
of commutative relay groups[28]. When node failures
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occur, “path hopping” is used to switch paths with-
out altering the path prefix. Despite this, the system
is still vulnerable to statistical attacks[4] and prede-
cessor attacks[17].

Wang, Ning, and Reeves provide k-anonymity by
arranging nodes into distinct logical rings of size k.
[2]. Within each ring, a round-based anonymous com-
munication mechanism uses message batching and a
reverse hash chain to make communications indistin-
guishable and to avoid the collision issues that plague
DC-Net[19].

The above systems above provide unlinkability,
but not unobservability. Danezis and Wittneben ar-
gue that only unobservability is sufficient to guar-
antee anonymity because unlinkability is falls victim
to information leaked by third parties[16]. Anony-
mous systems that provide unobservability include
Nonesuch[26] and P5[8]. The former uses steganog-
raphy to embed messages into a subset of common
transactions, while the latter floods the network with
random noise when communication is not occurring.

2.0.3 Reputation Systems

Several works propose using a reputation system
in order to tolerate malicious users in anonymity
protocols.[23, 15, 21, 22]. However, these systems
from the opposing requirements of an anonymity sys-
tem and a reputation system. Both [21] and [23]
use signed receipts in order to bind participants to
their agreements, but they are brittle because they
require witness sets in order to verify receipts and
take action against deviants. The authors of [15]
propose a system using e-cash that allows users to
change pseudonyms without sacrificing their repu-
tations. Unfortunately this system relies on a cen-
tral server to function as the “bank”, the database
that serves and maintains participant reputations,
and therefore suffers from a single point of failure and
a lack of scalability.

3 Problem and Assumptions

We formalize the problem as follows: a sender s wants
to be able to send queries to some receiver r and
receive responses to said queries. However, these
queries are sensitive in nature; s does not want any
other party, including r, to be able to map any query
he originated back to him. Obviously, this goal is
somewhat at odds with the ability to receive responses
to queries, so we will restrict our problem to providing
the property of sender k-anonymity : for any query q
which s originated, no other party should be able to

map q back to a set of potential senders any smaller
than k in size.

Our solution for this problem is for the node s to
participate in an overlay of other nodes with the ex-
press aim of providing such k-anonymity. Within this
overlay, we provide a pair of protocols for the sending
of anonymous queries and for the return of response
messages from the recipient. We claim that our pro-
tocols provide k-anonymity to the sender and also are
robust to any malicious attempts to expose senders or
deny service to participating nodes.

In our protocols, we assume the following adver-
sarial model:

• Some fraction f < 1
2 of the nodes participating

in the protocol are Byzantine and malicious. All
malicious nodes are colluding with each other.

• The targeted recipient r may be malicious and
colluding.

• There may also be a malicious entity locally
observing traffic on some fraction of the links
in the network. We assume such an entity is
colluding as well, but that the fraction of links
he can observe is proportional to f - he cannot
globally observe the entire network.

• Malicious nodes are reasonably bounded in both
computational power and storage space. This
guarantees us that today’s standard crypto-
graphic hardness assumptions do in fact hold
- malicious nodes cannot reverse hashes or de-
crypt without a key, for example.

• All queries from the same source are in some
sense “linkable” by their content, and malicious
nodes with access to the plain-text queries are
able to link them, whether by statistical means
or otherwise.

We also make the following simplifying assump-
tions:

• Each node in the overlay has a single, static
IP address. The IP addresses of all nodes are
known to all other nodes in the overlay.

• We also assume the IP protocol to be secure.
That is, if two nodes can exchange messages and
participate in an interactive protocol, we as-
sume that they are in fact communicating with
each other.

• We assume that nodes have some way of learn-
ing about other nodes who are participating in
the protocol - i.e., each node knows about a
“neighborhood set” of other participating nodes
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We make these assumptions because it slightly
simplifies the problem, and also because we believe
the issues raised by these assumptions, particularly
those of securing IP, to be orthogonal in nature to
the k-anonymity we are attempting to provide.

4 Protocol Specifications

4.1 Protocol-1

Protocol-1 seeks to provide anonymity by construct-
ing a “forwarding tunnel”, similarly to the Crowds
and Tor protocols. The idea is that only the sender
should know the structure of the tunnel and which
nodes are participating; all other nodes should only
know their local predecessor and successor. To ac-
complish this, the tunnel must be constructed itera-
tively, so that all messages to a particular node come
through his predecessor. End-to-end encryption is
used to confirm that when the tunnel is extended,
the new node is indeed the one selected by the sender.
Here, we assume the existence of a trusted PKI, al-
though we also discuss possibilities for designing a key
exchange, and the implications thereof.

4.1.1 Setup

For some node s to communicate anonymously with
a target r, s first needs to construct his anonymizing
tunnel. First, s will pick a set of participating nodes
from his neighbor set, and order them in a path from
himself to an appointed “exit node”, like so:

path = {s, n1, n2, n3, . . . , nexit}

s will then connect to the first node n1 by TCP
and send a setuplink message. n1 will respond with
an acknowledging linksetup, confirming that n1 ex-
pects to receive and forward messages from s. s and
n1 should then perform a handshake to confirm public
keys.

Once the link from s to n1 is established, s can
extend his tunnel to each node in the path via the
following inductive method:

• s uses the secure sending protocol described be-
low to send an extendpath(ni, ni+1) message to
node ni.

• ni connects to the provided ni+1 via TCP and
sends a setuplink.

• ni+1 responds with a linksetup and keys are
confirmed.

• ni uses the secure response protocol below to
send an acknowledging pathextended(ni, ni+1)
back to s.

The inductive process ends once the tunnel is ex-
tended to nexit.

4.1.2 Sending a Message

To send a query q to target r through the tunnel,
s will select an ephemeral key ephk for the return
and will compose the message M = (q, r, ephk). s
will then layer-encrypt M with the public keys of all
nodes on the path, in reverse order, as follows:

CT = encpubk1(encpubk2(. . . encpubkexit(M) . . .))

Finally, s will generate a flowid and will send
(flowid, CT ) to n1, his successor on the path, and
will wait for a signed receipt from n1, as described
next.

