SPDO: High-Throughput Road Distance
Computations on Spark Using Distance Oracles

Shangfu Peng
University of Maryland
shangfu@cs.umd.edu

Abstract—In the past decades, shortest distance methods for
road networks have been developed that focus on how to speed up
the latency of a single source-target pair distance query. Large
analytical applications on road networks including simulations
(e.g., evacuation planning), logistics, and transportation planning
require methods that provide high throughput (i.e., distance
computations per second) and the ability to “scale out” by using
large distributed computing clusters. A framework called SPDO
is presented which implements an extremely fast distributed
algorithm for computing road network distance queries on
Apache Spark. The approach extends our previous work of
developing the e-distance oracle which has now been adapted
to use Spark’s resilient distributed dataset (RDD). Compared
with state-of-the-art methods that focus on reducing latency, the
proposed framework is able to improve the throughput by at
least an order of magnitude, which makes the approach suitable
for applications that need to compute thousands to millions of
network distances per second.

Keywords—Road networks, network distance computations,
high throughput, Spark, analytical queries.

I. INTRODUCTION

A spatial analytical query on a road network performs
thousands to millions of shortest distance computations in
the process of answering the query. As an example, consider
the heat map in Figure 1 that shows the average commute
distance in kilometers for residents of California. This query
is of immense interest of transportation planners and was
computed using the LEHD data [1] from Census by performing
13,645,807 road network distance computations. Analytical
queries that compute millions of network distances are com-
monplace in logistics, tour planning, and spatial business
intelligence. Existing companies usually use the geodesic
distance (Euclidean distance) instead of the network distance,
which makes their results inaccurate [2]. For instance, a
delivery company that delivers 1000 packages would compute
a distance matrix that captures the distance between every
pair of destination locations to plan the routes. Using the
geodesic distance is easy but only the shortest distance on
the road is optimal. Computing such a distance matrix would
require one million network distance queries. It is worthwhile
to note that Google Distance Matrix [3] offers an API to
compute the distance matrix but limits the service to 25 x 25
matrices (i.e., 625 distance computations) even to their paying
customers. We need a framework to compute tens of millions
of distance computations on a road networks quickly to cater to

This work was supported in part by the NSF under Grants IIS-10- 18475,
IIS-12-19023, and 1IS-13-20791.

Jagan Sankaranarayanan
NEC Labs America
jagan@nec-labs.com

Hanan Samet
University of Maryland
hjs@cs.umd.edu

I >=150KM
B >=120KM
>=100KM
>=90KM
>=80KM
>=70KM
>=65KM
>=60KM
>=56KM
>=52KM
>=48KM
>=44KM
>=40KM
>=36KM
|l >=32KM
Bl >=28KM
. >=24KM
B <24KM

Fig. 1. The geographical heat map for the average drive distance from
people’s living places to their workplaces in the California region: the color
of each pixel in this figure indicates the average drive distance of the people
who live in the region around the pixel. The workload of this query includes
13,645,807 shortest distance computations, and our distributed key-value
method on a Spark cluster with 5 task machines finished this query in 13
seconds. In contrast, the state-of-the-art methods, e.g., CH [4], running on the
same 5 machines in parallel need more than 20 minutes for the same query.

the requirements of delivery companies such as AmazonFresh,
Google Express, UberRush etc., that seek to respond quickly
to the dynamic supply-demand arising in their busines s.

The majority of existing shortest distance methods on road
networks mainly focus on decreasing the latency time for
a single shortest path query. However, reviewing the spatial
analytical queries in the business environment of the above-
mentioned companies in [2], we see that they are less interested
in the latency time of a single shortest path query, and much
more about the time that they spend on computing millions of
pair-wise network distances. For analytical queries, throughput
which corresponds to the average number of distance compu-
tations per second, is a more relevant measure. Our focus is
on throughput rather than latency of individual computation.

In this paper, we develop a distributed framework called
SPDO (pronounced speedo and stands for Spark and Distance
Oracles) using Apache Spark [5] that is optimized for high-
throughput network distance computations. We extend our

previous work on e-Distance Oracle (e-DO) [6], which is
a technique to precompute and store the shortest distances
between all pairs of vertices in a road network. The resulting
representation is in O(Z) space, where n is the number of
vertices in the road network and e is an approximation error
bound on the result. Our previous applications [2] and [7]
showed how the distance oracle representation maps to an
RDBMS system and can solve complex analytical queries
on a road network. Here we develop the mechanisms to
map distance oracles to a distributed key-value store (i.e.,
hash abstraction) which we choose Spark in this paper. The
combination of Spark and distance oracles results in a match
made in heaven. Spark provides a highly scalable fault-tolerant
distributed framework with the ability to cache large datasets
in memory using RDD [5], while distance oracles provide a
compact representation of network distances that requires very
little computation at real-time. Furthermore, Spark is a popular
open-source distributed framework for general purpose, which
is more than a key-value store. We can easily develop further
functions in Spark combing distance oracles and other tech-
niques that are not efficient in a key-value store. In particular,
we use the IndexedRDD library on Spark which is a memory
resident, key-value store. The high-throughput of our proposed
framework is achieved because of the ability to spread query
processing across multiple machines in a Spark cluster as well
as the in-memory representation of distance oracles.

Mapping the distance oracles to a distributed key-value
store is challenging since it requires converting any source-
target distance query (s-t query for short) into a small number
of lookups into the distributed key-value store. It also requires
being able to partition the work between the master and task
machines in Spark. Finally, the network communication can
be a significant bottleneck if the access to the distributed key-
value store storing the distance oracles is not well designed.

The main contributions of this paper are: 1) A high-
throughput architecture using distance oracles and Spark for
a large set of spatial analytical queries; 2) Three variants of
distributed key-value algorithms for our architecture; 3) An
analysis of the time and space complexity of our methods,
and a detailed comparison with state-of-the-art methods for
realistic datasets and applications. We released the SPDO code-
base and associated precomputed distance oracles in GitHub .
SPDO needs just a few lines of code in order to be incorporated
with an existing Spark project that needs to compute large
number of network distances. The use-case shown in Figure 1
makes 13.6 million distance computations in 13 seconds on
5 machines, which roughly works out to more than 200K
distance computations/sec per machine. In contrast, one of the
fastest latency methods took more than 20 minutes for the same
query on 5 machines as well, which is at least two orders of
magnitude slower than our approach.

The rest of this paper is organized as follows. Section II re-
views the related work. Section III introduces our notation and
summarizes our previous work developing e-DO. Section IV
explains the theoretical work about how the distance oracles
can be mapped to a hash structure, and Section V presents
three variants of our distributed key-value algorithms. They
are denoted as Basic, BS, and WP, respectively. Section VI

Thttps://github.com/shangfu/SPDO.git

describes a detailed experimental evaluation of our methods,
and also provides two real applications using our methods.
Concluding remarks are drawn in Section VII.

II. RELATED WORK

The methods for computing shortest distances fall into two
main categories: scan-based methods and lookup-based meth-
ods. Scan-based methods are usually memory-based, which
require many data structures to keep the scan information such
as the graph and priority queues. Lookup-based methods have
precomputed and stored many shortest distances result, and
then just retrieve and merge the distance result for online
queries. In our experience, lookup-based methods are more
likely to be embedded in a distributed framework.

The most famous scan-based method is Dijkstra’s algo-
rithm [8], which is very efficient for single source queries
named one-to-many pattern in [2], e.g., find the nearest K
destinations around a given source. However, for an s-t query,
Dijkstra’s algorithm has to scan many insignificant vertices to
reach the given target location. To address the deficiency of
Dijkstra’s algorithm on road networks for the s-t queries, a
variety of scan-based techniques have been proposed based on
the observation that some vertices in a spatial network are more
important for shortest path queries, while offering different
trade-offs between preprocessing time, storage usage, and
query time. In particular, [9] prunes unimportant vertices using
a bidirectional version of Dijkstra’s algorithm. Contraction
Hierarchies (CH) [4] assigns an importance score to each
node and replaces some original edges by shortcuts. [10]-[14]
build an explicit hierarchy graph to overcome the drawback of
Dijkstra’s algorithm.

