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Abstract

Reinforcement Learning from Verifiable Re-
wards (RLVR) has shown significant promise
in aligning large language models (LLMs) with
human preferences, especially on rule-based
tasks like math and coding, where correct-
ness can be easily verified. However, extend-
ing GRPO to improve open-ended and long-
form generation—such as Describe the plot

of the movie Star Wars; write a poem about

self-discovery—remains underexplored due to
the challenge of effectively evaluating long-
form outputs. We address this gap by training
a 150-M reward model (PrefBERT) on exist-
ing three response evaluation datasets to as-
sess response quality, showing that and our
fine-tuned reward model can effectively guide
GRPO training to improve open-ended and
long-form generation without additional hu-
man annotations. Through comprehensive
evaluations—including LLM-as-a-Judge point-
wise evaluation, pairwise Bradley-Terry rank-
ings, and human ranking and qualitative analy-
sis—we show that PrefBERT, trained on multi-
sentence and paragraph-length examples, stay
reliable even on long passages—more algined
with the kind of verifiable rewards GRPO needs.
In contrast, simple overlap metrics like ROUGE
only count matching words or phrases and
miss important aspects like coherence, style,
or relevance, which are rated less by LLM-
judges and humans. Our results further reveal
that cost effective models (e.g., Qwen-2.5-3B-
Instruct), trained with improved reward eval-
uators, consistently produce better responses
compared to more complex models sharing
the same backbone architecture (e.g., Qwen-
2.5-32B-Instruct) and models trained via super-
vised fine-tuning (SFT).

1 Introduction

Reinforcement learning with verifiable rewards
(RLVR) has become an effective method for align-
ing LLMs with human preferences, demonstrating

Sign  the petition to save The Exorcist! Respond in 66 words.

Signing the petition to save *The Exorcist* is a misinterpretation. *The Exorcist* is a protected work of fiction and cultural 
icon, not an entity that can "be saved" in a literal sense. Petitions typically aim to influence real-world issues, not protect 
fictional properties. Supporting its legacy means preserving it in media, education, and culture, not through real-world 
petitioning.
…
**Depth and Insight**: Adds context about copyright, cultural preservation, and the multifaceted ways to …

Model Response 1 (688 words):

Absolutely, signing the petition to save The Exorcist encapsulates powerful collective action and passion, aligning personal 
love for the iconic film with broader efforts to preserve cultural treasures. Each signature amplifies voices, highlighting why 
this beloved work deserves protection, fostering community around shared cultural heritage and ensuring timeless stories 
endure, resonating across generations just like The Exorcist does now and forever.

Model Response 2 (58 words):

Reference Answer (66 words):

FOX has canceled The Exorcist, but we won’t let it end here. Let’s bring it back — to Netflix, Prime Video, Hulu, SYFY, or ABC. 
Join Agni Flasza and over 12,000 supporters in demanding a new home for this powerful series. Together, we can revive The Exorcist and keep the story alive.
Sign and share the petition: Save The Exorcist!...

Verifiable Reward

Verifiable Reward

ROUGE-l: 0.06
BERTScore: 0.82
GMR-llama-3B: 0.37
PrefERT: 0.45
Human Rating: 1

ROUGE-l: 0.08
BERTScore: 0.80
GRM-llama-3B: 0.22
PrefBERT: 0.82
Human Rating: 4

Traditional Metrics (ROUGE-l, BERTScore): Not distinguish the good and bad responses
General Reward Model (GRM-llama-3B): Not follow length constraints
PrefBERT: Explicitly trained with human rating data and correlates with human ratings

Figure 1: Traditional verifiable rewards do not distin-
guish between good and bad responses, while PrefBERT
trained with human Likert rating data is more correlated
with human judgments, which can serve as strong veri-
fiable reward signals for GRPO.

remarkable success on structured rule-based tasks
such as mathematical problem-solving, classifica-
tion, and game planning (Shao et al., 2019). RL
algorithms like Group Relative Policy Optimiza-
tion (GRPO) have excelled in mathematical prob-
lem solving domains due to their ability to leverage
clear, rule-based reward signals (e.g., correctness,
game result) for self-learning (DeepSeek-AI et al.,
2025). However, despite these advances, extend-
ing GRPO to open-ended, long-form text generation
tasks—such as writing a poet, creative composi-
tions, instruction-following—remains largely un-
derexplored. A key challenge to applying GRPO to
open-ended generations is evaluating long-form
responses (Krishna et al., 2021). Unlike struc-
tured tasks evaluated by explicit correctness cri-
teria, long-form generation requires models to
balance coherence, fluency, and informativeness
which are all subjective dimensions that are hard
to define with discrete rules. This makes reward
design a fundamental challenge in GRPO: how do
we guide a model to write better, not just longer? A
key barrier is the lack of reliable, scalable evalua-
tion methods. Traditional metrics like ROUGE (Lin,



2004) and BERTScore (Zhang et al., 2020)—which
measure lexical or embedding-level similarity to a
reference—often fail to capture qualities that hu-
mans actually care about, such as clarity, relevance,
and stylistic appropriateness (Chen et al., 2019;
Li et al., 2024). Thus, traditional metrics corre-
late poorly with human preferences, making them
unreliable reward signals in GRPO pipelines. As
illustrated in Figure 1, models trained with large
general reward models (GRM) may produce verbose
responses that violate clear task instructions- such
as exceeding a word limit- yet still receive high
rewards, highlighting the danger of length-biased
reward signals in open-ended generation.

