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Abstract—We study the dynamics of a network of agents
(players) under two models settings. In the first model, players
(agents) extend heterogeneous cooperation levels to their partners
and in the second, perfectly rational and selfish agents engage in an
iterated Snowdrift Game and the evolution of the system suggests
that cooperation emerges and prevails even when no external rules
or norms for punishing defectors are imposed. Agents base their
decisions purely on local information and the network rewiring
rules are such that agents pair-up with only recommended co-
players (this rules assumes the reason of perfect rationality). A
cyclical behavior in the number of cooperators is observed in the
second setting which is dependent upon its information update
model parameter denoting the number of proactive agents in
the population. The randomness (cyclic behavior in the number
of cooperators) is lost when the number of agents who update
proactively is small. Our results from the second model show
that inspite of not imposing any societal norms, cooperation was
prevalent in a rational population. We also present the simulation
results of our first model (asymmetric cooperation system) and
comment on some intersting observations where some agents are
happy being exploited and some others exploit their co-players by
leveraging on their degree of connectivity.

I. INTRODUCTION

Emergence and persistence of cooperation has been a subject
of keen scientific interest, both from an evolutionary and
behavioral standpoint. The prevalence of cooperation in many
oragnizational structures led to many studies in this area,
which explain its abundance (and its control parameters) by
partly-rational behavior of agents, reciprocity parameters and
spatial constraints. The Iterated Prisoner’s Dilemma game [1]
is generally taken as a representative social dilemma game to
analyze this behavior. With slight modifications to its payoff
matrix, some other games like Snowdrift game have also been
used to understand the emergence of cooperation. Games like
these have a small bias towards cooperation, which is believed
to reflect real-life scenarios, and help to understand how agents
are responsible for their environment of operation by their
perfect (imperfect) information sets.

Extensive work has been done in this regard on an adaptive-
network setting (to reflect an interplay of behavior and neigh-
borhod of players in a network) with respect to various social
dilemma games under many action profiles, strategy spaces
and other imitation/replicator dynamics involving unconditional
cooperation or defection from each agent participating in the
game. Players either follow a strategy to earn higher payoffs
in the game by either imitating the action profiles of their
highest earning neighbors or incorporate a preset behavior like
Tit-for-Tat, Grim, Pavlov, Always Cooperate, Always Defect
or any other complex behavior. In all the strategy spaces, it
was assumed that players either cooperate or defect fully and
can have no intermediate stage of lending partial cooperation

to their co-players[52]. In this work, we propose two game
models (much in the light of the work done in [52]) on adaptive
networks: in the first model, players (agents) are free to choose
their co-players and can extend various levels of cooperation to
their partners heterogeneously. In our second model, the players
(agents) are perfectly rational and selfish. Though operating
on unconditional cooperate or defect action profiles, players
get to choose their co-players based on their local information
only and this model aims to show that no external rules (like
imitation dynamics or strategy space selection) are necessary
for cooperation to evolve in a population of selfish agents.

Our first model is based on continuous adaptive networks
where players (agents) extend asymmetric cooperation levels to
their partners, all the while reinforcing and sustaining advanta-
geous collaborations in the network. Our second model is based
on a selfish society with no norms and regulations (to punish
defectors) and absence of a global entity to provide players with
network-wide information of the game state. Players greedily
act upon their local information and follow no preset strategies.
We intend to show that cooperation can still emerge in a
perfectly rational and selfish population. We wanted to study
the implications of this idea and also the dynamics of the
network where agents extend asymmetric cooperation to their
chosen partners. The paper is structured as follows: Section
II presents the literature review. Our proposed models are
presented in section III. Section IV reports our findings and
finally, section V summarizes our conclusions.