The lookup-based methods usually need to store some pre-
computing results. [15]-[18] precompute the shortest distance
between landmarks or hub nodes and other vertices, and then
answer the shortest distance queries by assuming the shortest
path is through one landmark or hub node. HLDB [19] based
on hub labels (HL) [15] is a recent practical method that
embeds the shortest distance computation into an RDBMS.
Road Network Embedding (RNE) [20] applies a Lipschitz
embedding [21] to a spatial networks, such that vertices of the
spatial network become points in a high-dimensional vector
space. [22] take advantage of the fact that the shortest paths
from vertex u to all other vertices can be decomposed into
subsets based on the first edges on the shortest paths from
to them. Spatially Induced Linkage Cognizance (SILC) [23] is
based on the observation mentioned in [22] which decomposes
vertices into multiple quadtree blocks for each vertex u so that
the shortest paths from w to all vertices in a block are reachable
from the same outgoing edge from u. Our previous work [6],
[24] exploit the spatial coherence so that if two clusters of
vertices are sufficiently far away, then distances between pairs
of points in different clusters are similar. The Path-Coherent
Pairs Decomposition (PCPD) [24] gives one exact shortest path
algorithm, while the e-Distane Oracles (e-DO) [6] proposes
an approximate shortest distance algorithm, which balances
between accuracy and storage.

A few of other approaches focus on speeding up spe-
cific analytical queries. Knopp et al. [25] explain how to
use highway hierarchies [13] for computing many-to-many

shortest distances. [20] and [23] show how to speed up the K
nearest neighbor search by their s-t techniques, respectively.
Delling et al. [26] utilize partition-based algorithms developed
for s-t queries to handle POI queries. Cho et al. propose
UNICONS [27] for continuous nearest neighbor queries, and
ALPS [28] for top-k spatial preference search. Our recent
paper [2] proposes an integrated architecture that embed the
distance oracles into an RDBMS, and developed many SQL
solutions for solving a variety of spatial analytical queries.

III. PRELIMINARIES

A. Notation
TABLE 1. THE SUMMARY OF NOTATIONS

Symbol Meaning
n the number of vertices in the graph
N the number of s-t queries
€ the error bound of the e-DO

me() Morton code function
D the maximum depth of the DO-tree
M the number of task machines

We first summarize all the notations that we will use later in
Table I. A road network GG is modelled as a weighted directed
graph denoted by G(V, E, w,p), where V is a set of nodes
or vertices, n = |V|, E C V x V is the set of edges, m =
|E|, and w is a weight function that maps each edge e €
E to a positive real number w(e), e.g., distance or time. A
property of road networks is that “* is typically a small positive
number that is independant of n. In addition, without loss of
generality, each node v has p(v) denoting the spatial position
of v with respect to a spatial domain .S, which is also referred
to as an embedding space (e.g., a reference coordinate system
in terms of latitude and longitude). We define the network
distance dg(u,v) to be the shortest distance from w to v in
the road network, while dg(u,v) to be the geodesic distance.

We use the Morton (Z) order space-filling curve [29]
that provides a mapping, Z> — Z, of a multidimensional
object (e.g., a vertex or a quadtree block) in a 2-dimensional
embedding space to a positive number. Given an object o,
let mc(o) be the mapping function that produces the Morton
representation of o by interleaving the binary representations
of its coordinate values.

Given a spatial domain S, the Morton order of blocks in S
can be obtained by subdividing the space into 2P x 2P equal
sized blocks named unit blocks, where D is a positive integer
named the maximal decomposition depth. Figure 2 shows
Morton codes in the same domain when D is equal to 0, 1,
and 2, respectively. Each unit block ¢ is referenced by a unique
Morton code mc(i). There are two ways to represent Morton
codes, number representation and string representation. As in
Figure 2, since the number representation cannot distinguish
the number 0 at depth 1 from the number O at depth 2. The
completed number representation should be associated with the
corresponding depth information. For instance, (0, depth 2) is
equivalent to “0000”, and (0, depth 1) is equivalent to “00”.
Later, we use the string representation to explain ideas, and use
the number representation in practice since it is more efficient.

A spatial graph G(V, E,w,p) on the domain S can also
be divided into 2P x 20 unit blocks. Given a vertex v in
the unit block 4, the Morton code mc(v) is equal to mc(s).
All vertices located in the same block have the same Morton

5 “o” /4117

Depth 0 % Z 3 “00” /“01”

0 1 10 1]/14 15 String representation
Depth 1 7 atdepth 1
ALV
Depth 2 0 1/4 5 string representation
bottom-left at depth 2

Fig. 2. Example of the number representation and the string representation

of Morton codes in a domain space when D = 0, 1, and 2, respectively.

code. Besides the unit blocks, every larger block b has a unique
Morton code, which is the longest common prefix of all unit
blocks contained in b in the string representation.

B. Review of WSP and e-DO theory

The ¢-DO [6] is based on the notion of spatial coherence,
which can be described intuitively as follows. Consider two
cities A (e.g., Washington, DC) and B (e.g., Boston, MA)
which are really the sets of vertices that are in the cities such
that A and B are far away from each other but the diameters of
A and B (i.e., the maximum distances between two locations
in Washington, DC) are significantly smaller than the distance
between the two cities A and B. If this property holds, then the
network distance between any vertex in A and any vertex in B
will be more or less similar, and hence can be approximated
by a single value. Furthermore, all the shortest paths between
a source in A and a destination in B will likely pass through
a single common vertex.

Formally, e-DO describes a well-separated pair decomposi-
tion (WSPD) [30] of a road network in order to produce well-
separated pairs (WSP), e.g., (4, B) with particular network
distance properties. Two sets of vertices A and B are said to
be well-separated if the minimum distance between any two
vertices in A and B is at least s-r, where s > 0 is a separation
factor and r is the larger diameter of the two sets. The pair
(A, B) is termed a well-separated pair (WSP), which satisfies
the property that for any pair of vertices (z,y), * € A and
y € B, we can find the approximate distance d.(A, B), where
€= %, providing an approximate network distance such that
it satisfies the condition

(1—€) - d(A,B) <do(z,y) < (1+€) - d(4,B) (1)

As a result, e-DO generates O(Z) well-separated pairs,
denoted as (A, B,d.(A,B)). Both A and B are a PR
quadtree block [29] at the same depth. In order to make
a well-separated pair easily embed in a database as a key-
value pair, e-DO use the Morton (Z) order space-filling
curve [29] to map a quadtree block in a 2-dimensional
embedding space to a positive number. Thus, each well-
separated pair (A, B,d.(A, B)) is considered as a key-value
pair (mc(mc(A), me(B)),de(A, B)), where the value is the
distance and the key is mc(mc(A), me(B)).

To retrieval the network distance between a pair of geo-
graphic locations, p; = (laty, Ing;) and ps = (lats, Ing,), the
€-DO requires that the comparison operator COMP(mc,,mcp)
in a database system be redefined, where mc, and mc;, are two

Deptho (0,0)

Depth 1

WSP

(00, 00) (00,10)

Depth2 (0000 oooo)l(oooo ooo1)| I (0011, oo1o)| (0011, 0011)

WspP WspP aee see

i\\

b

Depth D |(sl,t1)||(51,t2)| (sl,t3)| see een (sptiig) (Sntj) (Sotjeq) oot eee

Fig. 3.