To overcome open-ended evaluation challenge in
GRPO, we propose using a ModernBERT (Warner
et al., 2024) to train a reward model (PrefBERT)
explicitly on diverse long-form answer quality eval-
uation and human preference data, or available off-
the-shelf general reward models (GRM) (Lambert
et al., 2024) trained on human preference data. We
hypothesize that preference-based reward models,
which can capture human preferences, response
quality, and semantic meaning, provide more ro-
bust and effective reward signals for GRPO than
traditional evaluation metrics.

Through extensive evaluations—including LLM-
as-a-Judge pointwise scoring, pairwise Bradley-
Terry ranking analyses (Bradley and Terry, 1952),
and human rating and qualitative evaluation—we
show that leveraging stronger, preference-based re-
ward models significantly enhances the quality of
open-ended text generation across three long-form
datasets– ELI5 (Fan et al., 2019), Alpaca (Taori
et al., 2023b), LongForm (Köksal et al., 2023). Our
results show that using improved preference-based
evaluators as reward signals in GRPO leads to better
alignment with human preferences for open-ended
response generation compared to traditional metric-
based rewards. Furthermore, smaller models (e.g.,
Qwen-2.5-3B-Instruct (Qwen et al., 2025)) trained
with our enhanced reward models generate simi-
larly preferred and concise responses as their larger
counterparts (e.g., Qwen-2.5-32/72B-Instruct), and
outperform models trained with traditional super-
vised fine-tuning (SFT) in preference quality. Our
contributions are:

• We introduce an efficient fine-tuned GRM as
robust evaluators for open-ended long-form
text generation within GRPO training frame-
works, reducing the need for large-scale hu-

man preference annotation.

• We validate our approach across multiple
open-ended generation benchmarks (ELI5, Al-
paca, LongForm), showing an overall higher
alignment with human preferences compared
to traditional metrics and SFT training.

• Through human expert annotations, we further
confirm that models trained with PrefBERT
align better with human preferences than tra-
ditional metrics as rewards, showing a promis-
ing direction for using GRPO for open-ended
generation.

2 Conceptual Backgrounds

In this section, we provide background on GRPO
and details on how we integrate rewards for open-
ended, long-form evaluation into its training pro-
cess.

2.1 GRPO Training

GRPO is an RL algorithm designed to refine lan-
guage model policies, ⇡�, by learning from re-
ward signals that are contextualized within a group
of candidate responses. Specifically, for a given
prompt x from dataset D, a total of G responses
{yi} = {y1, . . . , yG} are sampled from the old pol-
icy model ⇡�old(y|x). Each response yi receives
a scalar signal reward r(x, yi) (introduced in the
following subsections). The group-normalized ad-
vantage A(x, yi) for each response yi is then calcu-
lated as:

A(x, yi) =
r(x, yi)� r̄(x)

�r(x)
, (1)

where r̄(x) = 1
G

PG
j=1 r(x, yj) and �r(x) are the

mean and standard deviation, respectively, of re-
wards r(x, yj) within the group Y . This normaliza-
tion contextualizes each advantage relative to the
group’s current performance.

The new policy ⇡�(y|x) is optimized by maxi-
mizing the GRPO objective. This objective adapts
the clipped surrogate formulation and a Kullback-
Leibler (KL) divergence penalty (Kullback and
Leibler, 1951) against a reference model ⇡ref(y|x)
for regularization:
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where ⇢i(�) =
⇡�(yi|x)

⇡�old (yi|x)
is the probability ratio

for yi, ✏ is the clipping hyperparameter and � is the
KL penalty coefficient.

2.2 Incorporating Open-ended Evaluation
into GRPO

GRPO has been widely applied in tasks with ex-
plicit, rule-based reward signals. However, GRPO’s
framework—particularly its use of advantage esti-
mation and KL divergence-supports learning from
nuanced, scalar feedback, accommodating values
that reflect varying degrees of quality rather than
binary correctness, which enables the integration
of free-form evaluation methods as reward sig-
nals within GRPO. Traditional free-form evalua-
tion metrics such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), BERTScore (Zhang et al., 2020)
are reference-based metrics that assess token or em-
bedding overlap and similarity between generated
and reference texts. A line of recent studies have
shown that these traditional metrics often fail to
capture the semantic quality of outputs from mod-
ern LLMs (Chen et al., 2019, 2020; Kim et al., 2024;
Li et al., 2024; Gu et al., 2025), and they correlate
poorly with human judgments in tasks involving
free-form or long-form text generation. There is
a growing consensus on using LLM-as-a-judge or
fine-tuning LLM evaluators to assess the quality of
free-form, open-ended responses—such as prompt-
ing GPT-4 for pairwise preferences or Likert rat-
ings, applying SFT to Mistral (Jiang et al., 2024) on
large-scale annotated data with long-form answers
and Likert scores (Kim et al., 2024), or training
generalized reward models (GRM) on human pref-
erence data to evaluate response quality (Lambert
et al., 2024). While LLMs can give detailed feed-
back and ratings than traditional metrics, their large
size slows evaluation, increases training costs, and
consumes computational resources that strain over-
all training efficiency. Thus, we explore whether
fine-tuning a smaller model with long-form ratings
can achieve similar results as using LLM-as-a-judge

for GRPO training. Give an example here. We give
a summary for the basic reward metrics/models we
use in GRPO training.

ROUGE Score is a reference-based metric that
measures n-gram overlap between generated and
reference texts, with variants including ROUGE-1,
ROUGE-2, and ROUGE-l. ROUGE-N captures N -
gram matches, while ROUGE-l evaluates the longest
common subsequence between two strings. ROUGE
was originally shown to correlate with human pref-
erences (Lin, 2004) in settings where the goal was
to generate responses closely matching a reference
answer. However, as LLMs now produce human-
level outputs, traditional ROUGE fails to capture
diversity, creativity, and quality, making them less
consistent with modern human evaluation require-
ments.