4.1.3 Receiving and Forwarding

When ni receives a message (flowid, CT ) from his
predecessor ni−1, he must immediately compute a
signed receipt for the message he received and give
it to ni−1. ni will compute

R = signprivki
(flowid, CT )

and send it to ni−1, who will verify R using pubki.
ni−1 will then cache the receipt as evidence that he
faithfully forwarded CT to his successor. If no receipt
is provided, ni−1 will transmit an accusation message
along the return path, as described below.

ni will then remove a layer of encryption from CT
using his private key:

CT ′ = decprivki
(encpubki

(. . . encpubkexit
(M) . . .))

= encpubki+1
(. . . encpubkexit

(M) . . .)

If ni is actually the exit node, CT ′ = M , and
so he can then break the message into its pieces and
communicate the query q to receiver r via TCP.

Otherwise, ni will compute and store a transfor-
mation from flowid into a new flowid′. (Having a
flowid is necessary in order to process responses and
receipts correctly, but the flowid must change from
hop to hop in order to preserve untraceability along
the path.) He will then forward (flowid′, CT ′) on
to his successor ni+1, wait for a signed receipt, and
verify and cache it, as before.
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4.1.4 Handling Responses

Once nexit receives a response resp from r, he is re-
sponsible to return that response back up the tunnel
to s. To that effect, nexit will use the ephemeral key
ephk extracted from the original message he received
and compute CT = encephk(resp). (flowid′, CT ) will
be sent to his predecessor, nexit−1, who will generate
and sign a receipt, as before. The predecessor will
map flowid′ back to the previous flowid and for-
ward back to his predecessor. This process contin-
ues iteratively: ni+1 forwards to ni, and so on, until
the response reaches s. The response protocol is es-
sentially precisely the same as the forward- sending
protocol, only in reverse, with the major change that
there is no layered encryption, so nodes only forward
the response without decrypting it.

4.1.5 Detection of Malicious Nodes

If at any time node ni forwards to ni+1 and does not
receive a valid receipt in return, ni should use the
return protocol to send a signed accusation message

A = signprivki
(flowid, ni+1)

When the sender s receieves and verifies this message,
he knows that ni+1 is being accused of not generating
a receipt, and so he may truncate his sending tunnel
above ni+1 and iteratively rebuild from ni.

It is worth noting that ni may accuse his successor
at any time, even if ni+1 did generate a valid receipt.
To counteract this, s should only accept some thresh-
old number t of accusations from any particular node.
If the number of accusations from any ni exceeds t, s
should assume ni is acting maliciously, truncate the
path above ni, and rebuild from ni−1. It is also pos-
sible for a malicious node further up the path to drop
the accusation message; this case will be discussed
momentarily.

If at some point s times out while waiting to
a response from r, he should assume that there is
some fault in his sending tunnel. At this point,
s should send a probepath(flowid) message in the
clear through the sending tunnel. Each node re-
ceiving the message knows to transform the flowid,
forward the message on, and wait for a response.
Once the message reaches nexit, he will return a
receiptchain(endofpath) message to his predecessor.
Each node in the path will now append their signed
forwarding receipt to the chain and forward it to their
predecessor. In this way, the sender should receive a
receipt chain consisting of valid signed forwarding re-
ceipts for the entire path, and can verify them using
the public keys of the nodes on the path.

If a node ni on the path cannot produce a receipt,
then it must be that he himself did not forward -
otherwise he would have previously issued an accusa-
tion. If ni inserts garbage into the receipt chain, the
sender will be unable to verify his receipt and will de-
tect him. Otherwise, he can simply not forward the
receipt chain, in which case his predecessor ni−1 will
time out waiting for the receipt chain and simply re-
turn a new chain that ends at ni−1. In either case,
the sender knows that ni is malicious and may trun-
cate the tunnel at ni and build a new tunnel suffix
from ni−1.

The other possible case is that a node ni drops the
receipt chain from his successor and returns one end-
ing at ni, thus framing ni+1 for not having produced
a receipt. In this case, s will again build a new tunnel
suffix from ni, but will also keep track of the number
of times that he has done so. Once that number of
times exceeds the threshold t, s knows that it is likely
that ni is framing his successor, and so should drop
ni from the tunnel and rebuild from ni−1 instead.

Finally, if the sending path appears good, the
same process may be used to probe for receipts along
the return path, and non-forwarding nodes may be
cut off in the same manner. In this case, however,
nodes that never received the packet will append a
signed message neverreceived(flowid) to the receipt
chain, since they do not have any valid receipts to
append. The timeout process works similarly, and
so the sender should receive a chain beginning with
neverreceived messages and terminating with some
number of legitimate receipts. If a node cannot pro-
duce a receipt, it is probable that he will append a
neverreceived and attempt to frame his successor by
removing his receipt from the chain. Here, the same
threshold rule applies - after the path is truncated
immediately below any particular node t times, that
node itself will be truncated next, since this is consid-
ered strong evidence of that node maliciously framing
his successors.

This entire misbehavior-detection procedure op-
erates on the principle of attempting to preserve a
prefix of good nodes participating in the tunnel. Ma-
licious nodes can never frame a node above them, only
the node below them. Furthermore, malicious nodes
may only tamper with messages coming from the path
below them, by just not forwarding receipts or accu-
sations or some such, but never with messages above
them on the path. This guarantees that any path
prefix of all-good nodes, even only a trivial prefix of
just the sender, cannot be compromised or made to
look malicious. This is important, because if it were
not the case, a malicious node immediately below the
sender could make the sender look malicious, and
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therefore any path truncation that did not remove
the sender would leak information to the malicious
party, since the sender obviously does not wish to be
removed from his own path. Furthermore, malicious
nodes that do tamper with the nodes below them
can only do so some threshold number of times be-
fore being truncated themselves. Given enough time,
any node messing around will be caught and removed
from the path, and so the sender can improve his path
by small iterations until he has a tunnel that works
consistently.

4.1.6 Relaxing the PKI Assumption

Optimally, we’d like to be able to relax the assump-
tion that requires a PKI. We’ve experimented with
using the partially-constructed tunnel to create and
exchange keys via a Diffie-Hellman handshake, but
this is not a perfect solution. For one thing, every
node’s predecessor and successor also needs to know
his public key in order to verify receipts, in addition
to the sender constructing the tunnel. Furthermore,
this opens the sender up to a man-in-the-middle at-
tack, whereby malicious nodes may subvert and redi-
rect the key exchange to another node then the one
specified by the sender. In this way, the entire path
may be hijacked. It’s not entirely clear what the im-
plications of this are, but if the first node in the path
is malicious and the entire path is hijacked, we essen-
tially end up in the same situation described in the
Crowds paper[6]. In this case, the malicious nodes
know that the first node’s predecessor is the sender
with some bounded, but relatively high probability.