16 branche

(11, 10) (11 11)

Stop ifitisa eee eee

NN \\

(Surty1) (Swty) (Sotyrr) *** ---|(s,.. tnfz)“(s,., te 1) |(sn. t,.)|

Example of the DO-tree which represents the distance oracles pre-computation: each node is a 4-dimensional Morton code denoting a pair of 2-

dimensional Morton codes. Each node is decomposed into 16 nodes unless it corresponds to a WSP, i.e., the nodes inside a green rectangle, in which case no
decomposition takes place. The nodes at the maximum depth D are pairs of leaf quadtree blocks that contain a single vertex and they are trivially a WSP.

4-dimensional Morton codes. COMP(mc,,mcp) should yield
equality in the case that mc, is a prefix of mc, or mcy is
a prefix of mc,. Thus, e-DO obtains the network distance
by finding the unique well-separated pair (key, dist), where
COMP(key, mec(me(p1), me(p2))) yields equality. Note that
the uniqueness property which comes here from the property
of WSP [30] guarantees that there is exactly one well-separated
pair containing (p1, p2).

C. Benefits and Problems in a Distributed Key-value Store

In the past several years, many key-value stores appear
such as Berkeley DB [31], HBase [32], Redis [33], etc. In
the distributed environment, a key-value store supports hash
access model well, which is like a HashMap data structure in
Java, so that people can find a given key and its value in O(1)
time complexity. Note that although some key-value stores also
support sorting keys in order, hash access model is better for
parallel processing the workload.

Spark [5] is not a pure key-value store, but a general-
purpose cluster computing framework. IndexedRDD [34] sup-
ports almost all the features of a key-value store for Spark. The
cluster of Spark has one master machine and M task machines.
In contrast to Hadoop’s two-stage disk-based MapReduce
framework, Spark’s in-memory primitives provide performance
up to 100 times faster for certain applications. Recalling that
each well-separated pair is a key-value pair, our scheme for
storing e-DO works seamlessly on any key-value store. Thus,
we can load all well-separated pairs in Spark’s distributed
memory. Even for the e-DO of the USA road network, several
machines with 32 or 64GiB memory are enough. Embedding e-
DO in Spark is the best solution so far for the spatial analytical
queries, which have millions or billions of source-target pairs.

However, if the distributed key-value framework is a hash
access model, we can neither build an ordered index like in
RDBMS nor redefine the comparison operator as in [6]. Thus,
given a batch of s-t pairs, how to efficiently find the unique
well-separated pair for each s-t pair is the core problem in a
distributed key-value framework.

IV. HASH ACCESS FOR DISTANCE ORACLES

In this section, we show how the distance oracle can be
mapped to a hash structure which will be implemented on top
of Spark using RDD. The distance oracle of [6] stores the

Morton codes in sorted order inside a RDBMS by using a
B-tree index structure and redefines the comparator operator.
Each source-target query performs a tree lookup in the B-tree
which takes O(logn) I/O operations. This method is ideal for
disk-based systems that store the distance oracles on disk pages
but we want to develop the necessary theory in order to be able
to map the distance oracle to a hash structure which is memory
resident. This is in contrast with a B-tree which is typically
good for disk-based access.

The construction of a distance oracle creates a tree struc-
ture, referred to as the DO-tree such that its leaves form the
block pairs which make up the distance oracle. Figure 3 shows
the DO-tree, which has several properties that we develop
to build a theortical foundations for our hash data structure.
Recall that the distance oracle is constructed by taking a PR-
quadtree on the spatial positions of the vertices. We start with
a block pair formed by the root of the PR-quadtree. This block
pair forms the root block of the DO-tree. At each step of the
distance oracle construction, we test to see if a block pair
forms a WSP. We do this by checking the ratio of the network
distance between two representative vertices, one drawn from
each of the block pairs, to the network radius of the blocks. If
the block pairs form a WSP by the ratio being greater than %,
then we halt further decomposition. This block pair forms a
leaf block of the DO-tree. If the block pair is not a WSP, then
we decompose the block pair into 16 children block pairs and
continue to test them for the satisfaction of the WSP condition.
The block pairs that do not form a WSP correspond to the
non-leaf blocks in the DO-tree. Due to the nature of how the
DO-tree is constructed, each non-leaf node of the DO-tree has
16 children nodes. Furthermore, the maximum depth D of a
leaf node in the DO-tree is the same as the input PR-quadtree.
A block pair at depth D in the DO-tree correspond to leaf
blocks in the PR-quadtree, each containing a single vertex.
These block pairs trivially form a WSP since we record the
exact network distances for these cases. It can also be noted
that not all the leaf blocks in the DO-tree are at depth D.

We can define the uniqueness property of the DO-tree
which serves as the basis of being able to find a block pair
from a hash structure that we will define later. Uniqueness
means that given any pair of vertices denoting a source s and
a destination ¢, there exists exactly one leaf node in the DO-tree
that contains the source and destination vertices. This property
is due to the original property of the distance oracle that there

is exactly one WSP containing any source and destination pair
as well as the mapping of WSP to leaf blocks in the DO-tree.
We state this as a property below.

Property 4.1: Given a source-target query (s, t), there is
exactly one leaf node that contains both s and ¢, although note
the subtle distinction that there may be several non-leaf nodes
in the DO-tree (e.g., the root of the DO-tree) that contains s
and ¢. This leaf node in the DO-tree is the only node that can
provide the e-approximate network distance between s and .

From Property 4.1, we know that there exists exactly one
leaf block that contains the source and the destination. Finding
it requires generating all possible leaf nodes that can possibly
contain the source and destination starting with the smallest
possible leaf node.

Lemma 4.1: A hash table H; of size O(n/e?) can be
constructed that can retrieve the network distance between any
pair of vertices in O(D) lookups.

Proof: The hash table H; is constructed using only the
leaf nodes of the DO-tree. Since the leaf nodes correspond
to different blocks in the PR-quadtree, they form a unique
four-dimensional Morton code. The hash table uses the four-
dimensional Morton codes as the key and the approximate
network distance as the value. A simple way to find the desired
leaf node using such a hash table is to make (D + 1) lookups.
Given a source s and destination ¢, we start out by making
a a four-dimensional Morton code mc(mc(s), me(t)) at depth
D containing both s and ¢. We test to see if H; contains this
key if so the we can obtain the approximate network distance
of s and ¢. If H; does not contain the key, we check to see
if H; contains the parent of the block pair. We can obtain
the parent by performing a bit-shift operation in O(1) time.
For example, if the initial four-dimensional Morton code is
001100101100, then the parent block is obtained by left bit
shifting 4 times to obtain 00110010. We are guaranteed that
the search process will find a key within D + 1 lookups by
virtue of the satisfaction of Property 4.1.]

The advantage of one property of looking up values in
H; is that the O(D) lookups can be done concurrently as
opposed to doing them sequentially. The reason for it is that
exactly one of the D keys that can be generated from a given
source and destination vertices will be found in the hash table,
since we do not store the non-leaf nodes of the DO-tree in H;.
This property can be useful in designing a lookup function for
querying H;. Although querying H; D + 1 times in parallel
may result in a lesser response time, querying H; in sequence
can result in higher throughput since it results in far fewer
lookups.

We can further improve the performance of the hash
structure by storing both the leaf and the non-leaf nodes in the
hash table, which dramatically reduces the number of lookups
needed. In order to do this, we first show that the number of
non-leaf nodes in the DO-tree is also O(%). From the nature
of distance oracle construction, we know that the total number
of leaf nodes is O(Z) since each leaf node corresponds corre-
sponds to exactly one WSP. To compute the number of non-leaf
nodes, we use a similar approach to that taken in [6], [30]. One
internal node that is not a WSP produces 16 nodes. Since the
number of WSPs is Ny, = O(Z), the number of examined
nodes is: Niot = Nusp + 15 Nwsp + 15 Nuwsp + - = 12 Nusp-

Another way of showing this is pointing out that DO-tree is a
tree with out-degree of 16. The number of non-leaf nodes for
any such tree is the same order of magnitude as the number
of leaves. Hence, the total number of nodes in the DO-tree is
also O(%).