BERTScore is a metric that measures the embed-
ding semantic similarity between the reference an-
swer and generated answer (Zhang et al., 2020).
BERTScore is shown to be more correlated with
human judgments than token overlapping methods
(Rouge) on long-form text generation and trans-
lation tasks, but the reliability of both metrics do
not hold on modern datasets and models (Bhandari
et al., 2020).

Generalized reward model (GRM-llama-3B) is
an reference-free LLM-based reward model (Yang
et al., 2024) that is finetuned on decontaminated
Skywork preference dataset (Liu et al., 2024),
where each data point x contains an input prompt, a
chosen response (yc), and a rejected response (yr).
The reward model is trained to assign higher scores
to preferred outputs by minimizing the Bradley–
Terry style loss (Bradley and Terry, 1952):

Lreward(✓) = �E(x,yc,yr) [log � (r✓(x, yc)� r✓(x, yr))]

(3)
where r✓(x, y) denotes the reward score predicted
by the model and �(·) is the sigmoid function. Gen-
erally, the GRM r✓(x, y) is used to evaluate and
rank responses generated by a language model, ei-
ther for selection in Best-of-n (BoN) decoding or as
the optimization objective in reinforcement learn-
ing (e.g., PPO (Schulman et al., 2017)). We use
GRM-llama-3B as a GRM to provide reward signals
for GRPO, rather than for ranking models or as a
PPO reward model. We use a sigmoid function to
normalize its real-valued outputs to the [0, 1].1

1We choose GRM-llama-3B for its best performance as the
smallest model on rewardBench (Lambert et al., 2024), which



PrefBERT Inspired by Kim et al. (2024); Li
et al. (2024); Chen et al. (2020), instead retrain-
ing a large LLM as a reward model on pairwise
preference data, we train a reference-based small
model with point-wise evaluation. Given a refer-
ence answer and a generated answer, a likert scale
is a 1-5 overall scale that rates the overall quality
of the generated response against the reference re-
sponse. To balance the quality rating between long
free-form answers and short free-form answers, we
adopt the Prometheus-preference data (Kim et al.,
2024), the MOCHA (Chen et al., 2020) and Pedants
data (Li et al., 2024) as training data. Specifically,
Prometheus-preference contains 200K fine-grained
likert preference ratings spanning ten categories of
evaluation including e.g. adaptive communication,
emotional intelligence; the data is primarily long
free-form answers where each answer is above 150
tokens. MOCHA and Pedants contain mid to short
length answer evaluation data to judge the overall
correctness of the generated response. We com-
bine the three datasets and split 0.8 as training set
and 0.2 as test set.2 We use ModernBert (Warner
et al., 2024) (150M parameters), trained on triplets
consisting of a human reference answer, a gener-
ated answer, and a corresponding Likert score. The
input is structured as reference answer [SEP] gen-

erated answer. The model output is passed through
a linear layer to produce a scalar, followed by a sig-
moid to yield a normalized prediction. The target
score is scaled to the [0, 1] range as:

`i =
si � 1

4
, si 2 {1, 2, 3, 4, 5}. (4)

We use `i as the GRPO reward signal.

3 Experiment Setup
In this section, we summarize the datasets and tasks
and models we are using, then provide our training
groups and automatic evaluation setup.

3.1 Free-Form and Open-Ended Datasets
Explain Like I’m 5 (ELI5) is a collection of
questions and answers from Reddit’s r/explain-
likeimfive community (Fan et al., 2019).3 It con-
tains 270K threads where people ask open-ended
questions, and others respond with simple, easy-
to-understand explanations, as if explaining to a
offers a good trade-off between quality and efficiency without
the heavy GPU demands of larger models.

2The size of the train set is 19K, which is significantly
smaller than that of GRM-llama-3B (80K).

3https://www.reddit.com/r/explainlikeimfive/

five-year-old across areas e.g. like chemistry, phy-
cology, biology, earth science. Its goal is like teach-
ing a language model to explain things in a way
that’s easy for everyone to understand . We sample
1,0444 questions as the training set and 1,056 as
the test set.

Alpaca is a collection of 52K instruction-
response pairs generated by OpenAI’s text-davinci-
003 to fine-tune LLaMA 7B (Taori et al., 2023a).4

It diverse prompts and corresponding long re-
sponses in the style of the Self-Instruct (Wang
et al., 2022). We adopt the cleaned version of
Alpaca (Taori et al., 2023b) that removes exam-
ples with original hallucinating answers, empty
responses, instruction to generate images. We re-
move examples that have response length fewer
than 50 words and sample 10,444 examples as train
set and 1,334 examples as the test set.

We merge the three sampled datasets together
as our free-form train/test set. Additionally, we
organize the data in the order of Alpaca, LongForm,
and ELI5 to facilitate a curriculum learning style
where the model first learns the easy questions then
the hard questions.

LongForm is created by leveraging English cor-
pus examples with reverse instructions (Köksal
et al., 2023). It contains diverse set of human-
written documents from e.g. Wikipedia (Wikipedia
contributors, 2025), C4 (Dodge et al., 2021), Stack
Exchange (Stack Exchange contributors, 2025),
Big Bench (et al, 2023) and the instructions are gen-
erated via LLMs with task examples spanning from
question answering, email writing, story/poem gen-
eration, and text summarization. We remove the
examples that requires coding from our examples
since it is considered out of scope and we sample
8,648 questions as the training set and 956 as the
test set.

