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ABSTRACT
In this paper, we present the design, implementation, and evalu-
ation of PStore, a no-overwrite storage framework for managing
large volumes of array data generated by scientific simulations.
PStore consists of two modules, a data ingestion module and a
query processing module, that respectively address two of the key
challenges in scientific simulation data management. The data in-
gestion module is geared toward handling the high volumes of sim-
ulation data generated at a very rapid rate, which often makes it
impossible to offload the data onto storage devices; the module is
responsible for selecting an appropriate compression scheme for
the data at hand, chunking the data, and then compressing it before
sending it to the storage nodes. On the other hand, the query pro-
cessing module is in charge of efficiently executing different types
of queries over the stored data; in this paper, we specifically fo-
cus on dicing (also called range) queries. PStore provides a suite
of compression schemes that leverage, and in some cases extend,
existing techniques to provide support for diverse scientific simula-
tion data. To efficiently execute queries over such compressed data,
PStore adopts and extends a two-level chunking scheme by incor-
porating the effect of compression, and hides expensive disk laten-
cies for long running range queries by exploiting chunk prefetch-
ing. In addition, we also parallelize the query processing module
to further speed up execution. We evaluate PStore on a 140 GB
dataset obtained from real-world simulations using the regional cli-
mate model CWRF [5]. In this paper, we use both 3D and 4D
datasets and demonstrate high performance through extensive ex-
periments.

1. INTRODUCTION
High-resolution physical simulations are growing in importance

in a variety of scientific domains, and are often the only tool ca-
pable of providing useful predictions. For instance, in mesoscale
climate modeling, high-resolution simulations can be used to pre-
dict the effects of various processes, that can help determine human
behaviors such as which crops to plant based on local climate con-
ditions. Although enormous computational power can be applied
to run the simulations themselves, storing the data that is generated
during these simulations, and later querying it during subsequent
offline analysis, can be a major challenge, especially with the trend
toward very high resolution simulations. In many cases, the in-
ability to offload the data onto a storage device in a timely manner
leads domain scientists to throw away much of the data that is gen-
erated, maybe by sampling at a lower resolution, or by storing only
a subset of the simulation variables, or by summarizing in various
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ways. Evaluating long-term importance of any specific data prod-
ucts is difficult at simulation time, thereby rendering these options
unattractive, and often simulations need to be re-run when deficien-
cies in the stored data are revealed. To give an idea of the amount
of data generated, a single day of simulated time for mesoscale cli-
mate modeling can generate 30 GB of data, while an entire ensem-
ble simulation requiring the equivalent of several thousand years of
simulated time can generate more that 30 PB of data [13].

Most of the work so far has focused on how to analyze or process
the data once it has been stored in a scientific database management
system. Some related work in this domain includes SciDB [26],
which employs well-known compression techniques to reduce the
storage footprint of the stored data; Seering et al. [22] address the
problem of storing versions of an array and efficiently retrieving a
specified version or versions. Recent work by Soroush et al. [24]
and Bicer et al. [3] address the issue of compressing scientific sim-
ulation datasets, by relying on a preselected compression technique
that may not provide the best compression ratio for every dataset.
Overall prior techniques are not aggressive enough to deal with
the high volumes of diverse data produced in many scientific disci-
plines such as climate modeling or astro-physical simulations.

To address the challenge of reducing the data volume after it has
been generated but before storing it, we can use sophisticated com-
pression techniques that exploit the high spatial and temporal cor-
relation that exists in the data generated by scientific simulations.
Among all the compression techniques, arithmetic encoding is a
basic compression scheme that can optimally exploit known data
distribution information, as it can compress the data at the informa-
tion entropy rate [28]. However arithmetic encoding is not as ef-
ficient as conventional compression techniques such as zlib [29]
and lzo [15] when measuring throughput, so is seldom employed
in situations where compression speed is important. While the con-
ventional compression techniques are efficient for compressing the
data, the overall compression ratio may be enhanced by using them
in conjunction with some preprocessing techniques, such as com-
puting deltas, which makes the data amenable to better compres-
sion. Further, it is essential to select the best compression pro-
cedure given a particular dataset, instead of using a fixed, prese-
lected compression technique. While better compression ratios re-
duce space on disk, they may result in higher compression and/or
decompression times. For example, zlib does a very good job of
compressing a dataset, however it loses out to lzo in terms of com-
pression/decompression speed. Therefore, it is essential to provide
users with the flexibility of choosing the appropriate compression
technique(s) based on their individual requirements.

Secondly, since floating point data is the most prevalent type of
data generated by scientific simulations, it is important to consider
compression techniques tailored for such data due to its high de-



gree of entropy, especially in the lower order bytes of the mantissa
(fraction) part [21]. Moreover, the full precision of floating point
data may not always be required for some applications, e.g., visu-
alizations, where truncation of the lower order mantissa bits can be
tolerated. As a result, we may not be required to retrieve all the
bytes of floating point data for query processing [11]. Therefore
we can perform a byte-wise partitioning of the floating point data
before storing on disk. The compression and the partitioning tech-
niques discussed so far have been proposed independently in prior
work, but have been mainly applied to small datasets.