Lemma 4.2: A hash table Hy of size O(n/e*) can be
constructed that can retrieve the network distance between any
pair of vertices in O(log D) lookups.

Proof: The hash table Hy stores both the leaf and non-
leaf nodes of the DO-tree. Our goal is to find the leaf node
containing a source and a destination but to use non-leaf nodes
in order to guide the search process. We find the leaf node by
performing a binary search on the depths of the DO-tree. Given
a source s and a destination ¢, we generate a four-dimensional
Morton code of s and ¢ at depth D /2. If the hash table contains
the key, then one of two options is possible. In particular, the
key corresponds to a non-leaf node in the DO-tree or it could
be a leaf node but we are not sure which is the case unless
we make sure that no other node exists at a deeper depth.
To ensure this, we generate another Morton code at a depth
between (D/2, D]. We continue doing this till we find a case
where a node exists but we cannot find any children block in
H,. Since this process is a binary search on the depths of the
DO-tree, the number of lookups is O(log D). [|

It is important to note that in contrast to H; which
could support concurrent lookups, the hash table Hy can only
perform sequential lookups. The reason for this is that finding
or not finding nodes in the hash table informs how the search
would proceed in the next step. However, Hy can result in far
fewer lookups compared to H; since the number of lookups
has been reduced to O(log D) from O(D). Note that in almost
all cases D is bounded by O(logn) [6], which means that
H; provides O(logn) access while Hy provides O(loglogn)
access to the distance oracle.

V. IMPLEMENTATION IN SPARK

We first describe the setup of the Spark processing frame-
work at a conceptual level before describing the different ways
in which we implemented the distance oracles. The Spark
computing cluster consists of a single master machine and M
task machines. Our goal in this paper is to evaluate a large
number of network distance queries which are posed as a large
set containing N source-target pairs. This workload can be
generated by an analytical query such as in Figure 1 but for the
sake of exposition, for our setup here the workload is available
as a CSV file of source and destination locations stored in
HDEFS. The distance oracle for a large road network has also
been precomputed and is stored on the HDFS. Associated with
each task machine is an in-memory high performance key-
value store abstraction called IndexedRDD [34], which caches
part of the distance oracle in its memory. The keys in our
case are the four dimensional Morton codes corresponding to
the node in the DO-tree and the value is the corresponding
approximate network distance. Spark uses an arbitrary hash
partitioning method to distribute the nodes of the DO-tree
uniformly across all M task machines. IndexedRDD is imple-
mented by hash-partitioning the entries by key and maintaining
a radix tree index called PART within each partition. It has
been shown that PART [35] achieves good throughput and

Source-Target Query Workload

Generate

(a) (b) . (c)

v \ more keys $
Generate izl Generate Result CEnaEE Result
(N x D) keys | |Cflector Nkeys |ogp Collector N keys Collector

Hash / T’Y It arations/ T’\\ J, Master

as ;

Gather Hash Wise Machi

Partltlonlng Gather Gather achine

/ Scatter

2?

Partltlonlng
/ Scatter M

(KL X NN XN]
In-memory

Partitioning
Scatter &M\N
etwork

Communication
T

Task
Machines

Fig. 4. The three implementations of our methods, namely (a) Basic, (b) Binary Search and (c) Wise Partitioning methods, on top of Apache Spark

space efficiency that is on par with a mutable hash table.
Hence, for all practical purposes any lookup operation into
the IndexedRDD can be considered as having O(1) time
complexity.

Algorithm 1: MASTER Program in Spark

1 DO < load distance oracle from HDFS as an RDD
and specify partitioner;

2 hash < IndexedRDD(DQ).cache();

3 @ < List of source-target pairs;

4 result < GETDIST (hash, Q);

A Spark program consists of a master and a task programs.
Algorithm 1 provides an abstraction of the master program,
while the workload in the task program of each task machine
is the key search in its corresponding IndexedRDD, where the
keys are assigned by the master machine. In the remaining
section, we discuss three variants of Algorithm 1 that only
vary from GETDIST().

A. Basic Method

Algorithm 2: GETDIST(hash, Q) for Basic

Data: hash: IndexedRDD;): Batch of s-t queries.
Result: Result: Network distances for each s-t in @

1 codes < compute D Morton codes for each pair in Q;

2 result < hash.multiget(codes); /* runs in
task program =/

3 return result;

The simplest way to implement a distributed hash table
H; is to expand each of the N source-target pairs into their D
four-dimensional Morton keys. This relies on the concurrent
aspect of H; which ensures that all the D accesses can be
made concurrently but only one of the keys will find a key
in the hash table. The master machine reads N source-target
pairs from HDFS, forms (N x D) keys, and assigns the keys
to M task machines through a hash partitioning method. Note
that the hash partitioning method is the same as the one to

distribute the nodes of the DO-tree uniformly across all M task
machines. Next, each task program checks if the assigned sets
exist in its local hash map (i.e., IndexedRDD). Next, it reports
the keys that it found along with their corresponding values
(i.e., approximate network distances) to the master. Finally,
the master collects the results from the M task machines, and
returns to the user. There is really no need to check if the
master obtained two distance values for a source-distance pair
or if it missed finding one since Property 4.1 of H; ensures
that they cannot occur.

Figure 4(a) illustrates the flow plan of the Basic method
in Spark with one master machine and M task machines.
In particular, after the precomputation of ¢-DO, we have
O(Z) WSPs. In the set-up stage, we define an arbitrary Hash
Fartitioner in Spark, denoted as HP, to randomly partition
the WSPs into M task machines. Each task machine loads
the corresponding WSP set into its memory, and then builds
a local HashMap for the WSP set using IndexedRDD. In the
query stage, when the master machine receives [V source-target
pairs, it forms (N x D) keys and scatters the keys through the
HP.

B. Binary Search Method

The binary search (BS) method is an implementation of Hy
which can retrieve a shortest network distance using O(logD)
operations as shown in Algorithm 3 and Figure 4(b). The task
program in BS is exactly the same as it is in the Basic method,
except that the HashMap (i,e. the IndexedRDD) contains both
the leaf and non-lead nodes in the OD-tree. When the master
program receives the N source-target pairs as inputs it first
generates the Morton codes corresponding to depth D. These
N Morton codes are provided to the M task programs by
the hash partitioning method that checks for their existence.
If a key is found in the hash table, then the search process is
done since any node found in the hash table at depth D in
the DO-tree is a leaf node. The value of the key found is the
approximate network distance.

If a key is not found at depth D, then a Morton code
corresponding to depth % is generated for the source-target

Algorithm 3: GETDisT(hash, Q) in MASTER for BS

Data: hash: IndexedRDD; @Q: Batch of s-t queries; D:
the max depth of DO-tree

Result: Result: Network distances for)

1 for i < 0 to Q.length do

2 minDJi] < 0;

3 minD][i] + D;

4 codeli] < compute Morton Code at depth D;

5 for j < 0 to log D do
6 result <— hash.multiget(code);
7 for i < 0 to Q.length do

8 Update minD[i] or maxzD]i] based on
result[i]; /* Binary Search =/
9 codeli] + compute Morton Code at depth
mvnD[l]—;maTD[v]

s

10 return result;

pair. If the task program finds the key in the hash table, then
it returns the success of finding and the value of the key.
The master program in turn issues a new query with a key
corresponding to Morton code at depth %. In general, the
new depth is the middle value of the depths that we tried in
the previous two iterations such that one search resulted in a
success and the other in a failure. The search continues until
it finds a depth d that is present in the hash table and a depth
d+1 that is not present. This process can continue log D times
since we are performing a binary search on the D depths of
the OD-tree.