II. LITERATURE SURVEY

Cooperation lays the foundation to form any complex social
system. This draws on an interesting aspect that in spite of
high costs incurred by a cooperating entity (agent), cooperation
is to be seen in abundance in many organizational networks.
The first ever study to understand cooperation among agents
was done by Axelrod and Hamilton[1]. They analyzed the
Prisoners Dilemma [2] game among various agents (in an
evolutionary setting) under the basis that interaction among
any two entities occur on a probabilistic basis. However the
Prisoner’s Dilemma which advocates ”non-cooperation” as the
best strategy contrasted popular ”altruistic” real world scenarios
where cooperation was prevalent. This gave way to the study
of games giving a somewhat better payoff to cooperators even
when others defect, like the Snow Drift game to model social
scenarios[7].

They also studied issues pertaining to direct reciprocity and
the effect, in general, of reciprocity in an asocial setting on
evolutionary stable strategies. Many studies followed suit to



understand the evolution of cooperation [3], [4]. Various other
mechanisms such as kin selection [30], indirect reciprocity [29]
and group selection [28], [27] have been proposed to explain the
persistence of cooperation in networks. It has been ascertained
in [6], [5] that if agents are spatially distributed (defined in
an abstract sense), then such space constrained interactions
promote cooperation among them. However, for some classes
of social dilemma games (like Snowdrift game), the spatial
structure was found to inhibit evolution of cooperation [7].
This spatial structure was often modeled by complex networks
with nodes denoting the participating agents and links denoting
pairwise interactions [8], [9], [10]. These works drew some
direct correlations between the evolution of cooperation and
the topology of the network. But they had assumed that the
underlying topology was static.

In real social networks, however, the interaction games are
based upon the behavioral aspects of agents and links form and
get dissolved continuously with time. The decisions (behavior)
taken by agents thus get affected by the topology of the
network, which itself is changing with agents’ decisions. This
shaping and reshaping of decisions by agents, which in turn
define their operating environment, charactertizing the topology
of their network (Adaptive Networks) was studied in [11], [12],
[13], [14], [15]. In the presence of adverse ties, it was shown
that emergence of cooperation is faster when there is a mutual
benefit involved with long lasting interactions as opposed to
those where one of the players gets exploited [16], [17].

In an evolutionary setting however, strategy selection also
plays an important role and various replicator dynamics (’imi-
tate the best’ tactic being very popular) come into play wherein
only the fittest of the lot are chosen to plan another round of the
dilemma game, until a stable population is achieved. Here, to
overcome this selection filter, agents try to imitate the strategies
of ther highest-payoff earning neighbors [18], [19]. Under this
coevolutionary dynamics, the strategy chosen by an agent will
affect both its payoff and its chances of being selected as the
model to imitate by its neighbors [21], [20].

With reference to the evolutionary game setting under com-
plex networks, it was shown that in Iterated Prisoner’s Dilemma
game [24] and single-shot Prisoner’s Dilemma games [22],
[23], the evolution of cooperation is enhanced by discrete
rewiring of links by agents [25], formation and dissolution of
links [26] and addition of new agents [31].

A study on Prisoner’s Dilemma Interactions on Graphs with
High Girth [33] showed that such graphs had iteractions which
led to emergence of cooperation, whereas it was seen that for
graphs with many cycles of length 3 or 4, defection spread more
rapidly. Another interesting study was on ”Phase Transitions”
[34] in which the players (nodes) actually change their payoff
matrix as the game progresses based on the eigenvalues of
the payoff matrix. However, another study [35] shows that
asymmetric Prisoner’s Dilemma games don’t favor cooperation.

This network setting also falls under the area of Network
Exchange theory and Bargaining Models. In this area, however,
there is an additional constraint that nodes (players) can only

have limited collaborations and hence have to forego some of
their neighbors’ deals (or ask for better offers from neighbors
by threatening to get a deal from some other player). Also,
the agents are considered myopic (act on local information
sets). Many models [40], [41], [42], [43] have been presented
to predict the agreement patterns of the players and how
the total generated wealth be distributed among them. Tardos
and Kleinberg [44] also proposed a theoretical characterization
(unique exchange setting) to the bargaining model proposed by
[45] with respect to graph matchings. These studies assume a
linear payoff function and we wish to observe the cooperation
trends under non-linear functions , where the utility gets
saturated with increasing investments over time. Our study also
differs partly from the coalitional game settings (Shapely value,
cores, etc.) and bargaining sets. This assumes that players can
form coalitions among themselves. However, under imperfect
information setting, and to evade computational costs, we
aim to model the network on the invitation-basis (players get
invited by other players to form a collaborative link) where
players decide upon their cooperation scale upon receiving an
invitation. We also divide the total reward evenly among the
participating entities, which is a special case of Proportional
Bargaining Solution [47].