In this paper, we present a comprehensive framework called PStore
that is aimed at addressing the challenges in storing and managing
high-resolution scientific simulation data. The data ingestion mod-
ule of PStore has routines for preprocessing the data along with the
backend compression routines; it also contains an analyzer that de-
cides the appropriate preprocessing and backend compression mod-
ules to use for a specific scenario. In addition to compressing the
data, the ability to query the stored data for offline analysis is also
required. We currently support range queries in the query process-
ing module of PStore. To reduce query latencies, chunking the
data is essential, as it helps to alleviate dimension dependency [19].
PStore supports both single-level chunking (normal chunking) and
two-level chunking [23, 25], while taking into consideration the ef-
fects of compressing the data. For expensive range queries, PStore
also supports query prefetching to hide I/O latencies by overlap-
ping I/O with the CPU processing time. Finally, we parallelize the
query processing framework to further reduce overall query pro-
cessing time.

This paper makes the following contributions:

1. Our framework supports a suite of compression schemes and
can select the best compression plan based on the nature of
the data. This procedure is carried out in an offline mode
where a representative sample of the data selected for inges-
tion is analyzed and a compression plan is selected.

2. We integrate both byte-wise partitioning of floating point data
and partitioning along data array dimensions to provide max-
imum flexibility in terms of accessing the desired data el-
ements. Partitioning the floating point data elements byte-
wise involves partitioning the data across byte boundaries,
which improves the compressibility of the data [21].

3. We propose a two-level partitioning/chunking strategy in the
context of compression and show that it is better off (w.r.t the
query response time) compared to a single-level chunking
with compression.

4. For long running range queries, where several data chunks
are accessed, it is beneficial to hide I/O latencies by over-
lapping them with CPU processing time. Since file accesses
are often sequential, we can process one chunk at a time and
overlap the I/O access for the next chunk with CPU process-
ing of the current chunk.

5. We have built PStore, an end-to-end framework that is capa-
ble of ingesting high volumes of data from scientific simula-
tions as it is produced.

The rest of the paper is organized as follows: The next section
provides an overview of PStore. Section 3 gives a detailed descrip-
tion of the compression schemes that can be used in the framework.
The two data partitioning techniques are described in Section 4,
followed by the query processing techniques in Section 5. Exper-
imental results are reported in Section 6 while Section 7 covers
additional related work. Finally, Section 8 concludes the paper.

2. STORAGE FRAMEWORK
We present a short overview of PStore. PStore is an end-to-end

framework containing two modules, namely, 1) a data ingestion
module and 2) a query processing module. The data ingestion
module can execute in parallel with the simulation that is gener-
ating the data, and performs both partitioning and compression of
the data. The data generated by the simulation is transferred to the
data ingestion module one snapshot at a time, as the snapshots are
progressively generated (a snapshot typically corresponds to a time
step in a physical simulation). The data ingestion module sends
the compressed data chunks to the storage system as they are pro-
duced, and may have to wait to gather enough data before com-
pression. The compressed chunks are also inserted into an index
structure such as an R-tree [8], for querying the data efficiently.
The query processing module runs offline in a separate computing
environment decoupled from the data ingestion module.

The data ingestion module begins execution by analyzing a sam-
ple of the data to be stored in an offline mode and chooses the ap-
propriate compression scheme suited for the given dataset. There-
after the multi-dimensional simulation data is partitioned along three
different dimensions: (1) temporal, (2) spatial, and (3) bytewise.
Partitioning the multidimensional data along both temporal and
spatial dimensions is a well-known technique for alleviating dimen-
sion dependency [19]. In addition to single-level array partitioning,
we implement a two-level array partitioning technique [18, 23, 25]
and propose a variant of the technique when the effect of compres-
sion is taken into consideration. Another dimension of partitioning
is bytewise, motivated by the observation that the full precision of
the data is not required in many offline analysis and visualization
tasks. Therefore the data is partitioned along byte boundaries, with
the added benefit that the compression efficiency for this storage
strategy is significantly better than traditional compression tech-
niques for floating point data [21].

The PStore query processing module supports array slicing queries
(or range queries). For retrieving the data given a range selec-
tion query, PStore submits the query to the R-tree to get the set of
chunks to be retrieved from the disk. We perform two-level chunk-
ing with compression, in an attempt to read the minimum amount of
data from the disk. As we will see later, this technique also enables
us to speed up the decompression process during data retrieval. To
speed up the query processing further, we employ a prefetching
technique that hides disk access latencies behind decompression
computations during data retrieval.

3. COMPRESSION SCHEMES
We describe the different compression schemes supported by our

framework. Unlike most prior work (e.g.,[24]), we do not rely on
a single compression scheme, and instead determine the compres-
sion scheme based on the structure of the data, or the requirements
of the user. The data to be compressed is analyzed in an offline
mode to determine the best scheme, in accordance with the user
preference or the overall efficiency (based on both compression ra-
tio and compression/decompression time). The simulation data that
is currently compressed is analyzed periodically to ensure that we
are still using the best compression scheme even when the distribu-
tion of the simulation data changes. We now discuss the different
compression schemes implemented in PStore.