As much as we would like to be able to remove the
PKI from our protocol, we have not yet succeeded in
finding a workaround to the above issues, particularly
the man-in-the-middle attack.

4.2 Protocol-2

Protocol-2 is based on the idea of composing partic-
ipating nodes into a DHT-like ring, where each node
has a unique predecessor and successor. Messages are
forwarded around the ring from along a path from the
sender to an appointed “exit node”, who will commu-
nicate with the target r via TCP. Such messages are
encrypted using layered encryption with secret keys
so that they are untraceable as they move along the
ring. Nodes will also send probe packets from time
to time, both to ensure the integrity of the ring, and
to provide some level of noise in the overlay to pro-
tect against our local passive eavesdropper. Finally,
because the ring is singly-linked, it is possible to for
malicious nodes to simply drop packets and thereby
disrupt communications for all participating nodes.

Therefore, we provide a method whereby good nodes
can figure out which nodes are misbehaving and evict
them from the ring, thereby restoring integrity to the
overlay.

4.2.1 Setup

The setup phase begins when some initiating node i
chooses to create an anonymizing overlay. Node i will
select the following parameters:

• n, the size of the overlay

• G, a cyclic group with prime order p and gen-
erator g

• bmin, the overlay’s bandwidth lower bound (the
rate at which probe traffic should be sent to
keep the ring somewhat noisy)

• bmax, the overlay’s bandwidth cap (the maxi-
mum rate at which a participating node is per-
mitted to send data to his successor)

The initiator i then sends an invitation

I = (n,G = {g, p}, bmin, bmax)

to some number m ≥ n − 1 of other nodes from his
neighborhood set and waits for a response indicat-
ing that they wish to participate. Once the requisite
n − 1 affirmative responses have been gathered, he
generates a random permutation

p = {n1, n2, n3, . . . nn}

and sends each node a setup packet containing p. This
serves to inform all participating nodes which other
nodes will be in the overlay and establishes the order-
ing that forms them into a ring.

At this point, nodes should exchange keys and
start sending probe messages out along the ring at
rate bmin, via the methods discussed below.

4.2.2 Key Exchange

In order for the layered encryption scheme to work,
each node needs to share a secret key with each other
node on the ring. To accomplish this, we have a key
exchange phase directly after the setup. Each node
ni picks some element a ∈ Zp and computes ga ∈ G,
which is then sent to all other nodes in the ring. Re-
ceiving nodes will store this ga and follow the Diffie-
Hellman protocol, picking an element b ∈ Zp and
computing gb and gab, which will become the shared
secret key.
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At this point, the receiver will confirm the key ex-
change by generating a random nonce r and sending
ni the message

M = (gb, encgab(r))

ni now knows a and gb, so he can compute gab, de-
crypt r, and send it back to the challenger to confirm
the shared key.

At this point, the challenger may discard his value
of b, but he knows that ni is bound to the value ga.
He can generate a message-specific session key for ni
at any time by picking a c ∈ Zp, computing gc and the
key gac, and including gc along with any encrypted
packet sent to ni.

The ring is now ready to send communications.
All nodes should start sending probe messages with
some frequency bmin.

4.2.3 Sending a Message

Suppose that a node wishes to anonymously send
query q to a receiver r via the overlay. The send-
ing node will select an “exit node” nexit and compute
the path n1, n2, n3, . . . nexit from himself to the exit
node. Because of the key exchange, the sender knows
a unique gai for each node ni on the path. He will
generate a value c ∈ Zp and compute the shared key
gaic for each node on the path. The sender will then
append an all-zero flag and the address of receiver r
to the query q and encrypt the query as follows:

CT = encga1c(encga2c(. . . encgaexitc(flag||q||r) . . .))

Using this layered encryption scheme, the con-
tents of the message and targeted recipient may only
be known to the exit node, and only if the message
has appropriately been forwarded through each node
along the path.

Finally, the sender composes the message packet

M = (gc, CT )

and sends it to n1, the first node on the path.
At this point, the sender will await a signed receipt

from ni signifying that M was received, as discussed
below.

4.2.4 Receiving and Forwarding

Nodes in the overlay are required to receive packets at
a rate no greater than bmax. If a node receives pack-
ets from his predecessor in excess of this bandwidth
cap, those packets will be dropped.

When a node ni receives the message M =
(gc, CT ) from his predecessor, he will first generate

and sign a receipt for the message:

R = signai(M)

This receipt R is then sent back to his predecessor,
who caches it as evidence that he faithfully forwarded
the message he was sent.

Next, ni will use his ai and gc to compute gaic,
and will then strip off one layer of the encryption on
CT :

CT ′ = decgaic(encgaic(. . . encgaexitc(flag||q||r) . . .))
= encgai+1c(. . . encgaexitc(flag||q||r) . . .)

If the flag field of CT ′ comes out to all zeroes,
ni knows that he was the intended exit node for this
packet. He then splits CT ′ into q and r and sends the
query to the recipient via TCP.

Alternatively, if flag is nonzero, ni needs to for-
ward CT ′ on to his successor. However, he cannot
violate the bandwidth cap of bmax. If sending a new
message would cause him to surpass that bandwidth
cap, he must wait until enough time has passed that
he can safely send again. At that point, he will com-
pose the message

M = (gc, CT ′)

and send M to ni+1, the next node in the path.
Again, ni will await a signed receipt from ni+1, verify
it using the known gai+1 , and cache it as evidence of
his own good behavior.

4.2.5 Handling Responses

After nexit receives a response message resp from the
recipient r via TCP, he is responsible to return the
message to the original sender s. However, since he
does not know the identity of the sender, he must re-
lay resp to all nodes in the ring. To do so, the exit
node retains the gc used to encrypt the original query
q. He computes an ephemeral key gaexitc for the re-
sponse using his own aexit value, and encrypts the
response resp accordingly. Finally, he composes the
message

M = (encgaexitc(resp))

and sends M to his successor, who generates a receipt
and forwards M along the ring. Each node in the ring
receives M , generates a receipt, and forwards in turn,
including the original sender. Eventually, M returns
to nexit, who recognizes it as the message he sent
and does not forward again. It should be noted that
response messages must be recognizable from query
messages, since queries need to be layer-decrypted be-
fore forwarding, but responses must not be.