C. Wise Partitioning Method

Algorithm 4: GETDisT(hash, Q) for WP

Data: hash: IndexedRDD; @: Batch of s-t queries;
d, D: min, max depths of DO-tree in hash
Result: Result: Network distances for)
1 code < compute the Morton code for each s-t pair at
depth D;
2 result < hash.logSearch(code,d,D); /* Binary
search happens at each task machine */
3 return result;

Both the Basic and the BS methods have a common
problem which is that the workload of the master machine is
much higher than that of the task machines. In the BS method,
each task machine receives % keys at each iteration but the
master needs to collect N keys and issue further queries.
Since each task machine simply looks up a local hash map,
their computational workload is much smaller than that of the
master machine. In the case of the Basic method, the master
machine needs to generate D - N keys and process N results,
while each of the task machines simply processes % of the
workload.

To make the workload more balanced (i.e., to increase the
workload of the task machines), we replace the default hash
partitioner HP with a partitioning method that we developed
which we term the wise partitioner (WP). The wise partitioner
improves up on the BS method by moving the log D iterations
into the tasks as shown in Figure 4(c). In particular, in the

BS method, the default hash partitioner HP randomly (and
uniformly) scatters the queries among the M tasks during
the task setup stage. The HP function is meant to uniformly
distribute the keys among the M task machines and in that
sense it does not preserve any locality in the data. Because of
this, considering one s-t pair, the D keys in the Basic method
and the log D keys in the BS method would likely be present
on different task machines. This is also the reason that the
master machine takes on a heavy workload in the Basic and
BS methods. Recall, that it needs to coordinate the search
among multiple task machines, collect results from all the task
machines, and even generate new keys to try out in the case
of the BS method.

To move all of the log D iterations into the task machines,
each task machine needs to ensure that all of the D keys for
a given s-t query must be contained in its local HashMap or
none of it should be present in the local hash map. The wise
partitioner algorithm achieves the partitioning of O(Z) WSPs
into M task machines such that all of the D keys for each s-t
query are hashed to the same task machine.

The WP takes advantage of the presence of the non-
leaf nodes in the DO-tree which help find the leaf nodes
corresponding to WSP nodes. WP is constructed as follows.
First, truncate the DO-tree at a depth d so that we obtain a
forest of subtrees. d is chosen so that there are no leaf nodes
at a depth less than d. All the non-leaf nodes that are at a
depth less than d are discarded. We require that the number
of subtrees in the forest is greater than M and typically it is
much greater than M because larger blocks at lower depths
tend not to form a WSP with other larger blocks. If the value
of d results in fewer subtrees than M, then we simply choose
a larger value of d but subdivide those leaf blocks further
until they reach a depth of d. Although choosing a value of
d appears to be a trial and error process, the key idea here
is to make sure that we decompose the DO-tree into at least
M subtrees. We found this not to be a problem for any road
network dataset that we used in our experiments.

Once the DO-tree has been decomposed into subtrees, we
assign an entire subtree to the same task machine while the
subtrees themselves are assigned using HP. Each subtree is
stored in a local hash map and the BS method now finds the
leaf nodes and its ancestors in the same task machine. Task
machines perform a binary search as before except that the
depth ranges from [d, D] instead of [0, D]. The task machine
checks to see if there is a key for a source-target pair at depth
D. If it is not found, then it checks at depth % and so
on, until log(D — d + 1) iterations have been performed. At
this point, the distance value is communicated to the master
machine.

D. Analysis of Methods

Table II contains the summary of our analysis of the time
and space complexity of the three variants of GETDIST used
in the master program. However, there are couple of important
considerations we need to keep in mind before embarking
on our analysis. First, in distributed memory environments,
network communication is a significant bottleneck greatly
exceeding the CPU and IO since most of the dataset is
memory resident. Second, Spark retains data in memory across

TABLE II.

ANALYSIS ON THE THREE DISTRIBUTED WORK FLOWS

Design | Iterations Master Each Task Machine Network Communication
Basi 1 Time | O(N - D) Time el E=2)) Send | O(N - D)
asic Space O(N - D) Space O(ML’) + O(2M) Receive O(N)
BS log D Time | O(N -log D) Time O(Fer) Send | O(N -log D)
o8 Space | O(N) Space | O(47) + O(=) Receive | O(N -log D)
4 [_Time | O(IED)
wp . Time | O(N) Random Case | —gpice T O(Z) + O() Send | O(N)
Space | O(N Time O(N -Tog D) Receive O(N
Worse Case Space [ON) T O(62,34
iterations so multiple iterations in the case of BS are not much VI. EVALUATION

of a bottleneck.

When it comes to the amount of work performed by the
master machine, it is clear that WP outperforms BS, but both
of these methods are significantly better than Basic. In terms
of space complexity, WS and BS are identical and both are
better than Basic. From the perspective of the task machines,
since both BS and WS implement Hj, they take up a bit more
space than Basic which implements H;. Assuming that all IV
queries are uniformly distributed in space, each task machine
is expected to obtain the same number of keys during the query
stage. Thus, Basic needs additional O() space for queries,
and both BS and WP need additional O(M) space. Since the
lookup time for a HashMap is O(1), the relationship between
the time complexity of each task machine is WP= BS < Basic.
As we see, in terms of big O, the time complexity of BS and
WP in the task machines is the same. However, BS invokes
the task machines log D times, while each task machine in WP
makes log D iterations. This makes WP much more efficient
than BS as there is a significant decrease in the network
communication cost. Note that during network communication,
the sending cost for the master machine dominates the cost.
Note also that the Basic, BS, and WP methods need to
send O(N - D), O(N -log D), and O(N) keys respectively.
Therefore, so far, it seems that WP is better than BS, and that
BS is better than Basic in general. However, some analytical
queries may be very local in nature as they query a large
number of proximate source-target pairs. For example, suppose
that Spark has loaded the distance oracle of the entire USA
road network in memory, and a user wants to know the distance
matrix between the hospitals in San Francisco and the locations
of their patients. In this case, it could be that all N queries are
in the same subtree of the DO-tree, which means that they will
be assigned to the same partition by WP. The result is that the
time complexity of the working task in WP is O(N -log D) and
its extra space is O(NN) for queries. This is the worst case of
WP, while both Basic and BS keg) the same time complexity,
which are O(&2) and O(N log), respectively.

The bottleneck of both Basic and BS is network communi-
cation, where the total time complexity of Basic is O(N - D),
and the total time complexity of BS is O(NV - log D). WP is
better than BS only when the N s-t queries can be assigned
to the task machines so that they each have approximately
the same number of s-t queries, in which case the total time
complexity of WP is maz(O(N), O(X IffD)). If the N s-
t queries are assigned to the same task machine or to just
a few task machines, then the task machines may become
the bottleneck. In addition, since in real applications, the
master machine is usually much more powerful than the task
machines, BS is a better choice in general.

In this section, we present a detailed evaluation of our
distributed key-value solutions in comparison with the CH
method [4] which is a state-of-the-art algorithm for finding
a single shortest path in a road network, the distance oracle
implementation from [6], and an efficient implementation of
Dijkstra’s algorithm. The comparisons are detailed in in Sec-
tion VI-B. We evaluate our experimental results on a variety
of datasets including a dataset corresponding to the entire
USA road network and provide the details in Section VI-B.
Our comparisons use four workloads: a batch of s-t pairs in
Section VI-C, distance matrix queries in Section VI-D, route
directness spectrum in Section VI-E and job accessibility map
in Section VI-F. We provide both a local and a distributed
implementation of the methods, where in the local mode we
use a single machine to study relative performance without
network communication, and in the distributed mode we use
a cluster with large number of task machines.