Bytewise Compression (bwc): This compression technique is sim-
ilar to the one described by Schendel et al. in a recent work [21].
Data is partitioned into columns of bytes and the compressible
bytes are identified by computing the byte value frequency distri-



bution. The compressible bytes are then compressed using a back-
end compression algorithm such as zlib [29] or lzo [15]. We
use zlib to obtain better compression ratios, and lzo to achieve
faster compression and decompression rates as required. However
unlike in [21], we do not compress and store all the compressible
bytes together, as that adds considerable overhead to reconstruct
the data due to required reshuffling of the bytes. Further, for ap-
proximate query processing where only a contiguous subset of the
bytes are required, it is wasteful to decompress those bytes that are
not required for answering the given query. As an exception to this
strategy, only the two most significant bytes of a variable are stored
together regardless of whether both are compressible or not. The
reasoning behind this exception will be discussed in Section 4.2.

(a) Dataset t2m

(b) Dataset th2

(c) Dataset psfc
Figure 1: Total execution time for data retrieval with different com-
pression schemes, for three datasets. The datasets are described in
Section 6.

Bytewise-XOR Compression (bwcXOR): For scientific simula-
tion datasets, there is a high degree of spatial and/or temporal cor-
relation between neighboring array elements. As a result, the mag-
nitude of the difference between two adjacent spatial or temporal
data elements in the dataset may be small. Determining such corre-
lations is essentially a preprocessing step towards better compress-
ibility. The method for computing the difference between vari-
ables that we choose is XOR, rather than subtraction, as it yields a
higher compression ratio both with two’s complement integer and
sign-magnitude floating point number representations [4]. After
the data is partitioned into columns of bytes and the compressible
byte columns are identified, we apply the XOR operation between
the bytes of two different variables located spatially or temporally
adjacent to each other. However, the XOR operation is not applied
between incompressible byte columns as those are highly entropic
and the resultant XOR value between two entropic bytes is also
highly entropic. This is especially true for lower order bytes in a
floating point variable where the bit randomness is often very high.
The XORed byte columns are then compressed using one of the
backend compression algorithms. All the snapshots except the last
snapshot in a given data chunk are XORed in a temporal XOR oper-
ation. A spatial XOR operation can be applied on the last snapshot
to further enhance the overall compression or it may be left unal-
tered, depending on the degree of spatial correlation between the
variables and/or the amount of compression/throughput required.

Compression t2m th2 psfc
Method CR % gain CR % gain CR % gain
naive zlib 1.325 0.00 1.305 0.00 1.279 0.00
naive lzo 0.996 -24.83 0.996 -23.68 0.996 -22.12
naivexor+zlib 1.375 3.77 1.371 5.05 1.474 15.25
tFPC 1.510 13.96 1.509 15.63 1.682 31.51
sFPC 1.615 21.89 1.631 24.98 1.529 19.55
bwc+zlib 1.823 37.58 1.833 40.46 1.823 42.53
bwcxor+zlib 1.798 35.70 1.804 38.24 1.880 46.99
bwc+lzo 1.686 27.25 1.696 29.96 1.643 28.46
bwcxor+lzo 1.669 25.96 1.676 28.43 1.776 38.86

Table 1: Performance comparison of compression ratios between
different compression schemes (compression ratio (CR) and % im-
provement relative to zlib (% gain) for each dataset). The best
scheme for each dataset is highlighted.

This snapshot is used for retrieving the prior snapshots by applying
the XOR operation in the reverse direction, a process referred to as
unrolling hereafter. For retrieving the first snapshot, all prior snap-
shots needs to unrolled first and hence this technique comes with
an overhead due to this unrolling process. We have designed this
compression technique as an alternate compression scheme com-
pared to the ISOBAR technique [21].

FPC: FPC is a compression technique developed for compressing
64-bit floating point data [4]. FPC predicts values by sequentially
using two predictors (fcm [20] and dfcm [7]) and selects the value
closer to the actual value. Thereafter, FPC performs an XOR be-
tween the two values and encodes the leading zero bytes of the
result using three bits. The scheme uses an additional bit to specify
which of the two predictors was used for prediction. The resulting
4-bit code and the non-zero residual bytes are written to the output.
We observe that in the context of climate or simulation datasets,
the value from the predictor in FPC can be replaced with an adja-
cent spatial or temporal value (due to the high degree of correlation
between neighboring elements in these datasets). The removal of
the predictor from the FPC algorithm speeds up its execution. In



addition, the single bit of storage which is needed by the predic-
tor is no longer required. We also extend FPC for single precision
floating point data as well. For 32-bit floating point values, we as-
sign two bits for counting the leading zero bytes, although there
are five different possibilities (0 to 4). In the context of our climate
datasets, we have observed that the count of four leading zeroes oc-
curs least frequently. As a result, all XOR results with four leading
zero bytes are treated the same as values with only three leading
zero bytes, with the fourth zero byte emitted as part of the output.
Our framework supports two different versions of FPC, sFPC and
tFPC to denote XORing along spatial and temporal dimensions, re-
spectively.

(a) Dataset t2m

(b) Dataset th2

(c) Dataset psfc

Figure 2: Compression Ratio for different values of byte-precision
for single precision datasets

Other schemes: In addition to the compression schemes described
above, our framework also implements the naive compression al-
gorithms that apply zlib or lzo over the data. As an alternative
to this approach, an XOR of the variables along the spatial or tem-
poral dimensions can be performed followed by the application of
one of the backend compression algorithms.