In this way, every node in the ring receives the
message M , but since only the original sender s knows
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the corresponding value of c, only s can decrypt this
message and access the plain-text response.

(Note: In the case that the TCP communication
with r is unsuccessful and times out, the exit node
should generate a timeout message, encrypt that as
the response, and return it as before.)

4.2.6 Probe Messages

Nodes should be sending probe messages out at a
fixed rate bmin in order to provide a low level of back-
ground noise and insure the integrity of the ring. To
send a probe message, the sender generates a random
nonce r and composes a message containing an all-1s
flag, q = r, and a blank receiver field. The message
is layer-encrypted and forwarded as usual.

When the chosen exit node receives the message,
he will decrypt the flag field back to all-1s, which
marks the message as a probe. The exit node will
then immediately use the return protocol to send a
response message to the probe containing nonce r.
When the sender receives the response, he can check
r to ensure that the probe was forwarded around the
ring faithfully. If the response times out or r is tam-
pered with, the sender can then challenge the nodes in
the ring to produce their receipts, as discussed below.

4.2.7 Accusation of Malicious Nodes

There are three cases in which a participating node
ni may accuse another node nj of malicious behavior.
The first is when ni sends a message to his successor
nj , and nj does not generate a valid signed receipt
for the message. In this case, nj is known to be not
following the protocol. ni broadcasts a signed accu-
sation message

A = signai(ni, nj)

to all the other nodes in the ring, who immediately
verify the accusation with gai and remove both ni and
nj from the permutation of participating nodes used
to encode the ring. In effect, the good node ni sac-
rifices himself to remove the malicious node nj from
the overlay. All other nodes update their successor
and predecessor pointers accordingly.

However, it is still possible for a bad node to gener-
ate the receipt, but just refuse to forward the message
on to his predecessor. In this case, the sender s of the
original message will never receive a response, but will
instead timeout. At this point, the sender should se-
lect a new c and exit node nexit, re-encrypt the query,
and try again. If several such attempts time out, then
there is a strong chance that some node along the path
has refused to forward the message.

At this point, the sender will generate a probe
message p and send it along the faulty path. If the
probe is unsuccessful, the sender may then directly
contact each node in the path, starting with his suc-
cessor. He deanonymizes himself as the sender of the
probe and challenges each node to produce a signed
receipt for the message he apparently received and
forwarded. If any node ni fails to produce such a re-
ceipt, that node must be malicious, or else he would
have accused his successor before. Therefore, the
sender s may broadcast the signed accusation

A = signas(s, ni)

which effectively removes both s and ni from the over-
lay. If all nodes produce valid receipts for the forward
path, s can compute what the correct response mes-
sage should have looked like and challenge nodes to
produce receipts for the response message by the same
process.

Finally, a node ni may accuse his predecessor of
malicious behavior if he is receiving traffic at a rate
higher than bmax. This indicates that the predeces-
sor is violating the protocol and potentially trying to
flood the ring with traffic as a denial-of-service attack
(see section 5). ni will broadcast the message

A = signai
(ni, ni−1)

thus removing both himself and his predecessor ni−1
from the overlay.

It is worth noting that malicious nodes have no in-
centive to falsely accuse good nodes of misbehavior,
as they themselves will be evicted from the ring for
doing so. In fact, for a bad node to do so is actually
good for the integrity of the ring, given our assump-
tion that f < 1/2. Furthermore, the signature on
the accusation prevents malicious nodes from posing
as other nodes and issuing accusations to get them
evicted from the ring.

5 Analysis

We begin by considering the security of our protocols
against known attacks on anonymity protocols. Then
we show how participants may achieve k-anonymity
with high probability in each of protocols. Finally, we
discuss the efficiency of our protocols, both in terms
of the overhead in network communications and in
terms of the computation and storage burden placed
on participants.
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5.1 Resilience to Known Attacks

5.1.1 Intersection

If an adversary identifies linkable queries that origi-
nate from distinct groups for which the members are
known, then he can reduce the number of possible
senders by intersecting the members of the group.
Specifically, suppose linkable queries q1, . . . , qj are at-
tributable to some member of groups G1, . . . , Gj with
sizes n1, . . . , nj , respectively. Then the originator of
the queries must be in the intersection of the groups
given by Ĝ = ∩iGi. If the adversary is able to col-
lect a sufficient number of linkable queries then the
cardinality of the intersection will go to one and the
originator will be identified.

There are two types of intersection attacks: short-
term and long-term[3]. We discuss them separately.

Short-term Intersection. In a short-term intersec-
tion attack, we assume the adversary is able to ob-
serve the traffic on some subset of the links in the
network. By noting when links are active and us-
ing information about how long it takes queries to
traverse the network, the adversary may be able to
identify the sets of possible senders for some num-
ber of linkable queries. By intersecting the sets of
possible senders, the adversary is eventually able to
identify with a high level of certainty the node that
originated the queries[3].

If we were to assume that there are no local ob-
servers, both of our protocols would be trivially im-
mune to this attack. However, if we allow an adver-
sary to be a local observer then the protocols become
vulnerable. Specifically, the adversary knows when
a node issues a query because the outbound traffic
will be greater than the inbound traffic. If the ad-
versary is able to link queries that emerge from the
network some fixed amount of time after the node is-
sues them, then the adversary will eventually be able
to identify the node as the originator with high prob-
ability. Protocol-1 is extremely succeptible to such
an attack; the background noise generated by probe
traffic in Protocol-2 makes the attack more difficult,
but not impossible.

If nodes participate in multiple paths, we can
make this attack more difficult by introducing random
delays as packets are forwarded through the network.
This flattens the distribution of the times taken by
a node’s queries to exit the network, which means
the adversary needs to see many more packets before
he can identify the node with high probability. Ob-
viously Protocol-2 will benefit from random delays
since all of the nodes in an overlay are part of the
same path. Protocol-1 will benefit from random de-
lays whenever the expected number of times that a

node appears on all paths is greater than one.
Suppose a sender elects to construct a path of

length k. Assume it samples the k nodes to appear
on path uniformly at random from the set of all par-
ticipating nodes and that the sampling is done with
replacement. Then the number of times any given
node can expect to appear on the sender’s path is
given by

k∑
i=1

i

(
k

i

)(
1

n

)i(
n− 1

n

)(n−i)

=
k

n

where n is the number of nodes participating in
the protocol. If we now assume k is sampled from
some distribution over path lengths then the number
of times a given node can expect to appear in the
sender’s path is given by∑

k

k

n
Pr(k) =

1

n
E[k].

