
Seedzer: A Pipeline for Fuzzing in Deep Learning
Compilers

Jerry Gui
University of Maryland

College Park, MD

Abstract—Deep-learning (DL) compilers, such as TVM and
TensorRT, are widely used in optimizing Deep Learning Models
to increase performance and reach across devices. However, bugs
in the compiler may result in generated models that behave
differently from input models. This may lead to a loss in accuracy
and correctness in applications that rely on generated models.
Fuzzing is an automated method to detect bugs in software
by generating random test cases as inputs and checking for
inconsistent behavior. Our work focuses on TVM, a popular
deep-learning compiler developed by Apache. Existing fuzzers
for TVM target particular optimization levels. However, bug
detection may be improved by a full-compiler fuzzing analysis.
We propose a pipeline to detect DL compiler bugs by combining
these existing tools.

Index Terms—Deep Learning Compiler, Fuzzing, Coverage

I. INTRODUCTION

Deep Neural Networks (DNN) are becoming increasingly
common in our lives. Applications that involve DNNs range
from image enhancers in phone cameras to generative AI
that generates images from text. One such generative AI
service, ChatGPT, has more than 100 million users every
week. [1] As the use cases for neural networks grow, so do the
range of devices that they are run on. Devices have different
power limits and different hardware architectures. Critically,
Neural Networks must take advantage of hardware-specific
optimizations to improve performance and efficiency across a
range of devices. Deep-learning (DL) compilers bridge the gap
between the DNN software and deployed hardware. Apache
TVM, ONNXRuntime, TensorRT, OpenXLA, NGraph, and
Glow are examples of DL compilers maintained by companies
such as Apache, Intel, and Meta. DL compilers take a neural
network model as input and output an optimized representation
for a specific architecture. Bugs in these compilers can slow
outputted models to unusable extents or result in unexpected
prediction results compared to the initial model.

We focus on Apache TVM, a deep-learning compiler pop-
ular both in industry and academia. TVM is a multi-stage
compiler that performs both high- and low-level optimizations
on a neural network before passing it down to a machine code
compilation toolchain. Several tools have been developed to
automatically find bugs in TVM, including NNSmith, Tzer,
and TVMFuzz. These tools are fuzzers, which generate test
cases as inputs and compare outputs with some reference.
However, all of these tools focus on fuzzing a certain opti-
mization level of TVM: NNSmith only generates high-level

models to pass to TVM, and Tzer and TVMFuzz only fuzz
the low-level optimization passes of TVM. This raises the
question of whether a full-compile-stack fuzzing approach
would outperform the state-of-the-art fuzzing approaches.

We propose Seedzer, a pipeline that aims to close the dis-
connection between low-level and high-level fuzzers. Seedzer
aims to intelligently propagate NNSmith’s high-level model
generation to Tzer’s low-level fuzzing. We investigate the po-
tential of Seedzer on TVM and compare it to Tzer individually.

Section II describes the background of DL compilers in
more detail, specifically TVM. Section III describes prior work
done by NNSmith and Tzer. Section IV details our approach
to combining this fuzzing pipeline. Section V describes our
setup for experiments. Section VI provides measurements of
our pipeline’s performance. Section VII describes observations
and limitations of our current setup. Finally, Section VIII
concludes the takeaways of our work.

II. APACHE TVM

Apache TVM is a DL compiler designed to generate opti-
mized low-level code for a variety of hardware platforms for
inputted deep-learning models [2]. TVM performs a variety
of steps that optimize the model both at the high- and low
levels. At the high level, Deep Neural network models are in
a form called a computation graph. This form abstracts the
tensor operations of a NN model as nodes of a graph. It is
also independent of any particular deep learning framework,
such as PyTorch or TensorFlow. In TVM, this intermediate
representation (IR) is called Relay. Then the Relay IR is
transformed into Tensor IR, during which several optimiza-
tions are performed to optimize the computation graph. These
transformation passes may include passes that simplify the
graph or merge certain nodes together into operations that
may be easier to compute mathematically. Finally, the Tensor
IR is translated to a target IR (such as LLVM), performing
target-specific optimizations. Compilation from the target IR
is handled by the target’s pipeline to generate machine code,
such as by using the LLVM toolchain. A breakdown of the
stages of the pipeline that TVM handles is shown in Figure 1.

TVM’s evaluation shows that TVM generates operators
in neural networks that outperform hand-tuned operators. It
showed 1.6× to 3.8× speedup in server class GPUs compared
to high-level frameworks Tensorflow and MXNet [2]. It also



Fig. 1. The TVM compiler pipeline.

improved performance on CPUs as compared to a Tensorflow
Lite baseline.