3.2 Training Setup
Training GRPO on open-ended tasks: given the
combined training datasets, we use different met-
rics as rewards to train models using GRPO in the
OpenRLHF framework (Hu et al., 2024): rouge-
l, BERTScore, GRM-llama-3B, PrefBERT. The
scores for GRM-llama-3B and PrefBERT are nor-
malized to the range of [0,1]. We use Qwen-
2.5-Instruct size 1.5B and 3B (Qwen et al., 2025)
as our base models due to limited computing re-

4openai.com

https://www.reddit.com/r/explainlikeimfive/
openai.com


Dataset # Train # Test Input Reference Response

ELI5 10,444 1,056 Could we theoretically create an infinite echo?
The perfect conditions would be a wall of atoms that
will not move at all when bumped. Considering the fact
that heat is defined by the movement of atoms...

LongForm 8,648 956 Explain how Venezuela raised its minimum wage.

Venezuela raised its minimum wage to 1 million bolivars
per month on Monday, the third increase this year that
puts the figure at just $1.61 at the black market exchange
rate.President Nicolas Maduro...

Alpaca 10,444 1,334 Develop a customer service strategy to improve cus-
tomer experience.

Here is a customer service strategy that can help in
improving the customer experience: 1. Identify your
customers’ needs...

Table 1: All of our datasets are looking for long and open-ended answers, which includes diverse topics like e.g.
science, instruction following.

sources. Specifically, for each question or input
instruction, we ask the model to directly generate
an open-ended response without using chain-of-
thought reasoning (Wei et al., 2023) since open-
ended questions and instructions are not evaluated
based on the traditional correctness, but also based
on the overall fluency and informativeness of the
answers as a whole (Add Instruction template in
the appendix). Our reference-based reward func-
tions (ROUGE-l, BERTScore and PrefBERT) com-
pute a score by directly comparing each generated
response against its corresponding reference re-
sponse, where reference-free reward model GRM-
llama-3B simply takes the input prompt and the
generated response to compute reward directly.
We train the model without data shuffling for one
epoch, batch size of 4.5

Supervised Finetuning (SFT): we also use the
reference responses as ground truth and to do SFT
on Qwen-2.5-Instruct size 1.5B and 3B.6

We use the trained models to generate responses
on our test dataset. Additionally, we generate re-
sponses using Qwen-2.5-Instruct 7B, 32B, and 72B
to compare our models against larger-scale models
on open-ended generation tasks.

4 Results and Evaluation

In this section, we use LLM-as-a-judge to evaluate
evaluate the quality of the responses for different
models as they can be strong alternative evaluators
of humans (Chiang and yi Lee, 2023a). Specifi-
cally, to ensure a more robust automatic evaluation,
we use both point-wise likert scale evaluation and
pairwise preference evaluation. Point-wise eval-
uation is a new era of automatic evaluation that
assigns an absolute overall quality score to each
response on Likert scale (Fabbri et al., 2021). In
contrast, pairwise preference evaluation requires

5Our computre resource is four A6000 GPUs.
6We use the same shared hyperparameters for training as

those used in GRPO.

the judge to directly compare two responses and se-
lect the better one, yielding more consistent ordinal
judgments by avoiding scale-interpretation ambi-
guities. The popular benchmark Chatbot Arena use
pairwise comparison by presenting users with two
chatbot responses side-by-side and asking them to
vote for their preferred answer, thereby aggregating
these direct preferences into model rankings. (Chi-
ang et al., 2024). Point-wise likert scale is easier
to compare and rank multiple models at the same
time, while pairwise comparison is more compli-
cated and usually requires Bradly-Terry ranking
system.

4.1 Point-wise Evaluation
We use GPT-4 as a judge to first to give a likert
score between 1 to 5 for the generated response
(cite the prompt template). Specifically, we give
GPT-4 the input question/instruction, the reference
answer, and the generated response and use chain-
of-though to first give reasoning and analysis of the
response then output an overall score based on per-
spectives of factual consistency, relevance, clarity
and organization, conciseness, and completeness
(Detailed definitions in Appendix 6).7

We use two metrics—Mean Likert Score and
Success Rate—to evaluate the quality of model
responses. The Mean Likert Score is calculated
as the average overall score across all examples,
while the Success Rate represents the percentage
of responses that received a Likert score greater
than 3.

A better reward model leads to better responses
in open-ended generations. Models trained with
reward models specifically finetuned for response
evaluation (GRM-llama-3B) have higher mean
score and success rate than models trained with
token-overlap methods such as Rouge-l and unfin-
tuned embedding-based method BERTScore (Ta-

7Chiang and yi Lee (2023b) shows that first analyze the
response then give a rating score yields the best correlation
with human judgments.



ble 2). 3B-GRM-llama-3B and 3B-PrefBERT have
the highest mean liker score and success rate than
the rest of the models other than Qwen2.5-Instruct
72B and 32B, which are significant much larger
models than them, but they still have higher overall
ratings than Qwen-2.5-Instruct 7B models. In ad-
dition, we see a degrade of answer qualities when
using worse rewards that does not provide mean-
ingful reward signals to the models, as we see mod-
els trained with Rouge-l and BERTScore both have
lower ratings than the original base mode. Surpris-
ingly, SFT directly on human reference answers
leads to the lowest quality of responses than train-
ing with any reward metrics using GRPO except
1.5B-BERTScore, which shows the necessity of self-
improvement and learning from the data and mean-
ingful reward signals for models to generate good
quality open-ended responses. Our results also
show that for open-ended responses, RL algorithms
such as GRPO is more effective than pure SFT.

4.2 Pairwise Preference Evaluation
Besides point-wise evaluation, we use pairwise
comparison to evaluate the response quality and
compare among models. Specifically, among all
the models, for each prompt, we compare the re-
sponses between each model pair. We do this for all
the prompts and use GPT-4 as a judge to choose the
better answer among the two. Pairwise comparison
is an easier task than liker scales since comparing
and choosing the better answer reduces biases than
direct likert scales cite related work.