If each node constructs exactly one path, then the to-
tal number of times a given node can expect to appear
on all paths, including its own, is given by

1 + n
1

n
E[k] = 1 + E[k].

This indicates that the number of times each node
expects to appear on all paths depends only on the
distribution from which the path lengths are sampled
and not on the number of nodes participating in the
protocol.

Long-term Intersection. In a long-term intersec-
tion attack, an adversary links queries across multiple
sessions. By intersecting the sets of nodes participat-
ing in the sessions, the adversary is able to eventually
identify with a high level certainty the node that orig-
inated the queries[3].

Both of our protocols are susceptible to long-term
intersection attacks. However, our use of structured
overlays in Protocol-2 means that its vulnerability is
more acute. In anonymity protocols that use struc-
tured overlays consisting of subsets of the participat-
ing nodes, an adversary may be able to accelerate
the rate at which he acquires information by using
Sybils[5] to increase churn. Specifically, if the Sybils
make up a large part of such an overlay, then they
may be able to effect dissolution of the overlay by
rapidly departing, thereby forcing legitimate nodes
to join a new overlay. If the adversary identifies
linkable queries exiting multiple distinct overlays, he
may intersect the sets of nodes participating in those
overlays to reduce the number of possible originators,
eventually identifying the true originator with high
probability.
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5.1.2 Predecessor Attack

The idea underlying the predecessor attack[17] is that
if a node appears on multiple paths of linkable queries,
then that node is more likely to be the originator of
the queries than any other node. The more such paths
the node appears on, the higher this probability be-
comes. A malicious node may attempt to take ad-
vantage of this by effecting a change in the prefix of
a path on which it appears. Since the originator of
the queries along that path must appear in the newly
constructed prefix, an adversary may be able to pin-
point him. Note that this attack subsumes fail-stop
attacks, where a malicious node behaves unrespon-
sively or refuses to forward packets.

Both of the protocols we present are resilient to
this attack because a malicious node cannot cause a
change to the prefix of a path on which it participates.
In each protocol the sender uses misbehavior detec-
tion to identify the malicious node. In Protocol-1 the
sender reconstructs the path from the predecessor of
the malicious node, which modifies the suffix of the
path but leaves the prefix intact. In Protocol-2 the
sender issues an accusation whereby both he and the
malicious node are removed from the ring. The re-
mainder of the ring is static, so a malicious node can-
not effect a change in either the prefix or the suffix of
the path.

5.1.3 Invalid Forwarding

Byzantine nodes may attempt to effect a change in
the prefix of a path by refusing to forward packets
or my modifying them while in transit. If such an ef-
fort is successful, an adversary may be able to use the
predecessor attack[17], as described above, in order to
identify the sender. Even if the adversary cannot ef-
fect a change in the path prefix, he may still attempt
to deny legitimate service to participating nodes.

As mentioned previously, both of our protocols
are resilient to attempts by a malicious node to effect
a change in the prefix of a path in which it partic-
ipates. Furthermore, any attempt by such a node
to deny service to legitimate nodes by dropping or
modifying packets will be revealed by the misbehav-
ior detection mechanism provided by each protocol.
The node would then be immediately expelled from
the path for future transmissions.

5.1.4 Invalid Response

Unless responses from the recipient are authenticated,
an exit node may elect to provide an invalid response
to a query, either by modifying the response from the
recipient or substituting its own response. Since no

other nodes in the network are able to see the query
or the response, it is difficult to definitively implicate
such a node as misbehaving. If the exit node can effect
a change in the prefix of the path by acting in such
a manner, then an adversary may be able to use the
predecessor attack[17], as described above, to iden-
tify the sender. Even if the exit node cannot effect a
change in the prefix of the path, it may still be able
to deny the sender legitimate service by fabricating
plausible responses.

As we’ve described, both protocols are resilient to
efforts by a Byzantine actor to effect a change in the
prefix of a path on which it participates. If the re-
sponses are implausible, then a sender in Protocol-1
may modify the suffix of his path in order to select
a new exit node, while a sender in Protocol-2 may
reissue the query using a different peer as the exit
node.

Handling plausible invalid responses is more com-
plicated. In Protocol-2 a sender may issue a query
multiple times using distinct exit nodes and take a
majority vote. In Protocol-1 a sender may achieve a
similar result by repetitively reconstructing the path
from the penultimate node. The number of times
that a sender needs to issue a query in order to have
a probability at most ε of selecting the incorrect re-
sponse can be approximated using a Chernoff bound
and is given by

n ≥ 1(
1
2 − f

)2 ln
1√
ε
.

5.1.5 Path Length Analysis

An adversary that has some knowledge about his po-
sition on a path and/or about the distribution over
path lengths may be able to deduce an increased prob-
ability that his predecessor is the sender. For exam-
ple, if the maximum allowed path length is ten and
a malicious node participating in a path knows that
the suffix of the path has length nine, then the ad-
versary knows absolutely that the malicious node’s
predecessor is the sender.

Protocol-1 is susceptible to this attack. During
path construction, a malicious node may refuse to
forward to any node with which it is not colluding
and instead report that the node is unresponsive. If
the behavior of the sender is to substitute some other
node for the allegedly unresponsive node, then the
malicious node can continue doing this until the path
is extended to a node with which it is colluding. By
repeating this inductively, an adversary can ensure
that every node on the suffix of the path is a under
his control. By examining the distribution over the
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lengths of the suffixes (which he can construct em-
pirically), the adversary may establish an increased
probability that the predecessor of the first malicious
node is the sender. 1

Protocol-2 is impervious to this attack. Because
the overlay uses a fixed topology and layer-encrypted
messages, it is impossible for an adversary to deter-
mine a node’s position on the path of a given packet.
The only case for which this does not hold is when the
exit node is a malicious node. If the distribution over
path lengths has sufficiently low variance, then the ad-
versary may be able to sequester the sender to some
subset of the nodes on the ring with high probability.
We prevent this by explicitly using a uniform distri-
bution over path lengths in the range [1, n] where n is
the number of nodes in the ring. 2 Every node on the
ring is therefore equally likely to be the originator.