A. Comparison Methods

We compare the performance of three implementations of
our distributed key-value method on the Spark framework. In
particular, we compared the Basic method discussed in V-A,
the binary search method (BS) in V-B, and the wise partition-
ing method (WP) discussed in V-C.

DO. We compare against the distance oracle DO method
of [6] as it is representative of methods that can perform
network distance computations inside a database. In this case,
we load DO as a relational table in PostgreSQL and index it
using a B-tree. In the local mode, we use a single instance of
PostgreSQL, while in the distributed mode each machine in
the cluster runs an identical copy of the DO. Load balancing
is achieved using a Java middleware program in the master
machine that evenly distributes the query workload to the task
machines and later combines the result.

CH. We use the CH method proposed in [4] for comparison
as a representative of methods that optimize the execution of
single source shortest paths. Note that CH optimizes latency
which is the result of computing a single s-t query as quickly
as possible, while our approach optimizes throughput. In the
local mode, the query is processed using a local CH server
implemented in C++, while in the distributed mode, a Java
middleware program in the master machine distributes the
query workload among the CH programs running on each task
machine and later combines the results.

Dijkstra. We compare our method with a high performance
implementation of Dijkstra’s algorithm [8] from [2], denoted as
Dijkstra later, since it is a representative of traditional shortest
path methods. As in the DO and CH cases, we use a Java

middleware to distribute the workload when comparing the
performance of algorithms for the distributed mode.

In the case of DO, PostgreSQL is process-based (not
threaded) in the sense that each database session is a single
system process. In other words, a database connection cannot
utilize more than one CPU [36]. To make the comparisons fair,
we restrict all the methods (i.e., our Spark-based methods, the
CH method, and the Dijkstra method) to utilize just one CPU
in each machine.

B. Datasets and Cluster Setup

TABLE III. DATASET CHARACTERISTICS
Name NYC Bay US
Region NYC Bay Area USA
of Nodes 264,346 758,104 23,947,347
of Arcs 733,846 1,663,662 | 58,333,344
Maximum Depth (0.1m) 20 21 25
Practical Depth D (100m) 10 11 15
of WSPs with e = 0.25 55M 278M 4.6B

Table III provides the characteristics of the road net-
work datasets used in our evaluation. The NYC and US
road networks are from the 9" DIMACS Implementation
Challenge [37], and the Bay road network is from Open-
StreetMap [38] extracted using the TAREEG [39] tool. The
distance oracles that we used in our experiments provide a
resolution of 100 meters, which means that the maximum
depths D of the DO-tree for the NY, Bay, and US datasets
are 10, 11, and 15, respectively. This means that if the source
and the destination are closer than 100 meters, then we simply
return the geodesic distance between them. We did not take the
query time for such queries into consideration in our evalua-
tion. For the rest of the queries where sources and destinations
are farther than 100 meters, the DO is guaranteed to provide
the e-approximate network distance. The length of the Morton
code for a leaf node of a DO-tree is (4 - D). Therefore, we
need at most 40, 44, and 60 bits to represent individual WSP
for the NYC, Bay, and US datasets, respectively.

Besides the road network, we use three location datasets
in our evaluation. The Restaurant dataset consisting of the
locations of 49,573 fast food restaurants in the entire USA
was obtained from [40]. We use the LEHD dataset [1] from the
US Census Bureau which provides detailed origin-destination
employment statistics as pairs of census blocks. Each census
block pair has the count of how many people live in one census
block and commute to another census block for work. We
use two datasets from LEHD, one for the state of New York,
called NY-JOB consisting of 6,834,157 location pairs and
another for the state of California called CA-JOB consisting
of 13,645,807 location pairs. The local mode experiments on
a single machine ran on an Intel Xeon(R) E3-1225 v3 CPUs
@ 3.2GHz (4 cores) with 16 GB RAM. The distributed mode
experiments ran on a cluster with one master machine and
25 task machines. Each machine consists of 2 x 6-core Intel
Xeon E5-2620 v3 CPUs with 64GB RAM and 10GbE ethernet
network. Our implementations use Spark 1.3.0, while for the
DO method, each task machine has PostgreSQL 9.3.5 installed.

C. Source-Target Pairs Workload

In this section, we generate a large workload of sources
and targets on the road network by uniformly sampling the

104 | Basic
2z 10° | e = \
] Z
S 10t DO mm . §g §g
§ 101 L CH ? §¢ &?
;, 100 L Dijkstra é §? %g
) Z NI
E 10 % 7 V N
£ 107 N BN
10 2 7 N
10° / : .

100 10K LY M

Number of distance computations

Fig. 5. The execution time in local mode in NYC: the number of s-t pairs are
100, 10 thousand, 1 million, and 9 million, respectively. Note that the y-axis
is logarithmic scale. It shows that our BS and WP methods are significant
faster than other methods.

location pairs from NY-JOB restricted to New York City.
Such a workload measures the throughput of our and other
comparative methods on a workload where there may not
be significant commonality across different queries Later in
Section VI-D, we compare these methods on another workload
where we compute the network distances from one source to
multiple targets with the goal of taking advantage of location
commonality.

Since our Spark-based method is a solution that can run on
multiple task machines, we want to understand the bottleneck
due to the network computation. In order to study this effect,
we must first study the performance of our method on a single
machine in Section VI-C1 since this represents the case when
there is no network communication. Later in Section VI-C2,
we show experimental results on a cluster of task machines.
We will vary the number of task machines to study its effect
on the performance of our Spark-based methods.

1) Local Mode: In the local mode, all experiments are
performed on a single machine, so that there are no network
communication issues. For this set of experiments, we use the
NYC dataset and the s-t queries sampled from NY-JOB. We
use the smaller NYC dataset since all the WSPs for our Spark
method must fit in memory, which would not be possible using
a much larger dataset such as the US dataset.

Figure 5 shows the execution time of our Spark-based
methods and other competing methods for varying the number
of s-t queries. In particular, we vary the size of our workload
from 100 to 9 million network distance queries. The result
in Figure 5 shows that the both the BS and WP methods are
better than Basic method, and WP is slightly better than BS
since it pushes the logD searches into the task machines. In
terms of throughput in the local mode, BS and WP achieves a
throughput as high as 1.125 million and 1.363 million distance
computations/second in NYC, respectively. One reason for the
similar performance of BS and WP is that without the network
communication costs, there is very little difference between a
binary search performed at the master program or at the task
program.

Not surprisingly, Dijkstra’s algorithm performed the worst
since it needs to invoke a best-first scans [2] for each query
in the workload, which can be expensive. Both DO and CH
are better than our methods for the workload of size 100,
because our methods have the fixed overhead of job setup
and scheduling in Spark, which is the dominating cost for
the small query workload. Both WP and BS are significantly

Basic-100 3 0.4 Basic-10K =
2 o2l BS-100 &8 > BS-10K &z
k] ’ WS-100 & T 03} WS-10K EEE
S 0.5 3
2 2
5 o 2
£ =
£ 005 s
0
0 3 10 20 0 3 10 20
Number of Task Machines Number of Task Machines
(a) 100 distance computations (b) 10K distance computations
Fig. 6.

Basic-1M 40 Basic-9M
> > BS-9M =23
] = WS-9M =
g £ 30
Q Q
Q Q
Zz < 20
g g
E g 10

0
0 3 10 20 0 3 10 20

Number of Task Machines
(c) 1M distance computations

Number of Task Machines
(d) 9M distance computations

Execution times of computing a batch of s-t queries in New York City using the Spark cluster when varying the number of task machines. The case

of 0 task machines corresponds to local mode. As the y-axis is linear scale and the performance of BS and WP is similar as increasing the number of task
machines, we see that the bottleneck of our BS and WP methods is the master machine.

better than competing methods (orders of magnitude for larger
query workload for 1M and 9M cases) as the size of the
workload increases. Even the Basic method outperforms all
the competing methods for the query workload larger than 100
s-t pairs. These results show that for a single machine and a
small road network dataset, our methods are significantly better
than all the other competing ones in the absence of network
communication issues.