Experimental comparison and discussion: Table 1 presents com-
pression ratios and their percentage improvement over the naive ap-
proach for three different datasets t2m, th2 and psfc. The data
is obtained from a simulation of the CWRF climate model [5]. A
detailed description of the data is provided in Section 6.

First, we consider the use of a difference operator (i.e., XOR) as
a pre-processing step. The use of the difference operator between
correlated data values for better compressibility has been advocated
in [24] for compressing snapshots in a scientific database system.
They propose the use of variable-length delta encoding and sub-
sequently using run-length encoding for compressing the bitmasks.
The work targets compressing large number of zeroes and the small
magnitude differences generated in the process of delta encoding.
However, the technique may not be suitable for compressing float-
ing point values, since taking the differences between two floating
point values does not always result in small bit differences in val-
ues due to the way in which floating point numbers are actually
represented. Further, the number of zeroes after delta encoding is
comparatively small. We must keep in mind that a high degree
of correlation between adjacent variables does not necessarily re-
sult in a zero in most cases for floating point numbers, due to the
highly entropic low-order mantissa bits. We note from Table 1 that
even selectively applying a difference operator between compress-
ible bytes (bwcXOR) does not always turn out to be profitable when
measuring compression ratio. The compression ratios of bwc for
the datasets t2m and th2 are better than bwcXOR. In addition,
the decompression cost for schemes employing a difference op-
erator for enhancing compressibility is higher than those without
them. However, we observe that bwcXOR outperforms bwc for the
dataset psfc and therefore justifies the inclusion of bwcXOR in
the suite of compression schemes in the framework. Among all the
compression schemes, the bwc schemes with or without the differ-
ence operator turn out to be the best for floating point data when
measuring compression ratios. Our primary intent in this analysis
is to establish that the use of the difference operator in scientific
datasets, especially for datasets having a high degree of correla-
tion, may not always turn out to be beneficial in terms of improv-
ing the compression ratio. Therefore care must to taken to choose
the compression scheme selectively, rather than relying on a single
compression scheme.

Better compression ratios for the data especially in a setting that
involves huge amounts of simulation data being generated is an ab-
solute necessity. In addition to reducing storage requirements, bet-
ter compression also reduces the bandwidth requirement for trans-
mitting the data to storage, or put another way, enables the data to
be delivered faster from the generation site to the storage nodes.
However, the stored data needs to be analyzed (or queried) later,
hence efficient retrieval of the data is as important as developing
better compression techniques for storage efficiency. Therefore we
also need to incorporate query response time while choosing a com-
pression technique for a given dataset. In Figure 1, we show the
total execution time, which includes the I/O time (time taken to re-
trieve the data from the disk) and the CPU time (which includes
the time to decompress the data, unroll the data when we perform
an XOR operation and reshuffle the data for the bwc) for different
compression schemes that PStore supports. We also demonstrate
the I/O time for uncompressed data; the CPU time is zero in this



case as we do not compress or perform an XOR on it. Since com-
pression efficiency is dependent on the input data size, usually with
larger data chunks resulting in better compression ratios, we per-
form the experiments on a data chunk size of around 3 MB. We
determined this value empirically by experimenting with the same
datasets that we use in the current experiment and observe the 3 MB
value to be similar to that determined in previous studies [21, 10,
27]. We observe that disk I/O time constitutes a small percentage
of the overall execution time and as a result compression ratio plays
only a small role in reducing the overhead of data retrieval. Instead
we pay a high price for decompressing the data and therefore care
should be taken in choosing the appropriate compression scheme
if compression ratio is not the only priority. We note that for t2m
the disk space savings due to bwc + zlib (compression scheme
with the highest compression ratio) is 45.15% compared to 40.69%
when we use lzo in combination with bwc while the latter scheme
performs decompression faster. Therefore an application that does
not desire much space savings but does require fast query response
time might want to select the latter scheme. The best compres-
sion scheme for the psfc dataset results in 46.81% disk savings
compared to 39.14% when bwc+lzo is used. However the overall
execution time for bwcXOR+lzo is around 2.5× higher than that
of the other scheme due to cost of the unrolling operation. This
implies that although using XOR may lead to higher compression
ratios, there is a heavy price to pay when querying data compressed
by this scheme. We emphasize that although lzo may not be com-
parable to zlib in terms of compression efficiency, it still proves
to be a useful backend compression scheme when query throughput
is important.

4. DATA PARTITIONING
We describe the two different data partitioning techniques that

are employed in our framework. We first describe partitioning
along dimensions (which include both spatial and temporal dimen-
sions) followed by bytewise partitioning. The former partitioning
technique alleviates dimension dependency whereas the latter is
useful for achieving better compression ratios and for answering
certain types of queries.

4.1 Partitioning along Dimensions
The multidimensional data is partitioned (or chunked) regularly

across both temporal and spatial dimensions, where all partitions
are assigned an almost equal number of elements. Regular chunk-
ing of multidimensional data has been shown to be an effective
partitioning technique for many types of array operations [25]. If
available, we use workload information to choose the chunk size
and shape; such workload-aware chunking can lead to significant
speedups for range queries [19, 6, 17]. Sarawagi et al. [19] showed
that the average number of block fetches for a given access pattern
can be minimized by choosing the shape of a chunk appropriately.