5.1.6 Local Eclipse

A local eclipse occurs when, in a protocol using a
structured overlay with a single path, both the pre-
decessor and the successor of a legitimate node are
malicious[20]. If packets are linkable as they traverse
the network, then an adversary can identify packets
originated by the legitimate node since they will be
seen by the successor, but they will not be linkable to
any packets seen by the predecessor.

This attack is not applicable to Protocol-1 because
it uses ad-hoc path creation and senders do not have
predecessors. It also is not applicable to Protocol-2,
despite the use of a structured overlay with a sin-
gle path, because layered encryption guarantees that
packets are not linkable as they pass through the net-
work and mix with other traffic.

5.1.7 Total Eclipse

A total eclipse occurs when every node on a path ex-
cept for the sender is malicious[20]. In such cases an
adversary can identify the good node as the originator
with high probability, and, if the protocol uses a struc-
tured overlay, possibly even certainty. We are not
aware of a protocol that provides strong anonymity
guarantees in the face of a total eclipse.

In Protocol-1, the probability of a total eclipse can
be made small by using a sufficiently long path. Since

a sender gets to select the subset of peers to form the
path along which his query is routed, the probability
of a total eclipse is given by f j where j is the length of
the path. Over time an adversary may be able to con-
struct a distribution over path lengths based on the
number of path suffixes he randomly eclipses. The
adversary could then use the distribution to establish
the probability that the successor of the first node on
the suffix is the originator. This is particularly true
of the version of the protocol that uses ad-hoc key
exchange rather than a PKI because path construc-
tion can be hijacked. However, this is no longer a
total eclipse, as it reduces to path length analysis, as
described above.

In Protocol-2, a total eclipse occurs when every
node on a ring except for one is malicious. Obviously
in such a case the legitimate node has no anonymity.
The probability of such an event effectively reduces to
the probability that at least half of the nodes selected
for the ring are malicious. If that were to happen,
malicious nodes could falsely accuse legitimate nodes
in order to remove them from the ring until only a
single legitimate node remains. The probability that
more than half of the nodes in a ring are legitimate is
approximated by

Pr
[
X >

n

2

]
≈

n∑
i=bn2 c+1

(
n

i

)
i(1−f)(n− i)f

≥ 1− e−2n( 1
2−f)

2

where X is a random variable over the number of le-
gitimate nodes in the ring, n is the size of the ring,
and the inequality is given by the Chernoff bound.
3 We can limit the probability that more than half
of the nodes in a ring are malicious to some small
constant ε by joining only sufficiently large rings:

ε ≥ e−2n( 1
2−f)

2

⇒ n ≥ 1(
1
2 − f

)2 ln
1√
ε
.

A natural question to ask at this point is how cer-
tain a legitimate node can be that it is not totally
eclipsed after some number of nodes have left the ring
due to accusations of misbehavior. If we assume that
every accusation results in the departure of one legit-
imate node and one malicious node, and if the size of
the ring following the departures is m, then it’s not
hard to see that the probability that more than half of

1For the version of Protocol-1 that uses a PKI or pairwise key exchange, we can reduce the risk of this attack by immediately
expelling both the accusing node and the accused node. We should figure out what the probability of constructing a path with
at least one good node is under such a scenario. This will not help with the version Protocol-1 that performs key exchange
during path construction because a malicious node can hijack the path and masquerade as the set of all of the nodes on the
suffix of the path.

2Note that this is not equivalent to using a uniform distribution over lengths in the range [0, n − 1] because in that case a
malicious node knows that its successor is not the originator of any packet for which the malicious node is not the exit node.

3This is only approximate because when we select nodes for a ring, we actually sample without replacement. This assumption
is reasonable if the pool of potential nodes is much larger than the size of the ring. The true distribution is hypergeometric.
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the remaining nodes are legitimate is conservatively
bounded below by

Pr
[
X >

m

2

]
≥ 1− e−2m( 1

2−f)
2

.

That is, we can be at least as confident as we would
have been had the size of the ring initially been m.

5.1.8 Denial of Service

Byzantine nodes may attempt to fill the network with
so much traffic that legitimate nodes are unable to
communicate. In anonymity protocols designed to
obfuscate traffic as it traverses the network it can be
difficult, if not impossible, to distinguish between le-
gitimate and illegitimate traffic. This attack is more
problematic for protocols that use fixed structured
overlays than it is for protocols that use ad-hoc path
creation simply because the nodes participating in an
overlay are unable to reroute traffic to avoid congested
links.

Protocol-1 is resilient to denial of service attacks.
If some subset of the links in the network are con-
gested, causing packets to be dropped, then associ-
ated nodes will be identified using the misbehavior
detection mechanism and removed from any paths
on which they appear. All such paths will be recon-
structed from the first reliable node on the path.

Protocol-2 is also resilient to denial of service at-
tacks. Initially one might expect that malicious nodes
could simply inject enough illegitimate traffic into the
ring to overwhelm participating nodes. A particularly
nasty aspect of this attack is that such traffic can be
injected into the ring gradually and inconspicuously
since it traverses the ring until the exit node flag ran-
domly decrypts to all zeroes. For a flag field of non-
trivial size this could mean hundreds or thousands of
expected ring traversals before the traffic is identified
and removed.

By including a maximum sending rate for a ring,
we ensure that a malicious node cannot inject illegit-
imate traffic indefinitely without getting caught. If
he were to attempt to do so, his successor would im-
mediately accuse him of violating the protocol once
his rate of sending surpassed bmax, and they would
both be evicted from the ring. It is interesting, how-
ever, to consider the question of what happens if a
malicious node were to attempt to inject such traf-
fic opportunistically, in order to keep his sending rate
as close to the bandwidth cap as possible. In this
way, his successor should never be able to send new
packets, since he must keep forwarding everything he
receives, which uses all of his alotted bandwidth. In
theory, at this point the successor can only send by
dropping a packet forwarded to him. Theoretically,

this should not cause too much of a problem, since
the accusation protocols are not that haretriggered,
and the sending node of the dropped packet should
just pick a new exit node and send again. However, if
the successor wants to send a larger amount of traffic,
he will need to drop many packets, which increases his
likelihood of being accused and evicted from the ring.