2) Distributed Mode: In this section, we study the effect
of adding more task machines on the performance of our
Spark-based methods. We first show in Figure 6 how the
number of task machines influences the time performance of
our methods. The query workload here is exactly the same
as one in the local mode in the previous section. The case
of 0 task machines corresponds to local mode. In this figure,
BS is only slower than Basic when the number of distance
computations in the workload is very small (e.g., 100 and a pair
of instances of 10K). This means that the Basic algorithm’s
strategy of generating D keys per query still does not blow up
the space for such smaller datasets. However, as the datasets
get larger than 10K, this turns out to be a bad strategy
since BS is far superior to Basic for the remaining cases.
Comparing BS and WP in Figure 6, we see that both have
very similar performance with WP being always better than
BS. The improvements that we see here are due to the decrease
in communication costs between the task machines and the
master as well as the reduced load on the master.

Another key observation is that increasing the number of
task machines does not necessarily result in better perfor-
mance. This is especially true for BS and WS. It is consistent
with our analysis in Section V-D, which indicates that the bot-
tleneck of BS and WP is the master machine. We recommend
that the number of task machines in a Spark cluster be set
so that the total size of the distance oracles fits in the total
distributed-memory of the Spark cluster. Therefore, 1-3, 1-5,
and 20-25 task machines be utilized in a Spark cluster for the
NYC, Bay, and US datasets, respectively. In order to process
more distance computations with a Spark cluster consisting
of M task machines, people can also build % sub-clusters,
where each sub-cluster can now load the distance oracles of
the entire US dataset.

TABLE IV. THROUGHPUT OF THE 6 METHODS FOR THE US DATASET
RUNNING ON 20 TASK MACHINES
[Method [Basic [BS | WP | DO [CH [Dijkstra |
| dist/sec/machine | 5.0K | 25.0K | 73.8K | 18.8K [385 | 1.6 |

We now analyze the performance of our methods and

competing approaches in terms of throughput. Table IV sum-
marizes the throughput of the 6 methods running on a cluster of
20 machines for the random s-t queries for the US dataset. WP
is the best one, which achieves a throughput as high as 74K
distance computations/second per machine, which is nearly 4 x
better than the DO approach. Note that the total throughput
of WP in the cluster is 1.47 million distance computations
per second. The throughputs of Basic and BS methods are
much lower than the one of WP due to that the network
communication of the master machine is the bottleneck. CH
and Dijkstra methods have lower throughputs since computing
the network distance using CH and Dijkstra is much slower
especially if the source and target are far from each other.

D. Distance Matrix Workload

The distance matrix query is the simplest form of an
analytical query that takes a set of m locations on a road
network and computes the network distance between every
pair of locations. In other words, it computes an n X n matrix
as the output which requires computing n? network distances.
Typically, these distance matrices find use in logistics queries
where the network distances between all pairs of objects (e.g.,
locations of packages to be delivered) on a road network are
computed which in turn forms the input to complex opti-
mization problems. In the following experiments, we use the
distance matrix construction query to evaluate the performance
of various methods.

103 5 Basi‘c

— N7
> BS =4 7]
e 102 ¢ wP N
15) DO mmm _
§ 10! | CH
\; Dijkstra
£ 10°
=

10

100 10K 1M 9M

Size of the Distance Matrix

Fig. 7. Distance matrix computation queries for various methods on US
dataset with 20 task machines

Figure 7 corresponds to the distance matrix query using the
road network of the US for randomly chosen 10, 100, 1000
and 3000 locations from the Restaurants. dataset and compute
a distance matrix for these inputs. For this experiment, we
use the USA road network dataset and 20 task machines.

For Dijkstra’s algorithm, our implementation automatically
optimizes any n xn distance matrix queries into n one-to-many
best-first scans. The details of this optimization are provided
in [2].

The BS and WP methods are clearly superior to every
other method, DO included, whenever the size of the matrix
becomes 1000 x 1000 or larger. In the 3000 x 3000 distance
matrix, WP achieved a total throughput of nearly 1.5 million
distance computations per second for the 20 node cluster or
close to 75K distance computations/second per machine. For
smaller queries, we found that the cost of setting up the query
dominates the computation times for the Spark methods.

We use the above experiment to shed light on another
performance tuning aspect of the Basic, BS and WS methods.
The distance oracles of the USA road network take up about
330GB so each task machine needs much memory to maintain
a local hash map, i,e, IndexedRDD. In this environment that
consumes so much memory, we found that the number of
partitions of the distance oracles in the task machines also
influences the performance of Spark. For example, in the
above experiment, the distance oracle of the US is partitioned
into 5000 parts by IndexedRDD. Decreasing the number of
partitions of the distance oracle, e.g., 1000, results in a lower
time cost in the best case, but worse fault tolerance, which
means Spark is more frequent to rerun some sub-tasks of a
job because of failure.

E. Route Directness Spectrum

gﬁ 50 . Né?/*
s 00 i p—
é 30

& 20/A

5 10t/ |

o

) e

~ 0

1.0 1.5 2.0 2.5 3.0
Route Directness Index

Fig. 8. The route directness spectrum (RDS) of New York City (NYC),
the Bay Area (Bay), and Salt Lake City (SLC). In contrast, the maximum
route directness index, which corresponds the maximum ratio between network
distance and geodesic distance, is 10.6 in NYC, 30.4 in Bay, and 26.3 in SLC,
respectively.

A query that is of immense interest to transportation
planners is a measure called route directness index [41], which
requires making billions of distance computations. The route
directness index of any two locations in the road network is
the ratio between the shortest network distance to the geodesic
distance. The route directness spectrum is a distribution of
the route directness index as a proportion of the total shortest
paths in the road network. Figure 8 shows the Route Directness
Spectrum of the NYC, Bay Area, and Salt Lake City (SLC)
road networks, respectively, and from which it is easy to see
that NYC has a higher road network connectivity than the Bay
Area or SLC since its road directness spectrum is skewed more
towards one (i.e., a larger proportion of the location pairs have
a route directness index close to one).

One way of computing the route directness spectrum of
a road network is to impose a grid on the road network.
We compute the ratio of the network distance between the
centroids of two grid cells to its geodesic distance and weight
it by the product of the number of vertices in each grid cell.
We use the results to approximate their route directness indexes
since Narasimhan et al. [42] proved that the route directness
index of a WSP provides a bound of the the route directness
index between any pair of vertices that in the WSP. Figure 8
was produced by bucketing and counting up all values of
the route directness index located in [z,z + 0.1), where z
is a point on the z-axis. For each bucket, we compute the
percentage of each group as a percentage of the total number
of shortest paths. Note that the route directness index must be
larger than 1.0 since geodesic distance is always less than or
equal to the network distance. As the values of the maximum
route directness index that we found were 10.6 30.4, and
26.3 for NYC, Bay, and SLC, respectively, solely using the
maximum route directness index is not a good way to measure
the connectivity of a road network.

It is important to note that using our distributed key-value
methods, the computing the route directness spectrum for a
moderate-sized region such as NYC can be completed within
1 minute, while other methods complete it in a reasonable time
(e.g., more than 4 hours using CH, since there is a very large
number of distance computations to be performed).

FE. Job Accessibility

11K

-

(a) Using the WP metﬁod T (b) Using the CH method .

Fig. 9. The average drive distance from home to workplace in the Bay Area
region, which contains 2.1 million source-target pairs from CA-JOB: (a) results
computed by WP with 3 task machines in 2 seconds; (b) results computed
by CH with 3 task machines in 5 mins. The results in (a) are almost the
same as (b). Although the distance values yielded by the distance oracles are
e-approximate, with e = 0.25, they are definitely sufficient for such analytical
queries.