A block B is defined as the unit of transfer used by the file sys-
tem for data movement to and from the storage device. The shape
of a chunk is specified by the tuple (c1, c2, . . . , cn), where ci is the
length of the ith dimension of the multidimensional chunk. A prob-
ability is assigned to each query access pattern independent of the
actual position of occurrence in the array and the positions are as-
sumed to be uniformly distributed across the entire domain. There-
fore access patterns can be represented as {(Pi, si1, si2, . . . , sin) :
1 ≤ i ≤ k} where k is the number of different classes of queries
and Pi is the probability of occurrence of the ith class. Queries in
this case are specified by an n-dimensional hypercube with only
lengths of accesses in each dimension. The problem with the for-
mulation for average number of block fetches by Sarawagi et al. [19]

is that in some query instances the computed number of blocks to
be fetched is exactly one less than the actual number of blocks to
be fetched. That error is amplified due to the multiplication of fac-
tors across dimensions. Thus the error is significant if it is made
for the majority of the dimensions of a given class. Otoo et al. [17]
therefore modify the objective function as follows:

k∑
i=1

Pi

n∏
j=1

(
sij − 1

cj
+ 1

)
(1)

In order to minimize the amount of additional data fetched from the
disk, the chunk shape must satisfy the constraint:

n∏
i=1

ci ≤ B (2)

The goal in that prior work was to choose the chunk shape satisfy-
ing Eq. 2 that minimizes Eq. 1.

However, we note that the effect of compression has not been
taken into account in earlier work, in computing the optimal chunk
shape for array storage. We want to compress the data before it is
stored in secondary storage to reduce the storage footprint on disk
and also to maximize the disk bandwidth utilization. If the data has
to be transferred over a network to/from the storage nodes, com-
pression helps to reduce the transfer time as well. The compression
ratio of standard compression algorithms like zlib also starts to
degrade if the chunks contain too few bytes; let us denote such a
threshold byBc. This threshold may be different for different types
of data and different algorithms, but can be easily learned given a
sample dataset and an algorithm. Above this threshold, the com-
pression ratio usually stabilizes to a fixed ratio ρ. To guarantee a
good compression ratio, we place the following constraint on the
chunk shape:

n∏
i=1

ci ≥ Bc (3)

At the same time, we want the compressed chunk to fit within a
multiple of the disk block size B:∏n

i=1 ci

ρ
≤ mB (4)

The threshold Bc is usually a multiple of the block size B and thus
Bc ≤ m′B where m,m′ are positive integers. We then have the
following relation:

m′B ≤
n∏

i=1

ci ≤ mρB (5)

where m′ ≤ m. Our intent here is to show how the constraints
can be modified to incorporate the effect of compression into the
optimization process. It is then not difficult to compute the optimal
dimensions using the procedure outlined in [17].

The bytewise precision partitioning technique results in a com-
pressed and an uncompressed data chunk corresponding to the com-
pressible and incompressible bytes in a floating point data set. For
best performance, this implies that there should be two different
chunking strategies, one for the compressed bytes and another for
the uncompressed ones, tuned according to the query workload.
However, supporting two different chunking strategies would re-
quire maintaining two separate index structures which might prove
to be a costly overhead. Another problem with this approach is
that it requires two separate chunking strategies to chunk two dif-
ferent data representations. As a result, the number of snapshots



in a chunk for the compressed data may be different from that re-
quired for the uncompressed data, which would require buffering
and could slow down the overall chunking process. For these rea-
sons, we do not chunk the data differently in the current implemen-
tation, nevertheless it would be an interesting study for future work
to compare performance between these two alternatives.

We must keep in mind that with larger chunk sizes there is a
higher price for decompression. Instead we can extend the idea
of a two-level chunking scheme [25] by not compressing the entire
chunk, but first partitioning into sub-chunks and then compressing
the sub-chunks separately. We write the entire chunk to the disk.
With this design, we do not have to decompress the entire chunk but
only those sub-chunks that are required to answer the query. With
this design, we just need to ensure that the sub-chunks satisfy Eq. 3
and the whole chunk satisfies Eq. 4, maximizing both compression
ratio and I/O performance.

4.2 Bytewise Partitioning
In many applications, the full precision of the data may not be

needed. For example, the lower order mantissa bits of a floating
point number may be truncated during some types of visualization
applications, since the human eye may not be capable of perceiv-
ing such fine differences. The IEEE 754 standard [12] for floating
point arithmetic represents single precision values as a single sign
bit, 8 exponent bits and 23 mantissa bits. Representing double pre-
cision values requires a single sign bit, 11 exponent bits and 52
mantissa bits. The mantissa bits in a floating point number repre-
sent a fractional component in the overall value and the lower order
bits each contribute an exponentially smaller value to the overall
magnitude of the number as we move from the higher to the lower
order bits. This implies that discarding the lower order bytes in a
floating point number (where the mantissa is stored) introduces less
error compared to discarding higher order bytes. In contrast, trun-
cation by discarding lower order bytes is not a feasible option for
integer data due to the loss of significant bits that is not mitigated
by multiplication by an exponent as for floating point data [11].