Suppose that such a node is receiving bmax mes-
sages within some time frame, and wishes to send r
of his own additional messages within the same win-
dow. In this case, the rate at which forwarding mes-
sages will be dropped is also equal to r. Furthermore,
suppose that the protocol specifies that nodes will
try to resend messages that time out some number
k − 1 times, then probe the ring for faulty nodes. In
this case, the flooded sender cannot drop a particular
message from the same node k times, or else he will
be caught and evicted with high probability. Each
packet dropped has probability P = 1/n of coming
from any particular node, and so the probability of
dropping exactly k packets from some node ni out
of r total packets dropped is given by the binomial
distribution

P (k, r, 1/n) =

(
r

k

)
(1/n)k(1− 1/n)n−k

Therefore, the probability of dropping at least the
requisite k from the same node ni can be computed
as a Chernoff bound (we assume k < r/n, which is
the expected value of X in this case):

P (X > k) =

r∑
i=k

P (i, r, 1/n)

P (X > (1− (1− k

r/n
))
r

n
) < e−r/n((1−

k
r/n

))2/2

This gives us an upper bound on the probability
with which we expect node ni to be removed from the
ring for dropping packets due to a DoS flood bounded
above by bmax.

In addition to imposing a cap on the transmission
rate of the ring, we can dynamically select the size
of the exit node flag in order to balance the prob-
ability that it randomly decrypts to all zeroes for a
legitimate packet, which we don’t want to happen,
against the probability that it decrypts to all zeroes
for illegitimate traffic, which we do want to happen.

An adversary with sufficient network resources can
still attempt a denial of service traffic simply by indis-
criminately overwhelming all nodes participating in
the protocol. We regard this as an orthogonal prob-
lem, as it is equivalent to the problem of preventing
denial of service attacks in general. We are only in-
terested in addressing denial of service attacks made
possible by specific characteristics of our protocols.
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5.1.9 Traffic Analysis

An adversary may attempt to map the path that
packets take through the network by actively com-
municating with participating nodes in order to ef-
fect an observable change in latency. In [4], Murdoch
and Danezis demonstrate how such an attack can be
applied to Tor[13] if the adversary has access to in-
formation about latencies at the query recipient (or
the exit node). They further claim that the tech-
niques they present are applicable to all low-latency
anonymity protocols.

Both of our protocols are susceptible to this type
of attack. The path construction and query routing
primitives in Protocol-1 are closely related to those
in [13], so the techniques presented in [4] are directly
applicable. A small nuance, however, is that in Tor,
only a subset of the nodes in the network act as onion
routers[13], whereas in Protocol-1 all participating
nodes act as onion routers. If the number of nodes
participating in Protocol-1 is large, then the adver-
sary will require substantial resources to engage in
this type of active attack, though it is certainly still
possible.

Because Protocol-2 uses a structured overlay with
a fixed ring topology, this attack may in fact be sim-
pler for an adversary to carry out. If the adversary
controls the server with which a participating node is
communicating (or the exit node responsible for relay-
ing the queries), then the he may attempt to increase
the latency of the communication by engaging some
node on the ring. If the latency of the communication
does (does not) increase then the node is (is not) on
the corresponding path. If the adversary identifies a
node a such that engaging a results in increased la-
tency, but engaging a’s predecessor does not, then a
is the sender with high probability. Using a binary
search, the adversary can find this node in at most
log2 n time, where n is the number of nodes on the
ring.

We note that traffic analysis of this type is pred-
icated on the ability to make accurate measurements
of latency in the network.[4] We can make such anal-
ysis much more difficult by introducing random de-
lays to packet forwarding, as described above in the
section on intersection attacks. The problem with
this approach is that our protocols then become im-
practical for use in low-latency applications. Mur-
doch’s and Danezis’ claim notwithstanding, the ques-
tion of whether it is possible to develop a low-latency
anonymity protocol robust to such attacks is an open
question.

5.1.10 Sampling Response

In protocols that use broadcast in order to provide
the receiver’s response to the sender, a malicious exit
node may elect to instead send the response to some
small subset of m participating nodes and then wait
to see if the query is resent. In both cases an adver-
sary can reduce the cardinality of the set of possible
senders. If the query is not resent, then the sender
must be among the m nodes to which the response
was sent; otherwise the sender must be among the
n−m nodes to which the response was not sent, where
n is the number of participating nodes. If the adver-
sary identifies linkable queries then he may further
reduce the number of possible senders by intersecting
the corresponding sets. Eventually the adversary will
be able to identify the sender with high probability.

It is possible to employ a rebroadcast scheme,
whereby nodes that receive a broadcast response then
rebroadcast it to some subset of nodes on the ring.
This produces a cascade of broadcasts that prevents
a malicious exit node from sampling using a selec-
tive response, but it requires an inordinate amount of
traffic in order to ensure that every node receives the
response.

Neither of protocols is vulnerable to this attack.
In both cases responses are forwarded along a fixed
path, so a malicious exit node cannot selectively for-
ward the response.

5.2 Provable k-Anonymity

The anonymity provided by Protocol-1 is equal to the
number of legitimate nodes participating in the pro-
tocol. There is no method by which a node may alter
this anonymity, so we will not discuss it further.

The anonymity provided by a ring in Protocol-2
is exactly equal to the number of legitimate nodes
participating in the ring. In our discussion on total
eclipses, we show that we can limit the probability of
joining a ring in which at least half of the nodes are
malicious to at most ε by joining rings that satisfy

n ≥ 1(
1
2 − f

)2 ln
1√
ε
.

The same argument tells us that such a ring provides
k-anonymity at least equal to

⌊
n
2

⌋
+ 1 with probabil-

ity at least 1− ε when it is constructed. If rings were
static that would be sufficient.

However, as nodes accuse one another something
interesting happens. If we assume that every accu-
sation results in the expulsion of one malicious node
and one legitimate node, then the fraction of mali-
cious nodes decreases monotonically, but so does the
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anonymity. To account for this, we must double-
count the malicious nodes. The probability with that
there are fewer than k legitimate nodes after the ex-
pulsions is given by

Pr[X < k] =

k−1∑
i=0

(
n

i

)
i(1−2f)(n− i)2f

< exp

[
− (1− 2f)n

2

(
1− k

(1− 2f)n

)2
]

where the upper bound is derived using a Chernoff
bound. Thus a user can achieve any desired amount
of anonymity with high probability by joining a suf-
ficiently large ring.