III. FUZZING

To find bugs without manually combing through TVM’s
large codebase, automated testing tools are used to detect
possible bugs. Fuzzing is one such automated bug detection
technique. Fuzzers generate large amounts of random inputs
which are executed through the tested program. The outputs
are compared to an oracle, or expected output for each input.

Fig. 2. Example of fuzzing a simple reverse function.

Fig. 2 shows an example of fuzzing a function. A fuzzer
generates inputs for the reverse function that produce expected
outputs. However, the last input generates an incorrect value,
meaning there is a bug in the reverse function.

Fuzzers must generate diverse inputs that cover the input
space. Otherwise, very few bugs will be detected, as the
fuzzer does not generate inputs with traits that lead to bugs.
Additionally, because DL compilation is split into multiple
stages, fuzzers for DL compilers can start generation in other
stages.

A. NNSmith

NNSmith, published in late 2022, describes an approach
that generates high-level models for various deep learning
front- and backends [3]. A frontend represents a deep learning
framework that users can use, such as PyTorch, TensorFlow,
and ONNX. A backend is a compiler that inputs a model
and outputs optimized machine code, in our case, TVM.
NNSmith’s novelty was that prior approaches had not con-
sidered structure validity when generating neural networks,
thus resulting in nets with invalid shapes or operations or
networks with floating-point exceptions like infinities or NaNs.
To generate high-level networks that abide by these restrictions

NNSmith defines constraints for various network layers that
specify each layer’s input and output shape.

In essence, NNSmith uses an SMT solver to generate
random high-level network architecture, then uses a gradient-
guided value search to find weights that minimize floating-
point exceptions. It passes this ”valid” network to a backend,
checking its compiled output’s behavior against a ”correct”
implementation, typically using the PyTorch interpreter.

With NNSmith and its add-ons being the current state-of-
the-art high-level neural network generator, we will utilize
their tooling in our full compiler stack fuzzing tool. Their
approach achieved far higher bug-finding capabilities than
many previous works, though they leave significant room for
improvement. A critical oversight that the NNSmith authors
note is that low-level fuzzing approaches such as Tzer intro-
duce several times as many unique coverage paths as high-
level fuzzers due to their operation on low-level IRs, which
contain operands that cannot be explicitly included at the high
level.

This sparsity is where our work will be focused. We can
run NNSmith on our target compiler to find inputs that cause
inconsistent behavior or crashes. Using these inputs, we will
apply the approaches from the low-level fuzzing approaches
which we detail further.

B. Tzer

Tzer was one of the first approaches to fuzzing deep
learning compilers, published in early 2022 [4]. It targets
the TVM backend while only mutating the low-level IR. It
leverages various mutation strategies to store both the IR and
a pass mutation series in the seed list. Its novelty comes
from focusing on pass sequences. Essentially, once a high-
level seed is lowered into TVM’s internal representation, the
compiler runs a sequence of optimization passes to improve
performance or set up further passes. Critically, each of these
passes should still maintain an operationally equivalent form
of the neural network.

Critically, storing both the optimization passes P and the
original IR F allows Tzer to have two new oracles. Firstly, the
optimized version P (F ) should have results consistent with
the original F when tested on the same data. Secondly, the
optimized model should not be slower than the original. Due to
its better depth, apparent ease of reproducibility, strong results,
and community acceptance, we chose to use Tzer.

A significant oversight that the paper fails to mention
is the initial seed pool. They mention that the source of
their initial seeding is the TVM model zoo. Looking at its
documentation reveals that this only contains commonly used
architectures such as VGG and ResNet. We predict that, due to
the popularity of these initial seeds, many of these optimization
paths are the common case, which are unlikely to have unfixed
bugs. The zoo is also a fairly limited set of neural nets. As
such, we find it promising to use a diverse yet valid high-
level neural network generator, NNSmith, to better seed the
low-level fuzzer to uncover uncommon optimization paths and
IRs.



IV. OUR APPROACH

One limitation of Tzer is that its bug detection depends on
the initial seed pool. Many lower-level generations may not
correspond to some real neural network model. Furthermore,
many optimizations that low-level compilation introduces de-
pend on certain high-level qualities of the seeds that may not
be present when simply randomly fuzzing them at the low
level. For example, a high-level model with a softmax layer
following a conv2d combines the two layers at the high level
to create unique low-level operators. As such, we can use a
high-level model generator to create models that may have
more of these qualities.