Table 2 presents the maximum relative error produced based on
the number of mantissa bits retained for both single and double
precision floating point data. Due to the small maximum relative
errors introduced due to truncation of mantissa bits, it might suf-
fice for applications to only retrieve the higher order k bytes corre-
sponding to the amount of error the application can tolerate. This
format of data access also requires partitioning the values in byte-
wise fashion. Therefore bytewise partitioning of values serves the
dual purpose of enabling precision level partitioning and enhancing
the compressibility of the data. While partitioning the data byte-
wise we always store the higher order two bytes together as they
contain the sign and the exponent bits and truncation of exponent
bits would introduce unacceptably high error rates. Also due to the
expected high degree of correlation in the data, the higher order
bits (which include the sign, exponent and higher order mantissa
bits) of adjacent variables are likely to be similar. As the expo-
nent bits in both single and double precision numbers span the first
two higher order bytes, it is beneficial to store them together to
enhance the compressibility of the data. However, partitioning the
numbers bytewise requires reconstructing them when retrieving the
data, which will introduce some overhead. When partial precision
data is retrieved, the missing bytes are replaced with a fixed pattern
as defined by the user.

5. QUERY PROCESSING
We support range queries in the query processing module of

PStore. For retrieving the data for a range selection query, PStore

determines the overlapping chunks in the query range and locates
the data chunks on disk using the R-tree index. After the chunks
are retrieved from disk, overlap with the sub-chunks within every
chunk is determined from the query region. The overlapping sub-
chunks are then extracted by decompressing them (if they were
compressed in the data ingestion state) after determining their lo-
cation from the header information that was stored along with the
each chunk.

Decompression is an expensive operation and results in CPU
processing time that can be even more than the time for I/O opera-
tions. We reduce this overhead by parallelizing the decompression.
Sub-chunk decompression can be parallelized as every sub-chunk
can be decompressed independently once a chunk is retrieved from
disk. However, this process does not always lead to a linear speedup
with the number of CPUs available. This is because not all the
sub-chunks need to be extracted from a chunk, as they may not
overlap with the query region. Further, since the process of sub-
chunk extraction is overlapped with the chunk retrieval from disk
(as described in Section 5.2), the overall processing time decreases
with increasing parallelism until the CPU processing time becomes
equal to the I/O processing time.

Significant
Bytes

Max. Error%
(SP)

Max. Error%
(DP)

2 2.6e-1 3.1e0
3 1.0e-3 1.2e-2
4 - 4.8e-5
5 - 1.9e-7
6 - 7.3e-10
7 - 2.8e-12

Table 2: Maximum relative error due to reduced precision of IEEE
754 single and double precision floating point numbers

For approximate query processing, the application retrieves fewer
bytes from disk, since the target application is able to tolerate lower
precision. So the overall processing time should be lower compared
to retrieving all the bytes for each data element from disk. More-
over, for partial precision data retrieval, usually the higher order
bytes for the data elements are retrieved, which are generally more
compressible than the lower order bytes. As a result the I/O op-
erations are less expensive than when retrieving all (or only lower
order) bytes of the data elements.

5.1 Two-level chunking with compression
Larger chunks help amortize disk seek overhead but pose a prob-

lem when the query region is a small subset of the chunk. We do
not have random access to individual elements inside a chunk and
therefore it is wasteful to process additional elements when the ac-
tual query region is a small contiguous fraction of the entire chunk.
Smaller chunks however, reduce the average processing time for
accessing an element in a chunk but introduces overheads from ad-
ditional disk seeks. Two-level chunking seeks to balance the two
factors. A larger chunk is split into regular sized sub-chunks so that
the overall processing overhead is minimized. The larger chunks
are the units of disk I/O while the smaller chunks form the unit
of array processing. Two-level chunking has been studied previ-
ously [18, 23, 25], but without including the effects of compression.
There are several strategies we may choose to apply when using
two-level chunking with compression. One strategy is to compress
the chunks before writing them to disk. The drawback of this ap-
proach is that in the case of range queries, it is seldom the case that



(a) Retrieval time using bwc+zlib and bwc+lzo (b) Retrieval time using bwcXOR+zlib and bwcXOR+lzo

Figure 3: Partial (upper 2 bytes) retrieval time vs. full (4 bytes) retrieval time for different compression schemes for dataset T

one needs to access all the data elements contained in the larger
chunk. As a result, we must pay the cost of decompression for the
additional data that is not needed. As we observed previously, de-
compression is a relatively costly operation, therefore it might be
beneficial to compress the smaller sub-chunks individually and then
combine them into a chunk before writing to the disk. Two-level
chunking also opens up parallelization opportunities by allowing
us to process the sub-chunks in parallel and thus speed up query
processing. In our implementation, we follow a regular chunking
scheme for both chunks and sub-chunks, as this chunking strategy
has been shown to yield the best performance compared to irregular
chunking schemes [25] and determine the optimal chunking layout
empirically.