5.3 Efficiency

The proposed protocols seek to achieve k-anonymous
communication, but at the cost of inducing some
amount of latency into the communications channel.
Protocol-1 requires all queries to travel down a “tun-
nel” of nodes before they can be relayed to the re-
cipient, and all responses must be returned back up
the same tunnel. Protocol-2 essentially does the same
thing along an arc of the ring-shaped overlay, but with
the added constraint that no participating node may
send at a rate above bmax. This certainly induces a
non-trivial amount of latency, especially considering
that the nodes in the overlay in either case should not
be geographically proximal to each other, so a mes-
sage exchange between nodes may already require a
delay on the order of seconds. However, both pro-
tocols also have the advantage that the sender may
choose the length of his sending path, and so senders
have the option to select a shorter path for higher-
priority messages if the latency on longer paths is
overly detrimental. Of course, it would not be ben-
eficial for all nodes to do so for every message, as
the varying distribution of path lengths provides some
protection against statistical attacks that try to guess
the probability of a malicious node being near the
sender based on some computation of expected path
length.

In section 6, we discuss some potential simulations
and experiments we would like to perform to attempt
to empirically bound the amount of latency induced
by the protocols.

5.3.1 Network Overhead

Both protocols also require some amount of additional
communication between nodes in order to facilitate
the anonymous communication. In our analysis of

this overhead, we will ignore responses from the re-
cipient, as they can be viewed as independent com-
munications.

Protocol-1 requires a signed receipt each time a
participating node forwards a message. Since each
receipt is constant in size, to send a message down
a path of length l requires O(l) receipts to be ex-
changed. Of course, since sending the communica-
tion itself requires O(l) messages to be forwarded,
this essentially doubles the number of messages that
must be exchanged. Furthermore, there is a one-time
setup phase for construction of the anonymous tun-
nel. Since this process iteratively sends a message
down the tunnel to each node as it is added, the total
number of messages required is

l∑
i=i

i =
l(l + 1)

2
∈ O(l2)

This overhead of O(l2) is only paid once, so if the
sender were to reuse the established tunnel for some
number m > l of repeated communications, the over-
head for each communication amortizes out to O(l).
Finally, the protocol specifies that probe messages
may also be used to verify the integrity of the tun-
nel. However, these probe messages are to be infre-
quent, and actually incur the same cost as sending a
query through the tunnel, so they too require a linear
amount of overhead. Therefore, we may summarize
that if n participants are sending through tunnels of
expected length l, the total overhead over the entire
overlay is O(nl) in expectation.

Protocol-2 also requires a signed receipt for each
message. However, this version of the protocol re-
quires a significantly more expensive O(n2) one-time
key exchange during the setup phase, which fortu-
nately only needs to be done once, and so may be
amortized out by repeated communications, espe-
cially since multiple senders may send in the same
ring. Furthermore, Protocol-2 specifies that all nodes
send probe messages at a constant rate, rather then
just infrequently, in order to provide noise to mask
senders from local observers. If we assume that an
expected c probe messages are to be sent by a node
for every query, and that each node uses a path of ex-
pected length l, the overhead incurred by Protocol-2
is also O(cnl) ∈ O(nl).

5.3.2 Local Computation and Storage

Both protocols do impose a fairly heavy computa-
tion and storage requirement on participating nodes.
Protocol-1 requires each node to store all public keys
for his sending tunnel (O(l) space), as well as a flowid
mapping and receipt for each communication along
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each tunnel he is participating in. If we recall that
the number of tunnels a node should be participat-
ing in depends linearly on l = E[k], the expected
path length, and additionally suppose that nodes only
store their last d mappings and receipts, then each
node requires an additional O(ld) space (in expecta-
tion). In terms of computation, each message being
sent requires l encryption operations at the sender,
and each message being relayed by any node requires
one layered decryption, one RSA signature, and one
verification for the signed receipt. In practice, the
computational complexity here should be dominated
by the asymmetric operations. In the future, we hope
to be able to gather empirical results as to the latency
induced by these expensive operations.

Protocol-2 doesn’t require flowids, and each node
in the overlay sends along only one path, which re-
duces the spacial storage constraints. However, each
node is responsible to remember the public keys of
all other participating nodes in the overlay and the
permutation of participants used to encode the ring
(both of which are O(n)), in addition to caching some
number d of receipts for messages he has forwarded in
the past. The overall space requirement for each par-
ticipating node is therefore O(n + d). Furthermore,
the same cryptographic operations are required to for-
ward a message, and so the same latency cost will be
incurred for each message sent.

6 Conclusion

The protocols we have proposed are designed to pro-
vide provable k-anonymity to communicants through
the use of an anonymizing overlay. In particular, our
protocols are innovative in that they provide mech-
anisms for the detection and removal of Byzantine
entities from such an overlay, providing a strong guar-
antee of robustness and anonymity against adversar-
ial attack. We have analyzed these protocols for re-
siliency to malicious attack, guarantees of anonymity,
efficiency, and overhead. However, there is still sig-
nificant work to be done:

Empirical Practicality. We’d really like to code
up some simulators and then an actual client, so that
we can gather some data on the actual latency and
overhead induced by such a system. We’ve examined
such concerns theoretically, but feel that real-world
experiments on at least a small overlay playing the
protocols is necessary to confirm the practicality of
our work.

Provable Anonymity. While we are at least in-
tuitively convinced that the proposed protocols do
provide sender k-anonymity and do not leak any in-
formation regarding the sender’s identity to a ma-

licious entity, we believe so mostly because we de-
signed the protocols to be resistant to many of the
most crippling attacks we could think of. We would
therefore like to examine this more formally, using an
information-theoretic model of provable anonymity to
see how much information a malicious entity is actu-
ally able to learn while playing the protocols.

Relaxing Assumptions. We made several assump-
tions while designing the protocols that we are not
exactly happy about. In particular, we chose to punt
on bootstrapping the protocols, our dependence on
the security of IP, and the PKI in Protocol-1. We feel
that some more work is needed to relax or eliminate
the need for these assumptions.

Efficiency Optimizations. A few of the pieces of
the protocols, as proposed, are just downright ineffi-
cient. In particular, we’d like to reexamine the O(n2)
key exchange in Protocol-2 and see if we can come
up with a cleaner and less costly method of sharing
secret keys between pairs of participating nodes.

Open Questions. There do remain a few open
questions about anonymizing overlays in general
which have been touched on, but not really dealt
with, by our work. In particular, it is unclear whether
any anonymizing overlay protocol can truly be secure
against long-term intersection attacks [3] and active
traffic analysis attacks [4]. These questions continue
to provide avenues of future exploration in the field
of anonymous communication.
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