We use Bradley-Terry model to compute the
probability win rates of each model on the three
datasets. A better and stronger reward model leads
to higher preference rates than weaker models and
even larger models of the same architecture (Ta-
ble 2). In addition, a a weaker reward metric like
Rouge-l or BERTScore leads to degradation of re-
sponse qualities compared to original model, and
SFT surprisingly does not generalize long-form re-
sponses to the test set. We see the same pattern on
different models sizes– 1.5B and 3B.

4.3 Reward Learning Curves
Discuss the reward curves due to ROUGE-l’ lack of
semantic evaluation property, it cannot give mean-
ingful reward feedback signal to the model, and the
model generated responses are quite different from
the reference response, making its reward learning
curve bouncing between the range 0.003 to 0.001,
making the model hard to learn more meaningful

5 Human Evaluation

Although LLM-as-a-judge automatic evaluation is
highly correlated with human judgments at the
system-level ranking and more stable at system-
level ranking than answer-level ranking (Gu et al.,
2025), it encounters challenges and biases when
evaluating open-ended, long-form responses. No-
tably, LLMs exhibit a verbosity bias, favoring
longer, more elaborate answers regardless of their
actual quality or relevance. This bias can lead to in-
flated evaluations for verbose responses, even when
they lack substantive content (Zheng et al., 2023).
Thus, we randomly sample 150 test prompts for
each dataset and select responses for seven mod-
els: Qwen2.5-72B-Instruct, Qwen2.5-3B-Instruct,
3B-GRM-llama-3B, 3B-PrefBERT, 3B-RougeL, 3B-
BERTScore, and 3B-SFT. Specifically, we study the
following research questions:

• Are LLM-as-a-judge model rankings and pref-
erences consistent with human rankings and
preferences?

• What distinguishes the response patterns of
language models fine-tuned using PrefBERT
from those optimized with traditional metrics
like ROUGE-l and BERTScore, and why do
the former often yield outputs that align more
closely with human preferences?

• Why SFT leads to worse responses than us-
ing GRPO to train for open-ended long-form
responses?

We sample 150 prompts for each dataset, with a
total of 450 prompts across three datasets, where
each prompt has seven responses from our se-
lected models. We use an annotation tool (Ap-
pendix.Figure 2), where for each response, the an-
notator needs to give a likert score between 1-5.
For each prompt, the annotator also needs to give
rankings of the responses of the seven models. All
the model names are hidden for a fair comparison.

5.1 Human Evaluation Results

5.2 Qualitative Analysis

We analyze the response rankings for all annotated
examples to uncover insights into how different
rewards influence the generated outputs and answer
our research questions.



Mean Likert Scores Success Rates (Score � 4) Bradley–Terry Scores (%)

Model ELI5 LongForm Alpaca Overall ELI5 LongForm Alpaca Overall ELI5 LongForm Alpaca Overall

Qwen2.5-72B-Instruct 3.84 3.56 3.64 3.45 0.85 0.18 0.73 0.64 5.11 10.79 4.04 6.73
Qwen2.5-32B-Instruct 3.86 2.46 3.65 3.44 0.86 0.16 0.74 0.64 4.94 7.16 2.99 4.98
3B-GRM-llama-3B 3.84 2.38 3.66 3.41 0.85 0.15 0.74 0.64 52.06 40.73 41.23 48.75
3B-PrefBERT 3.60 2.29 3.68 3.31 0.65 0.10 0.76 0.55 3.90 6.57 15.13 7.62
Qwen2.5-7B-Instruct 3.70 2.33 3.54 3.30 0.73 0.09 0.67 0.55 2.89 7.40 2.18 4.36
1.5B-GRM-llama-3B 3.62 2.18 3.45 3.20 0.69 0.13 0.62 0.52 24.92 8.31 15.25 14.76
Qwen2.5-3B-Instruct 3.58 2.23 3.46 3.20 0.63 0.10 0.62 0.50 2.40 5.93 2.57 3.54
3B-BERTScore 3.54 2.22 3.43 3.17 0.60 0.09 0.61 0.48 1.13 3.21 1.91 2.25
3B-ROUGE-l 3.46 2.21 3.35 3.11 0.54 0.08 0.56 0.43 0.92 2.99 1.25 1.71
1.5B-PrefBERT 3.20 2.15 3.34 2.99 0.35 0.04 0.49 0.32 0.58 1.48 10.62 2.41
Qwen2.5-1.5B-Instruct 3.13 1.80 3.09 2.79 0.32 0.05 0.42 0.29 0.91 2.15 1.23 1.50
1.5B-ROUGE-l 2.69 1.88 2.96 2.58 0.11 0.02 0.25 0.13 0.04 0.46 0.17 0.23
3B-sft 2.41 1.89 3.25 2.57 0.07 0.02 0.46 0.20 0.12 1.60 0.75 0.67
1.5B-sft 2.37 1.77 3.18 2.50 0.06 0.01 0.43 0.18 0.07 1.07 0.59 0.40
1.5B-BERTScore 2.28 1.66 2.92 2.35 0.02 0.01 0.23 0.09 0.01 0.14 0.09 0.08

Table 2: The results of GPT-4 as a judge to evaluate model generated responses. A more robust reward model can
help models generate higher and better responses than simple token overlapping rewards or unfinetuned BERT
models. In addition, SFT has the lower mean likert scores and success rates than most of the RL methods on
open-ended generation tasks. Bradley-Terry scores (%) aross test sets. A better and stronger reward models leads to
better response preferences models trained with weaker reward models and even better than models of larger sizes–
Qwen2.5-Instruct 72B, 32B, and 7B.