5.2 Chunk prefetching
For long running range queries, where multiple chunks may be

accessed, we can improve performance by hiding I/O latencies by
overlapping them with CPU processing time. Since a chunk access
is sequential, we want to process one chunk at a time and overlap
the I/O access of the next chunk with CPU processing of the cur-
rent chunk. With two-level chunking, we can further process the
sub-chunks in an embarrassingly parallel fashion as all the compu-
tations related to each sub-chunk can be executed independently.
This is advantageous because we require large chunks to amortize
the I/O time and simultaneously the presence of a large number of
sub-chunks in a chunk enables higher throughput.

6. EXPERIMENTAL RESULTS
We evaluate the performance of the different components that

constitute PStore. We use a real dataset for this purpose which
is based on the Regional Earth System Model (RESM) to pro-
vide climate and environmental information for a wide range of
end users with drastically different data demands. RESM is based
on the state-of-the-art regional climate model CWRF [5] that pre-
dicts mesoscale climate processes, including atmosphere, hydrol-
ogy, crop, soil, air and water quality and their interactions. The
dataset contains numerous variables each of which records mea-
surements of parameters such as temperature, pressure, relative hu-
midity, wind velocity, actual biogas emissions, CO concentration,
etc. The measurement is either performed on a region of space de-
fined by a 2D grid or a 3D grid and is recorded periodically over a
fixed time duration. Each such grid is termed a snapshot at a par-
ticular instance in time. We perform our evaluation on both 3D and
4D datasets, which are described below.

3D dataset: Each snapshot in this dataset is a 138×195 array
recorded over a 3 hour interval, so there are 8 snapshots per day.
Currently, we have simulation data for one month, which has a total
240 snapshots for all the variables. We used three variables (i) t2m:
air temperature at 2m, (ii) th2: potential temperature at 2m, and
(iii) psfc: surface pressure, for the purpose of experimentation
with 3D datasets.

4D dataset: This dataset differs from the 3D dataset in that
it has an added height dimension, which makes each snapshot a
138×195×35 matrix. We used two variables from this 4D dataset
T and P which denotes perturbation temperature and perturbation
pressure, respectively.

The total size of the dataset is around 140 GB and each mea-
surement is stored as a single-precision floating point variable. The
dataset is represented in the netCDF format [16].

We performed our experiments on an Intel Xeonr E7450 (2.4
GHz). This machine has 4 sockets each having 6 cores with a total
of 24 threads and a 48 GB main memory.

6.1 Effect of Bytewise Partitioning on Com-
pression

We study the effect of bytewise partitioning on the compression
ratio. While reading partial or reduced precision data from the disk,
we always read the higher order bytes which contain the sign, expo-
nent and a subset of the mantissa bits. For single precision data, we
have two possibilities for reduced precision data, either 16 bits (up-
per 2 bytes) or 24 bits (upper 3 bytes). From Figure 2 we observe
that for every compression scheme, the compression ratio of the
higher order 2 bytes is best. This is because there is a high degree
of correlation between the adjacent variables in this dataset and this
correlation is captured best by the sign, exponent and the higher or-
der mantissa bits, which causes these values to be very similar or
equal for much of the data. We also observe that the compression
ratio for 16-bit precision is almost 5× better than for 24-bit preci-
sion. The large difference can be explained by the fact that lower
order mantissa bits are highly entropic, so are responsible for the
decrease in compression ratio. Therefore, an application that can
tolerate 0.26% relative error in precision (see Table 2) can achieve
a large savings in disk space and faster query response times due to
the high compressibility of the data at reduced precision.

Figure 3 shows query retrieval times for full and partial precision
data for different partitioning parameters with different compres-
sion schemes. Figure 3a shows the retrieval times when the upper
2 bytes of data are compressed with bwc+zlib and bwc+lzo,



(a) Single precision dataset: t2m & psfc (b) Double precision dataset: obs_info.trace & obs_error.trace

Figure 4: Throughput of shift and copy reconstruction technique for (a) single and (b) double precision datasets

and Figure 3b shows the retrieval times when XORing had been
applied during compression and unrolling must be done during
query retrieval. The lower 2 bytes are not compressed because
they are highly entropic. We observe that the partial query re-
trieval for bwc+zlib takes around 70% of the full query retrieval
time across all partition configurations whereas the partial query
retrieval time is 50% of the full query retrieval time for bwc+lzo,
since the decompression time for bwc+zlib is higher than for
bwc+lzo. From Figure 2 we see that the compression ratio for
zlib is higher than for lzo. Moreover lzo fails to compress the
data when k = 20, i.e., when sub-chunks are smaller, and there-
fore we have no data points at that value of k. Figure 3b shows
that using XOR and unrolling introduces significant overhead in
the retrieval process, which causes the partial query retrieval time
to increase to around 80% and 70% of the full query retrieval time
for bwcXOR+zlib and bwcXOR+lzo schemes, respectively.