In our study, we chose to analyze the interactions based on
the Snowdrift Game (SD) [51]. This game has been proposed
as an alternative (in Evolutionary Biology, Economics and
Sociology literature) to the Prisoner’s Dilemma (PD) game
to understand cooperation for two major reasons: one was
out of biological interest (the Snowdrift Game is equivalent
to the Hack-and-Dove game) and the other due to some
difficulties in assessing proper payoffs in IPD. The major
difference between these two games is that the sucker’s payoff
in PD game (cooperator confronting a defector) is the lowest;
while in SD, both the defectors yield lowest payoffs. Hence,
there is a slight bias towards cooperation in SD. In addition
to the inhibition of cooperation (due to spatial structure) in
Adaptive networks [53], low connection-diversity in scale free
networks [54], phase transitions and hysteresis behavior [55],
suboptimal connectivity-density [56] and non-resonance type
phenomena [57], there are some additional factors which affect
the emergence of cooperation. Some of these mechanisms
(factors) are: variations in strategy transfer capacities of agents
[59], cost of punishments and rewards [61], memory effects
[58] and random noise [60].

While many interesting observations have been made (on
the emergence and sustenance of cooperation) on adaptive
networks, the action profiles (either mixed or pure) considered
in the previous work maintain that an agent either lends its
cooperation fully or defects completely [48], [49], [50]. There
are many scenarios where such an assumption wipes out many
real-life social networks out of the cooperation study picture.
There are many instances where people try to distribute their
time and resources among their interactive partners and there is
no pure cooperation or defection involved. Agents can choose
their level of cooperation with their partners and can update
their strategies (here, once the decision to cooperate gets fixed,
the strategy is to come up with an optimal investment/cost for



the cooperative link). This decision of asymmetric cost bearing
by an agent towards its collaborative partners involves various
factors such as how is its payoff increasing with its increasing
investment, how are its partners reciprocating to its decisions,
when can it afford to be completely selfish (i.e incur zero cost)
while its partners bear all the cost of their collaboration, etc.

III. MODELS

A. Asymmetric Cooperation Model

1) Assumptions and Setup: We consider N = 100 agents
engaged in bilateral collaborations. In this setup, an agent i
invests some resources (signifying cost or time) cij towards
agent j and reaps some benefit B(cij , cji), where cji is the
investment j makes in collaboration with i. They both incur a
cost C, which is a function of their respective investments. In
our analysis, we assumed B to be a sigmoidal function which
yields out increasing benefits with increasing costs and flattens
as the investments go above a certain limit. The cost function
C is assumed to be linear. Thus, the payoff agent i obtains in
collaboration with j at a certain time step is given by:

Pij = B(cij , cji)− C(cij) (1)

where B(cij , cji) =
6(cij+cji)

3+
√

1+(cij+cji)2
and C(cij) = cij .

The above functional forms for Benefit and Cost functions
capture the characteristics of real-world collaborations: inef-
ficiency of small investments, flattening of benefits at high
investments and the ever increasing costs. A random graph is
initialized with agents participating in various collaborations
simultaneously. Initial investments for each collaboration (for
each agent) are drawn from a normal distribution with µ = 0.5
and σ = 0.01.

We assume the investments to be non-negative and impose
no further restrictions on them. Every agent is free to make
different investments in different partnerships.

2) System Dynamics: To specify the dynamics of the net-
work, each agent tries to maximize its payoff from a collabo-
ration using a gradient optimization rule:

∆cij =
∂Pij
∂cij

(2)

Note that this selfish strategy followed by each agent already
induces investment changes (link weights) and results in the
network changes. However, blindly following the above rule
simply results in a gradual climb to the maxima of the payoff
function for each player’s investment. To make the dynamics
more realistic, the concept of cooperation and defection is
introduced. Cooperation in this setup refers to following the
gradient optimization rule. Defection refers to reducing the
investment by ∆cij when ∆cij > 0 and reducing investment
by 3|∆cij | when ∆cij < 0.