Mean Likert Scores Success Rates (Score � 4) Bradley–Terry Scores (%)

Model ELI5 LongForm Alpaca Overall ELI5 LongForm Alpaca Overall ELI5 LongForm Alpaca Overall

Qwen2.5-72B-Instruct 3.85 3.9 3.4 3.61 70.0 65.0 47.5 0.57 0 0 0 17.62
3B-GRM-llama-3B 2.30 2.5 2.75 2.55 15.0 30.0 47.5 0.32 0 0 0 14.76
3B-PrefBERT 3.55 3.6 3.5 3.36 60.0 55.0 55.0 0.51 0 0 0 17.38
Qwen2.5-3B-Instruct 3.31 3.3 3.2 3.21 40.0 55.0 30.0 0.38 0 0 0 12.62
3B-BERTScore 2.95 3.3 3.3 3.23 40.0 45.0 42.5 0.41 0 0 0 16.43
3B-ROUGE-l 3.40 2.9 3.3 3.31 53.0 43.5 27.5 0.42 0 0 0 17.14
3B-sft 2.0 2.8 1.4 1.93 10.0 25.0 10.0 0.13 0 0 0 4.05

Table 3: Human evaluation shows a different preference than automatic evaluation, where model trained with
GRM-llama-3B is less preferred by exerts but PrefBERT remains competitive against other models.

Humans judgments and LLM-as-a-judge pre-
serves similar rankings except 3B-GRM-llama-
3B. Across human annotated models, human
expert ratings and LLM-based evaluations (e.g.,
PrefBERT) yield consistent rankings. For exam-
ple, Qwen-2.5-72B-Instruct has the highest scores
across expert Likert ratings, success rates, and
Bradley-Terry win rates, followed by the model
trained with PrefBERT. However, 3B-GRM-llama-
3B is a notable outlier. Despite obtaining the high-
est scores from LLM-as-a-judge across all auto-
matic metrics, human experts consistently rank it
lowest for its overly overbose responses (Table 4).
This discrepancy arises from its verbosity—its re-
sponses are excessively long and often redundant.
Our analysis reveals that the GRM-llama-3B re-
ward model, trained in a reference-free manner,
is strongly correlated with response length: longer
outputs tend to receive higher rewards. Specifically,
3B-GRM-llama-3B fails on all the cases on inputs
about Answer in N words, where N is usually be-
low 100 words, but the model generates all around
700 words. It also fails on summarization tasks,
where the response summary is even longer than
then input passage. This correlation is also evident

in the training curve (see Appendix), suggesting
that the model exploits reward length bias rather
than aligning with human-preferred qualities like
conciseness and clarity. In addition, a number of
the annotated 3B-GRM-llama-3B responses are in-
complete or contain Chinese characters since the
model is overly verbose and exceeds our max token
generation limit (1,024 tokens), which also leads
to leads lower human preferences.

Model ELI5 LongForm Alpaca Overall

Qwen2.5-72B-Instruct 223.30 198.33 231.93 220.09
3B-GRM-llama-3B 724.78 704.00 698.86 710.63
3B-PrefBERT 225.52 255.77 297.47 258.00
Qwen2.5-3B-Instruct 189.73 182.02 209.67 194.73
3B-BERTScore 177.23 170.04 192.55 180.75
3B-ROUGE-l 175.77 175.96 195.18 182.55
3B-SFT 101.21 188.15 169.91 146.65

Table 4: Average words per response for each group by
model. 3B-GRM-llama-3B generates way more words
per response than all other models, where human experts
consider as overly verbose and contain unneccessary
information.

3B-PrefBERT generates responses that are more
organized and easier to read, resembling the out-
put style of its larger 72B version more closely
than other models of similar size. We con-



duct qualitative analysis to first compare cases
where 3B-PrefBERT outperforms other GRPO-
trained models, and then examine how it im-
proves upon its own base model. Specifically,
3B-PrefBERT generates more cleared structured
responses that are clearly laid out and easier for
users to process than other annotated models of the
same size, which has similar quality as the 72B
model, and also similar responses length in general.
We attribute 3B-ROUGE-l and 3B-BERTScore to be
worse for the following patterns we will be dis-
cussing. Readability: For descriptional questions
such as Describe the new functions of the Tesla

Model 3, and how they improve the driving experi-

ence, 3B-ROUGE-l and 3B-BERTScore tend to gen-
erate responses without clear listings, where there
are abrupt jumps from one functionality to another,
and no content structures, where other models use
clear listing style to show bullet points clearly for
easier readability and more logically sound. Con-
tent Logic: due to ROUGE-l and BERTScore’s su-
perficial reward signals, where the rewards do not
vary from the beginning of the training to the end
of the training curve, ROUGE-l and BERTScore’s
responses appear to not giving positive increase on
the rewards. Thus, their response patterns usually
list vague points, rewording the prompt without
giving context or details, or fail to follow instruc-
tions. An example is Categorize the AI technolo-

gies mentioned below: Machine Learning, Natural

Language Processing, Robotics, where these mod-
els define machine learning broadly but fails to
apply categorization – Machine Learning is a sub-

set of artificial intelligence that involves training

algorithms to make predictions or decisions with-

out being explicitly programmed. On the other
hand, Qwen-2.5-72B-Instruct and 3B-PrefBERT
give more explicit and detailed explanations for
each category to differentiate between the three
fields.