An important application that performs millions of network
distance computations is the analysis of how far people travel
to work. The State Smart Transportation Initiative (SSTI [43])
pointed out that measures of accessibility can reveal if a
transportation system meets peoples needs [43], not to mention
revealing the economic vibrancy of a census block. The dataset
that is used for such an analysis is the LEHD dataset [1]
from the US census which first subdivides the map into
census blocks and for each block pair tabulates the number
of people that commute from one block (where they live)
to another block (where they work). A natural query is one

that seeks for each census block the average distance travelled
to work by each of its inhabitants. Such a query requires
computing millions of shortest path queries. For instance, CA-
JOB has more than 13 million such census block pairs and a
visualization of such a query using this dataset was shown in
Figure 1. Our WP method generated Figure 1 in 13 seconds
using 5 task machines, while using the same number of task
machines CH needs 20 minutes. Figure 9 shows the result for
a small section of California, i.e., San Francisco Bay Area.
Figures 9(a) and 9(b) show the results of using the WP and
CH methods, respectively.

VII. CONCLUDING REMARKS

We presented SPDO, a framework for computing road
network distances using Apache Spark and e-approximate
distance oracles. We presented three algorithms for mapping
a distance oracle into a distributed hash structure, which we
implemented using Spark’s RDD abstraction. Our methods
produced at least an order of magnitude higher throughput
compared to existing methods that are optimized for latency,
and up to 1.5 million distance computations per second in both
NYC and US road networks. Using our framework, one can
compute millions of distance computations on a road network
using just a few machines. We also showed how SPDO can
significantly speed up complex spatial analytical queries and
discussed two complex use-cases, namely the route directness
spectrum and job accessibility.

REFERENCES
[1] LODES. http://lehd.ces.census.gov/data/.

[2] S. Peng and H. Samet, “Analytical queries on road networks: An
experimental evaluation of two system architectures,” in ACM GIS,
Seattle, WA, Nov 2015.

[3] Google Maps API. https://developers.google.com/maps/.

[4] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,”
in WEA, Cape Cod, MA, May 2008, pp. 319-333.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in HotCloud, Boston,
MA, Jun 2010.

[6] J. Sankaranarayanan and H. Samet, “Distance oracles for spatial net-
works,” in ICDE, Shanghai, China, Apr 2009, pp. 652-663.

[71 ——, “Query processing using distance oracles for spatial networks,”
TKDE, vol. 22, no. 8, pp. 1158-1175, Aug 2010.

[8] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[91 A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for A*: Efficient
point-to-point shortest path algorithms,” in ALENEX, Miami, FL, Jan
2006, pp. 129-143.

[10] 1. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Hierar-
chical hub labelings for shortest paths,” in ESA, Ljubljana, Slovenia,
Sep 2012, pp. 24-35.

[11] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, “In transit
to constant time shortest-path queries in road networks,” in ALENEX,
New Orleans, LA, Jan 2007, pp. 46-59.

[12] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, “Customizable
route planning,” in SEA, Kolimpari Chania, Greece, May 2011, pp. 376—
387.

[13] P. Sanders and D. Schultes, “Engineering highway hierarchies,” in ESA,
Zurich, Switzerland, Sep 2006, pp. 804-816.

[14] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou, “Shortest
path and distance queries on road networks: Towards bridging theory
and practice,” in SIGMOD, New York, Jun 2013, pp. 857-868.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]

[42]

[43]

I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “A hub-
based labeling algorithm for shortest paths in road networks,” in SEA,
Kolimpari Chania, Greece, May 2011, pp. 230-241.

L. Chang, J. X. Yu, L. Qin, H. Cheng, and M. Qiao, “The exact distance
to destination in undirected world,” VLDB J., vol. 21, no. 6, pp. 869—
888, Dec 2012.

M. Qiao, H. Cheng, L. Chang, and J. X. Yu, “Approximate shortest dis-
tance computing: A query-dependent local landmark scheme,” TKDE,
vol. 26, no. 1, pp. 55-68, Jan 2014.

S. Ma, K. Feng, H. Wang, J. Li, and J. Huai, “Distance landmarks
revisited for road graphs,” CoRR, vol. abs/1401.2690, Jan 2014.

1. Abraham, D. Delling, A. Fiat, A. Goldberg, and R. Werneck, “HLDB:
Location-based services in databases,” in ACM GIS, Redondo Beach,
CA, Nov 2012, pp. 339-348.

C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh, “A road network
embedding technique for k-nearest neighbor search in moving object
databases,” Geolnformatica, vol. 7, no. 3, pp. 255-273, Sep 2003.

N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs
and some of its algorithmic applications,” Combinatorica, vol. 15, pp.
215-245, Jun 1995.

D. Wagner and T. Willhalm, “Geometric speed-up techniques for finding
shortest paths in large sparse graphs,” in ESA, Budapest, Hungary, Sep
2003, pp. 776-787.

H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable network dis-
tance browsing in spatial databases,” in SIGMOD, Vancouver, Canada,
Jun 2008, pp. 43-54.

J. Sankaranarayanan, H. Samet, and H. Alborzi, “Path oracles for spatial
networks,” PVLDB, vol. 2, no. 1, pp. 1210-1221, Aug 2009.

S. Knopp, P. Sanders, D. Schultes, F. Schulz, and D. Wagner, “Com-
puting many-to-many shortest paths using highway hierarchies,” in
ALENEX, New Orleans, LA, Jan 2007.

D. Delling and R. F. Werneck, “Customizable point-of-interest queries
in road networks,” TKDE, vol. 27, no. 3, pp. 686—-698, Mar 2015.

H. Cho and C. Chung, “An efficient and scalable approach to CNN
queries in a road network,” in PVLDB, Trondheim, Norway, Aug 2005,
pp. 865-876.

H. Cho, S. J. Kwon, and T. Chung, “ALPS: an efficient algorithm for
top-k spatial preference search in road networks,” KAIS, vol. 42, no. 3,
pp. 599-631, Mar 2015.

H. Samet, Foundations of Multidimensional and Metric Data Structures.
San Francisco, CA: Morgan-Kaufmann, 2006.

P. B. Callahan, “Dealing with higher dimensions: The well-separated
pair decomposition and its applications,” Ph.D. dissertation, The Johns
Hopkins University, Baltimore, MD, Sep 1995.

M. A. Olson, K. Bostic, and M. I. Seltzer, “Berkeley DB,” in USENIX,
Monterey, CA, Jun. 1999, pp. 183-191.

D. Carstoiu, E. Lepadatu, and M. Gaspar, “HBase: Non-SQL database
performances evaluation,” IJACT, vol. 2, no. 5, pp. 42-52, 2010.

Redis. http://redis.io/.

IndexedRDD. https://github.com/amplab/spark-indexedrdd/.
PART. https://github.com/ankurdave/part/.

PostgreSQL. https://wiki.postgresql.org/wiki/FAQ/.
DIMACS. http://www.dis.uniromal.it/challenge9.
OpenStreetMap. http://www.openstreetmap.org/.

TAREEG. http://tareeg.org/.

Fast food maps. http://www.fastfoodmaps.com/.

Measuring Transportation Connectivity by RDI. http://www.slideshare.
net/CongressfortheNewUrbanism/andy-mortensonmeasuring-transport-

ation-connectivity-by-rdi/.

G. Narasimhan and M. H. M. Smid, “Approximating the stretch factor
of euclidean graphs,” SIAM J. Comput., vol. 30, no. 3, pp. 978-989,
2000.

SSTI. http://www.ssti.us/events/accessibility-towards-a-new-multimodal
-system-performance-metric/.