Our approach combines NNSmith’s model generation with
Tzer’s low-level mutations. We modify Tzer to take any
arbitrary ONNX files as initial seeds, rather than its hard-coded
seed pool. We also program NNSmith to output its random,
valid high-level neural networks as ONNX files. We can then
run a variety of heuristics to determine which of the high-
level models we deem most effective at finding bugs when
fuzzed at the low level. These ONNX files can be loaded
and lowered into the Relay IR, TVM’s high-level intermediate
representation, and used in Tzer’s initial seed pool.

Fig. 3. The Seedzer Pipeline.

V. EXPERIMENTAL SETUP

We ran NNSmith on Google Colab with Intel Xeon CPUs
running at 2.20GHz. We ran Tzer locally on the prebuilt
Docker container provided in the Tzer artifact. Due to diffi-
culties rebuilding both tools, we had to settle with the prebuilt
versions of TVM for both, so NNSmith used TVM v0.11,
while Tzer used v0.8.

We designed a variety of heuristics implemented in different
ways. We have three heuristics prioritizing certain convolu-
tional neural networks (CNNs). The conv heuristic prioritizes
1x1 kernel convolutions, the conv3 heuristic prioritizes 3x3
kernel convolutions, and the conv5 heuristic prioritizes CNNs
with 5x5 kernels or larger. These three heuristics could be im-
plemented as patches to NNSmith, forcing it to only generate
models according to the heuristic. We also had the small and
big heuristics, which ran NNSmith with uncapped size. The
models were then downloaded locally from Google Colab, and
a script was run to sort models according to the number of
weights and layers they contained. Lastly, our basic heuristic

ran NNSmith with only the default parameters, allowing it to
generate all models.

Once the models were generated and sorted, their ONNX
files were pushed to Tzer’s prebuilt Docker container. We also
pushed a script to the container that converted these ONNX
models to Relay and seeded Tzer. We could then run Tzer
for ten-minute runs for each seed pool that each heuristic
generated.

As a by-product of our multi-stage pipeline, we were not
only able to find bugs that Tzer’s fuzzing ran into but also bugs
in the library functions we were using to load and convert the
ONNX models to Relay.

Fig. 4. Our setup.

VI. EVALUATION

For our evaluation, we selected the number of bugs found
and the diversity of the bugs as our performance metric. The
other standard metric used to evaluate fuzzing approaches is
coverage, which measures the number of code paths within
the TVM library that our runs triggered. We include coverage
graphs over the ten-minute runtime spans for each heuristic,
though our coverage measurements are slightly flawed. Due
to our difficulties building and patching TVM, we could only
track Tzer’s coverage, rather than the full high-to-low-level
pipeline (ie, the functions used in lowering ONNX models to
Relay was not included in our coverage evaluation).

Experiments were run using ten-minute fuzzing for all runs.
Tzer was run with the default initial seed pool, and then
with the seed pools generated by each of our heuristics. As
shown in Figure 5, the default Tzer seed pool resulted in the
least coverage after completing the ten-minute fuzzing. Our
heuristic selected seed pools from NNSmith had a significant
difference in coverage compared to the default seed pool.
However, the choice of heuristic did not make a substantial
difference among the different ones we decided for coverage.
This similarity in coverage is likely because the selected seeds
are generated from the same source, NNSmith.

Figure 6 shows the number of buggy test cases that were
generated during the 10-minute run of Tzer for each of the
heuristics. We also include a breakdown of which of these
cases were segmentation faults, rather than inconsistencies or
other crashing cases. This time, only the basic heuristic
outperformed the default seeding. It’s important to note that
this is only a measure of the number of buggy cases, and is not
the number of unique bugs found, which may skew the results.
Another trend to mention is that even though the conv and
the conv3 heuristics encountered the same number of total
bugs, the conv heuristic, which uses solely 1x1 convolutions,
faced far more segmentation faults than its 3x3 counterpart.



An explanation for this may be due to 3x3 convolutions being
a more commonly used operation, which suggests that TVM
has been more carefully scrutinized for 3x3 convolutions.

The seed pools generated by the big and small heuristics
are not graphed as bugs in the loader caused them to not
be able to run Tzer for a full ten-minute run. We are still
investigating the cause of this.

We are still in the process of investigating the root cause
of many of these bugs, so a complete breakdown of unique
bugs is left for future work. We have included a few bugs that
we manually investigated in Appendix A, some of which have
recently been encountered in practice and posted by users on
both the TVM forum and its GitHub.