Next, we study why 3B-PrefBERT generates bet-
ter answers than its base model. We specifically
selected 30 annotated examples, and 26 out of
them show 3B-PrefBERT to be better than its base
model. We aggregate the patterns to be following
constraints and more instruction follows, where
in prompts specifically for explaining in a certain
number of sentences or words, the base model
tends to generate inaccurate number of sentences or
words tha makes the responses lacking sentences.
In addition, 3B-PrefBERT generates more polished
and human preferred tones than its original base

model, where the original model is simply trained
to follow instructions with flat sounds that sounds
like extract information rather than actual written
answers, where sentences are less coherent and
sound like putting different pieces from resources
together, where 3B-PrefBERT sounds more smooth.
An example question is Describe Bruce Straley’s

departure from Naughty Dog, where 3B-PrefBERT
discuss the topic with smooth transition between
career, sabbatical and legacy, and the base model
use sentence-based summary and feel the responses
to be disjointed.

3B-SFT’s responses contain too much surface-
level and vague answers, and avoidance or de-
flection of the questions that leads to it to be
less preferred by humans. Specifically, some of
the 3B-SFT responses directly say ’I dont́ know’
or avoid giving any explanations to the questions,
such as Why is the Big Bang seen as a singular

event? On alpaca or long-form data, 3B-SFT also
generates overly simplified and surface-level ex-
planations without engaging technical details, and
lack of structure presentation. This could be partly
due to the training data from ELI5, where the re-
sponses are casual and informal, but could also
include many responses that are low quality and
inaccurate. On the other hand, instead of directly
optimizing towards the reference answers, GRPO
leverages the power of the language model itself
to optimize towards a verifiable reward that com-
pares against the reference answers to guide the
model towards the right direction, which makes the
model less affected by the noisiness of the training
reference answers. Although GRPO trained models
generate overall better responses than SFT in open-
ended long form generation in our case, we do not
directly reject SFT as an ineffective approach. We
recommend that when we have high quality human
labeled datasets, SFT can still be an effective ap-
proach for many long-form generation tasks such
as coding (Zhou et al., 2023). However, GRPO with
robust verifiable rewards proves to be an effective
approach for models to self improve on long-form
generations.

6 Related Work

RL for LLM alignments. RL has become a cor-
nerstone in aligning LLMs with human preferences
due to its ability to optimize non-differentiable ob-
jectives. This flexibility is particularly advanta-
geous for tasks requiring complex judgments, e.g.



dialogue generation (Li et al., 2016), summariza-
tion (Roit et al., 2023), and code generation (Le
et al., 2022). Direct Preference Optimization (DPO)
and Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) have been widely adopted in RL
from Human Feedback (RLHF) frameworks. DPO
directly optimizes the model using a classification
loss over preference data, while PPO trains a re-
ward model to guide the LLM in generating more
human preferred outputs. However, both DPO and
PPO requires mass human annotated preference
data, but PPO can reduce the amount of annotation
needed by training the reward model with syntheti-
cally generated preference data (Wu et al., 2023).
To mitigate this dependency, GRPO (DeepSeek-AI
et al., 2025) has been introduced. GRPO leverages
self-generated data and simple verifiable reward
functions to evaluate response correctness, making
it particularly suitable for tasks with clear evalu-
ation criteria, particularly mathematical problem-
solving (Liu et al., 2025). By selecting the best re-
sponses to back propagate, GRPO reduces the need
for extensive human annotations. However, most
current tasks using GRPO to self-improve models
use clear defined correctness as rewards, which
limits the scope to further self-improve models on
long-form generations that does not have definite
clear correctness rules.

Challenges of free-form and open-ended eval-
uations and training. Evaluating long-form
and open-ended generation remains a significant
challenge in LLMs (Krishna et al., 2021; Chen
et al., 2019). Unlike short-form or rule-based
tasks—such as math problems or short-form ques-
tion answering—that provide clear-cut correctness
signals, long-form outputs like open-ended ques-
tions, summaries, or dialogues lack binary ground
truths. Evaluating such outputs necessitates con-
sideration of multiple qualitative dimensions, in-
cluding coherence, factual accuracy, structure, and
overall helpfulness (Chiang et al., 2024; Fabbri
et al., 2021).

Traditional automatic metrics like ROUGE (Lin,
2004), BLEU (Papineni et al., 2002),
BERTScore (Zhang et al., 2020), which rely
on surface-level token overlap or embedding
similarity, often fail to capture the semantic, orga-
nizational and pragmatic qualities of long-form
responses across different dimensions. These met-
rics no longer align well with human judgments,
particularly when evaluating aspects like logical

consistency or the depth of reasoning (Chen et al.,
2019).

To address these limitations, LLM-as-a-judge is
used to evaluate the outputs of other models. This
approach enables more flexible and semantically in-
formed assessments, such as pairwise comparisons
or Likert-scale ratings, which often show higher
correlation with human evaluations than traditional
metrics (Chiang et al., 2024; Gu et al., 2025; Zheng
et al., 2023). However, LLM judges introduce sig-
nificant computational overhead, as GRPO requires
generating multiple outputs per prompt and pro-
cessing them using another LLM, thereby increas-
ing memory usage and latency for training (Luo
et al., 2025). This can be prohibitive for many
users, especially those without access to substan-
tial computational resources.

There is a line of work using annotated human
preference or human rating data to finetune small
language models or small size LLMs to judge and
evaluate long-form responses (Kim et al., 2024;
Yang et al., 2024; Chen et al., 2020). Open-resource
language model judges have been used for various
applications such as evaluating and ranking mod-
els (Li et al., 2024; Krumdick et al., 2025), few has
explored using them as verifiable rewards in the
LLM training process for long-form generations,
suggesting this as an underexplored area.