3) Defection Index: Defection as can be seen is both a
dominant as well as rational strategy. However, if both players
in a link continually defect, the result will simply be a uniform
descent to 0 investment from both players. In order to defer
such an event, an incentive for cooperation is provided by
introducing a global metric called a Defection Index. Each
player i at the start has a Defection Index DIi of 0. As the game
progresses, the defection index for a player is increased by

3|∆cij | whenever he defects and decreased by |∆cij | whenever
he cooperates.

The game progresses in generations and time-steps which
are described in detail below. At the start of a generation,
each player i has a tuple of defection probabilities < pij >
where pij represents the probability with which player i defects
with player j. Additionally, players start with a random initial
investment per existing partnership as described earlier. Within
a generation, there are time-steps which capture the sequence
of cooperations and defections in the ascent to the maxima.
The probabilities < pij > don’t change within a generation. A
generation ends when all partnerships reach the maxima (this
is guarenteed to happen for reasonable values for pij). When a
generation ends, the players update their defection probabilities
based on the global defection indices of other players by this
update rule :

pij =
DIi

2 < DI >

where DIi refers to the Defection index of the ith player
and < DI > refers to the average defection index of all the
players. The very first generation starts with pij = 0.5 for all
the players. The interesting thing to note here is that in any
generation, all players defect against a particular player with
the same probability. So, a player making selfish choices for
a subset of his links and accruing a high defection index gets
penalized by all players in the subsequent generation.

4) Link Rewiring: After a generation ends, the players
again start a new generation with random investments. One
noticeable change is that the topology of the network may be
considerably different from that of its previous generation. The
new generation typically witnesses broken partnerships as well
as possibly new partnerships. The rule for breaking links for a
player i in partnership with player j is based on i′s investment
ratio (IRi) in the link which is the ratio of his investment in
the link to the total investment in that link,

IRi =
cij

cij + cji
.

IRi when greater than i′s tolerance value ti = 0.65+1/NT di
(where di is the degree of player i and NT is a heuristic
constant) results in i breaking his link with player j for
the next generation. Similarly, for adding links, we have a
probability pLINK with which links are randomly added in
each generation.

In the above course of investment coordination, some agents
end up exploiting their co-players in some collaborations and/or
get exploited by others. Since each agent has a threshold value
to tolerate the extent to which they get are willing to be ex-
ploited and since players with high degrees can afford to reduce
their investments a little, thereby pushing their partners to put in
more money (or time) to sustain the link (collaboration). With
such dynamics, we get to see some players (agents) reaping
higher payoffs than their neighbors and some collaborations
have been reduced to almost a ’no-reciprocation’ state, where
one agent contributes around 90% of the total investment while
its partner extends only 10% of the remaining link weight.



B. Selfish Society Model

1) Assumptions and Setup: We assume that all the players
are perfectly rational and act only upon their local information.
No global moderator keeps track of the payoff values for
the players. Players also have a memory of last 10 time-
steps (they can remember the payoff from their co-players for
10 timesteps). Each player (agent) tries to maximize his/her
expected payoff in the next time step. The Snowdrift game
(Table I shows the payoff matrix for the two-player version)
is played iteratively. The expected payoff for the next time step
by a player is calculated by w.r.t his/her co-player’s previous
action. The change in the neighborhood of player i from time
t to t + 1 is denoted as Ni(t) → Ni(t + 1). This change in
neighborhood can occur when agent i cancels and/or adds some
links. Every agent can atmost cancel α links and add atmost β
edges. The neighborhood of i after cancellation (addition) of
ά ≤ α (β́ ≤ β) edges is denoted by N ά

i (N β́
i ). Pi denotes the

payoff of agent i.