Fig. 5. TVM coverage when running Tzer with different initial seeds.

Fig. 6. Number of TVM bugs found for different seeds.

VII. FUTURE WORK

The first step of future work in fuzzing TVM using our
approach is to refine the pipeline. There are a variety of
changes we would make. Running all the tools on the same
machine, using the same version of TVM throughout, would
be the first step. This way, we could patch TVM to measure the
coverage throughout the entire codebase, rather than just the
part that TVM measures itself. Once the entire pipeline was

automated, we could then implement some sort of feedback-
guided NNSmith generation techniques. For example, on
Epoch 1, we could seed Tzer randomly, and then based on
its performance and coverage paths, we could intelligently
tune the models that NNSmith generates to seed Epoch 2
more effectively. This cycle could provide better coverage and
remove the need for manually selected heuristics.

We did not do so in this paper, but we also could have run
the experiments with varying lengths of time. The original
Tzer paper runs its fuzzing experiments for six hours, though
the majority of its coverage paths are encountered within the
first ten minutes. We can test whether our full-fuzzing pipeline
results in better performance over a longer period.

In a broader scope, our approach to full-compiler fuzzing
is currently bound by the selections of NNSmith and Tzer.
Though Tzer operates solely on the TVM deep learning
compiler, NNSmith generates models that are compiler-
independent. Thus, we could replicate this process to seed
other low-level fuzzers for different DL compilers to see if
similar benefits are possible. On the other hand, NNSmith can
be substituted for other high-level fuzzers in model generation.
By leaving Tzer constant, we can measure the impact that the
model generation algorithm has on the both coverage and bugs
found in the Seedzer pipeline.

VIII. CONCLUSION

In conclusion, our paper presents a pipeline, Seedzer, to
enhance bug detection in deep-learning (DL) compilers, fo-
cusing on TVM, a widely used DL compiler. By combining
the strengths of existing high-level and low-level fuzzing ap-
proaches, Seedzer aims to detect bugs more effectively across
the entire compiler stack. We integrated NNSmith’s high-level
model generation with Tzer’s low-level fuzzing, allowing for a
more comprehensive bug detection process. Our experiments
demonstrated that Seedzer outperforms the default seeding
method, uncovering a higher number of bugs within TVM.
While our results show promising bug-finding capabilities,
there is room for refinement and future work. Automated
feedback-guided techniques and extending our approach to
other DL compilers could further enhance bug detection and
improve the robustness of DL compiler optimizations.

REFERENCES

[1] Sam Altman. Opening keynote. OpenAI DevDay, 2023.
[2] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,

Meghan Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. Tvm: An automated end-
to-end optimizing compiler for deep learning, 2018.

[3] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit
Panda, and Lingming Zhang. Nnsmith: Generating diverse and valid
test cases for deep learning compilers. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS ’23. ACM,
January 2023.

[4] Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang.
Coverage-guided tensor compiler fuzzing with joint ir-pass mutation,
2022.



APPENDIX

A. Sample of bugs found

Check failed: (!check_type.defined()) is false:
Expected Array[IntImm], but got relay.Constant

Type mismatch bug similar to https://github.com/apache/tvm/pull/5276

In particular dimension 4 conflicts: 55 does not match (int64)1.
The Relay type checker is unable to show the following types match.
In particular ‘Tensor[(1, 1, 19, 60, 1), bool]‘
does not match ‘Tensor[(1, 1, 19, 60, 55), bool]‘

Quantized convolution bug, similar to one found https://github.com/apache/tvm/issues/7878.

Check failed: (n.defined()) is false: Found null pointer node while traversing AST.
The previous pass may have generated invalid data.

An unsupported operator that should be supported, similar to https://discuss.tvm.apache.org/t/
bug-onnx-found-null-pointer-node-while-traversing-ast/14745.

Check failed: (false) is false: relay.concatenate requires
all tensors have the same shape on non-concatenating axes

A concatenation shape check fails on a valid model.

KeyError:’axes’

A bug in the loader affects some models from the big heuristic. This bug seems to be fixed in the newest version of TVM.

tvm.error.OpNotImplemented: The following operators
are not supported for frontend ONNX: Trilu

An unimplemented function from TVM is perhaps not a bug but something to note.

https://github.com/apache/tvm/pull/5276 
https://github.com/apache/tvm/issues/7878
https://discuss.tvm.apache.org/t/bug-onnx-found-null-pointer-node-while-traversing-ast/14745
https://discuss.tvm.apache.org/t/bug-onnx-found-null-pointer-node-while-traversing-ast/14745