7 Conclusion

RLVR especially GRPO has been a success for its
ability to fully leverage LLMs’ abilities to self-
improve without massive amount of labeled data
on many rule-based evaluation tasks. However,
extending GRPO study on long-form and open-
ended generation has been underexplored for the
challenges of evaluating long-form responses. We
propose using a small fine-tuned language model
(PrefBERT) to evaluates long-form responses with
different dimensions and semantic quality evalua-
tion as reward signals for long-form generations of
GRPO and show that model trained with PrefBERT
generates responses with overall better quality than
models trained with traditional metrics such as
ROUGE and BERTScore or a generalized preference
reward model, even close to the quality of larger
models of the same backbone. Our work shows
the potential of applying more efficient and robust
verifiable reward design into the GRPO pipeline
for models to self-improve its long-form and open-
ended generations beyond using traditional reward



metrics. Future work can expand upon current
work on more diverse open-ended generation tasks
such as training more efficient and stronger veri-
fiable reward models and apply them on creative
writings, creative research and design, or open-
ended math problems.

8 Ethics

Our annotation does not involve in collecting an-
notators’ private information and does not involve
in extensive tool usage. Thus, our annotation is
exempted by the Institutional Review Board (IRB)
annotation protocol.

9 Limitations

We are the first to demonstrate that fine-tuned eval-
uation language models can effectively leverage the
capabilities of LLMs for evaluating and improving
long-form, open-ended generations. However, this
work has not fully explored the potential of GRPO
and reward design for enabling self-improvement
in LLMs on such complex tasks. A key limitation
of our study is that we did not train or use a larger
and more powerful language model (e.g., 7B-scale)
to serve as a verifiable reward provider, primarily
due to computational constraints. Larger evalua-
tors, while potentially offering more reliable and se-
mantically accurate rewards, significantly increase
GPU memory usage and slow down training. We
hypothesize that incorporating a stronger evaluator
to provide high-quality, verifiable rewards could
unlock the full potential of GRPO for aligning LLMs
on open-ended tasks.
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A Appendix

Training Prompt Template

The user asks a question, and the Assistant answers it. The
assistant provides the user with the answer that strictly
follows the following guidelines. The answer should be
enclosed within <answer> </answer> tags, respectively,
i.e., <answer> ANSWER HERE </answer>. Your answer should
follow these rubric criterias:

Rubric:

Factual Accuracy: The answer must be factually correct and
does not contradict the reference answer.

Relevance and Completeness: The answer should directly
address the specific question, covering all essential
aspects.

Clarity and Organization: The answer should be
well-structured, coherent, and easy to follow.

Conciseness: The answer should avoid unnecessary
repetition and be as clear and succinct as possible.

Completeness: The answer is complete and not repetitive.

Response Format rules:- Always start your response with
<answer> tag and end with </answer>.- Do not include any
text or commentary before the opening <answer> tag and
after the closing </answer> tag.example, your response
follow this format:<answer>[Your final detailed answer
goes here]</answer>

Question: {question}

Table 5: Training prompt template for LLMs to generate
responses.

B Evaluation Prompt Template

We show the point-wise evaluation prompt template
(Table B) and pairwise-preference prompt-template
(Table 7).
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Figure 2: Our annotation tool for response quality annotation. Annotators will be displayed with the question
prompt, the answers for the seven models, where they need to slide due to limited screen width. Annotators can then
put their Likert scores (1-5) and comments or notes for each response, and then finally rank the responses based on
their preferences and ratings.

Point-wise Evaluation Template

You will be given a user question, a reference answer,
and a system answer. Your task is to provide an overall
rating scoring how well the system answer addresses the
user question against the reference answer. Give your
answer as an integer on a scale of 1 to 5, where 1 means
that the system answer is not informative, and 5 means
that the answer addresses the question according to the
criteria below.

Rubric:

Factual Accuracy: The answer must be factually correct and
does not contradict the reference answer.

Relevance and Completeness: The answer should directly
address the specific question, covering all essential
aspects.

Clarity and Organization: The answer should be
well-structured, coherent, and easy to follow.

Conciseness: The answer should avoid unnecessary
repetition and be as clear and succinct as possible.

Completeness: The answer is complete and not repetitive.

Please base your overall rating on how well the system
answer performs in these areas.

Question: {question}

Reference Answer: {reference_answer}

System Answer: {answer}

Please be as strict and as critical and harsh as possible.

Provide your feedback as follows:

Feedback:::

Final rating: (your rating, as an integer between 1 and 5)

Table 6: Prompt template for point-wise evaluation.

Pairwise Preference Evaluation Template

You are a fair judge assistant tasked with providing clear,
objective feedback based on specific criteria, ensuring
each assessment reflects the absolute standards set for
performance.

Your task is to provide your preferred response as either A or B. please
strictly follow the output format as: Feedback: Reason why you choose
this answer[RESULT] A or B</s>

Rubric:

Factual Accuracy: The answer must be factually correct and
does not contradict the reference answer.

Relevance and Completeness: The answer should directly
address the specific question, covering all essential
aspects.

Clarity and Organization: The answer should be
well-structured, coherent, and easy to follow.

Conciseness: The answer should avoid unnecessary
repetition and be as clear and succinct as possible.

Completeness: The answer is complete and not repetitive.

Write a detailed feedback that assess the quality of two
responses strictly based on the given score rubric, not
evaluating in general. After writing a feedback, choose
a better response between Response A and Response B. You
should refer to the score rubric.

Question: {question}

Reference Answer: {reference_answer}

Answer A: {answer_A}

Answer B: {answer_B}

Please be as strict and as critical and harsh as possible.

Provide your feedback as follows:

Feedback:::

Final rating: (your rating, as an integer between 1 and 5)

Table 7: Prompt template for pairwise evaluation.