Player i / Player j Cooperate Defect
Cooperate 1 1− r
Defect 1 + r 0

TABLE I
PAYOFF MATRIX FOR A TWO-PLAYER SNOWDRIFT GAME WHERE

0 < r < 1. ANY FORM OF SNOWDRIFT GAME CAN BE REDUCED TO
THIS VERSION. WE USED r = 0.8 IN OUR SIMULATIONS.

Players can form links with those who are only two edges
away from them. This assumption stems from the fact that
players would accept incoming links from cooperative players
who are recommened by their neighbors. Thus, players who
cooperate can only form new links with their next to nearest
neighbors. To capture the responsiveness of players, only
selected players can rewire their links (maximum of α + β
link configurations are possible) and each player is selected
with probability Pselection in each time step. The game is
initialized with N = 100 nodes on a random graph with linking
probability 0.1. Every player’s state is randomly initialized
either to cooperate or defect.

2) System Dynamics: To determine the action in the next
time step, each player estimates his expected payoff using
his neighborhood information as follows: since agent i can
form atmost β links, it chooses its highest earning neighbor
(j as shown in the figure). To estimate the additional payoff
(P additionali ) he earns when he forms β edges, it subtracts
the payoff he earned from his and j’s common neighbors
from j’s payoff to calculate how much profit j is obtaining
from uncommon neighbors. It then multiplies this value with
the fraction β

Nuncommon
, where Nuncommon is the number of

uncommon neighbors for i and j.

P additionali = (Pj − PNcommoni )
β

Nuncommon
(3)

PNcommoni denotes the payoff i obtained from the common
neighbors of i and j. Thus at time step t, agent i updates
its action and neighborhood with probability Pselection. Once
chosen to update, i calculates its expected payoff in case of
cooperation as

i j

commonN
 4uncommonN

Fig. 1. Illustrating the neighborhoods of i and j at a certain time
step. The players have 2 neighbors in common.

Fig. 2. Mean Clustering Coefficient for different values of PLINK .

P cooperate(t+ 1) = P additionali (t) + P
Ni+N

β́
i −N

ά
i

i (4)

and in case of defection as

P defect(t+ 1) = P
Ni−Nάi
i (5)

where, PNii + N β́
i − N

ά
i denotes the payoff of i when it

cooperates with its neighbors after deleting ά edges and adding
β́ edges and PNi−N

ά
i

i denotes the payoff i gets upon defecting
with its neighbors after deleting ά edges. Agent i defects in
the next time step if P defect(t+ 1) ≥ P cooperate(t+ 1) and
cooperates otherwise. If they both are equal, then it chooses to
cooperate or defect randomly.

This sequence is performed simultaneously by all agents
who have been selected for the update at time step t. Upon
updating their neighborhood and actions for the next time step,
the sequence is repeated again.

IV. RESULTS AND DISCUSSION

A. Asymmetric Cooperation Model

Figures 2 and 3 show the clustering coefficients and mean
degree with varying PLINK values for 100 players over 100
generations of a particular simulation. Both mean degree and
clustering coefficient increase with PLINK .



Fig. 3. Mean Degree for different values of PLINK .

Fig. 4. Number of Links Broken/Added Post Stabilization (16-100
generations).

Figures 5 and 4 are the most interesting in terms of the
Asymmetric model. These represent how the edges break and
add over as generations progress. Since the random graph was
initialized with a linking probability of 0.2, the network is
initially sparse. However, the linking probability for adding
edges over generations is pLINK = 0.6 due to which the
network starts becoming dense. Since the tolerance for each
player is inversely proportional to their degree, players are
reluctant to break many links in the initial generations (first
15). This is indeed the case for small real-world companies
which have an initial desire to grow and acquire lots of partners
without being eclectic. However, as players earn a decent
degree distribution, the number of links broken roughly matches
the number of links added. Moreover, since a player doesn’t
reform a link which he recently broke, this means that the links
being added are all different from links being broken. This is

Fig. 5. Number of Links Broken/Added during Stabilization (first 15
generations).

Fig. 6. Fraction of cooperators in the network for different values
of Pselection. The regularity along the time series increases with
Pselection

an interesting observation since the network has an equilibrium
edge density but with rapidly varying topology which mimics
real-world scenarios.

B. Selfish Society Model

Figure 6 shows the time series of the fraction of cooperators
with varying Pselection values for the last 100 steps of a
particular simulation. In each of our simulations, every agent
can make atmost α+ β link configurations where α = β = 6.
As can be seen, oscillations with high amplitude occur for
high values of Pselection and the oscillations dampen with
decreasing Pselection. For Pselection = 1, the network is highly
mercurial where the rise of about 40% (in the number of
cooperators) of the system size is observed in the first 5 time
steps. As shown in Figure 7, the average degree of the network
also shows similar behavior.

The reason for this oscillatory behavior of the system could
be explained as: in the states corresponding to low fraction
of the number of cooperators, the average degree has been
reduced to an exten which motivates the agents to build up
links again. In instances where some agents got disconnected,
we relinked all of them to a randomly chosen agent. In the
states where the fraction of the cooperators is high, the number
of links start to break since for a rational agent whose neighbors
are consistently cooperating, it starts to defect. This agent will
defect as soon as the payoff it obtains by defecting with its
neighbors exceeds the payoff it gets when cooperating with
agents after adding β edges:

P di > P ci + βP additionali (6)

where P di is the payoff i obtains upon defecting with its
neighboors and P ci is the payoff it gets upon cooperating with
its neighbors.

With β = 6, the links being added in each time step
is comparatively high and hence the network will reach the
maximum average degree very fast. With low α and β values,
the amplitudes of the oscillations reduced. Looking at the
rewiring probability Pselection, it captures the notion of the
willingness of the agents to react to new information and make
link configurations. By lowering its value, the oscillations in



Fig. 7. Time-series of average degree of the network for different
values of Pselection

Fig. 8. Average values of the clustering coefficient for different values
of Pselection

the number of cooperators and average degree get damped.
Additionally, while lowering Pselection, the number of agents
losing all their links also reduced accordingly suggesting the
increasing stability of the network.

As for the dependence of number of cooperators in the
network on α and β values, it increased monotonically with in-
creasing α and β values. For α = β = 1, the network presented
a high degree of randomness with defectors dominating the
whole population. We set α and β values to be equal through-
out our simulations. Figure 8 shows the average clustering
coefficient of the network with varying values of Pselection.
The α and β values have been set to 6 in the simulation. Upon
comparing some snapshots of the network with their equivalent
random graphs shows that our network has higher clustering
coefficients (an equivalent random graph can be obtained by
calculating its linking probability from the number of edges
of the network’s snapshot; the expected clustering coefficient
of a random graph is its linking probability). This observation
can be easily explained as there is an additional mechanism
to add more edges in our setting with the model parameter
β and suggests that our model illustrates a better cooperation
sustaining network than an equivalent random graph.

V. CONCLUSION

In this paper, we have proposed two models for the for-
mation of asymmetric collaborative network of selfish agents
(continuous adaptive networks) and an iterated Snowdrift game
on an adaptive network involving selfish and perfectly rational
agents whose decisions are based only upon their neighborhood
information. Within this framework, some reasonable assump-
tions were made about agents’ decisions inducing dynamics
in the networks wherein cooperation is sustained in both the
models and in particular, the levels of cooperation extended
by agents in the first model increased with time. The degree
of cooperation prevalent in both the systems relied heavily
on the rewiring probability Pselection and the nature of their
payoffs. In the first model where we allowed agents to maintain
different levels of cooperation, pevalence of high degree to
investment coordination and cooperation extension can be seen
as a precursor to a social norm. With limited information (and
limited memory of 10 timesteps in the second model)in both
the cases about the global nature of their networks, agents did
coordinate to yield higher cooperation levels inspite of acting
selfish and making rational decisions in every timestep. What
goes beyond the presented work, but is worth the investigation
is a study of similar cooperation-biased models under different
benefit/cost functions with a quantitative discussion on their
resource allocation strategies.
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