However, bytewise partitioning introduces some overhead due
to the reconstruction required to build a floating point number from
its individual bytes. We study the overhead for two different types
of reconstruction techniques, measuring overall throughput. The
first technique is to reconstruct the floating-point number by byte
shifting while the second technique copies the individual bytes to
their respective offsets in memory to reconstruct the original num-
ber. Figure 4 presents the throughput obtained while reconstructing
the bytes using both the shift and the copy method. We observe
that the shift method outperforms the copy method in the through-
put obtained. This is because the copy method involves moving
many single or small groups of bytes (if subsequent bytes in a vari-
able are kept together in a partition) to the target location requiring
multiple byte copy operations with each copy operation associated
with some fixed overhead. In case of byte shift operation the entire
data element (4 or 8 bytes) is constructed in-place by byte shifting
(which is a cheap operation) and then assigned to the target vari-
able requiring a single move operation. As previously noted, we
reconstruct at least the most significant two bytes for both single
and double precision data. The throughput gain is at least 54% and
17% when reconstructing the two most significant bytes, for sin-
gle and double precision data respectively. We also note that, not
surprisingly, the throughput gain decreases with an increase in the
number of bytes reconstructed.

6.2 Two-level Chunking
We demonstrate experimentally the variation in query response

time as the number of sub-chunks and chunks for a given variable
in the dataset is varied. We also show that our proposed approach

to two-level chunking with compression outperforms single-level
chunking with compression. The experiments are performed on
both 3D and 4D datasets.

We compare single-level (1L) chunking to two-level (2L) chunk-
ing in the context of compression. We measure the performance of
slicing queries for 1000 queries generated uniformly at random for
a 3D dataset. For experiments involving 4D datasets, we restrict
the number of such queries to 100, as this dataset is bigger than the
3D dataset by around an order of magnitude. The 3D dataset has
two spatial dimensions while the 4D dataset has three of them, with
each dataset having a temporal dimension denoting the timestamps
in which the simulations were run. In the experiments, each spatial
dimension is k-way partitioned, i.e. each dimension is divided into
k partitions. Therefore each snapshot has kd sub-chunks, where d
is the number of spatial dimensions. For example, when k = 4 and
d = 2, 16 × 16 snapshot is partitioned into 16 (42) sub-chunks,
where each sub-chunk is stored in a separate file. The value t gives
the number of temporal dimensions or snapshots that will be in-
cluded in each file. If t = 16, then each file has 4×4×16 elements,
which we refer to as single-level chunking. This configuration can
also be denoted by the tuple (k, t). For two-level chunking, we
specify an additional parameter s, which denotes the number of
chunks to partition the data into. In other words, it also indicates
the number of sub-chunks that would be allowed in a chunk. The
16 sub-chunks that were created by 4-way partitioning before, can
be viewed as a 4 × 4 array of sub-chunks. In a similar way, each
dimension in this array is now s-way partitioned. For s = 2, the
4 × 4 array is partitioned into 4 (2 × 2) chunks and each chunk
is stored in a separate file. We denote a two-level partitioning by
the tuple (k, t, s). Although each spatial dimension is partitioned
equally into k or s parts, our framework supports unequal partition-
ing across different dimensions as well.

Figure 5 shows a breakdown into CPU time and I/O time for the
3D datasets t2m and psfc. For 3D dataset, the chunk is always 2-
way partitioned (s = 2) and the number of snapshots in a chunk is
16. From Figure 6, we observe that the performance of the 1L and
2L chunking strategies is similar for smaller number of partitions.
Since the number of partitions is small, the number of chunks to
be written to disk is small, resulting in fewer disk seeks. However
the performance of the 1L strategy degrades with an increase in
the number of partitions. This is because of the increase in disk
seeks for the 1L strategy, whereas the number of disk seeks remains
almost constant for all the configurations for the 2L strategy. This
is due to the use of full chunks as the unit of disk access for the
2L strategy. The best performance for the set of partitions selected



(a) 3D dataset t2m (b) 3D dataset psfc

Figure 5: Total execution time (CPU + I/O) for array slicing queries for single-level (1L) and two-level (2L) chunking with different partition
numbers on two different datasets

is achieved for the (8, 16, 2) and (16, 16, 2) configurations for
the 3D dataset, as can be observed from Figure 6. Increasing the
number of sub-chunks beyond 16 decreases the performance of the
2L strategy. The decreased performance comes from an increase
in CPU processing time, due to the overhead of decompressing a
large number of relatively small sub-chunks.

We study the effect of variation in chunk size in Figure 7 and Fig-
ure 8 by fixing k and t. We observe that CPU time remains almost
unaffected by the change in the chunking parameters, confirming
that using chunk as the unit of disk I/O does not affect CPU time
significantly. For the 3D dataset, s = 2 turns out to be the optimal
choice of chunk partition.

This value of s is best for different values of k and t, as can be
seen from Figure 7a and 7b. Figure 8a and 8b show the variation
of s for the 4D dataset. In this case, s = 5 is the optimal choice
for chunk partition. In general, the optimal value of s for a given
dataset can be found by analyzing a sample of the dataset in the
pre-processing step.

6.3 Parallelizing Query Retrieval
In a two-level chunking scheme, the sub-chunks can be pro-

cessed in parallel once the chunks intersecting with the query re-
gion are retrieved from disk. However, these two processes are
performed in a pipelined fashion using double buffering by default.
To see this, we executed the query framework with partition pa-
rameters (8, 8, 4) and (8, 16, 4), since those configurations were
the best parameters for the 4D dataset for the given query work-
load, determined empirically. We observe from Figure 9 that the
framework does not scale beyond 8 cores/threads for these queries.
As the number of core increases, the compute time decreases and
becomes equal to the I/O time, which remains fixed irrespective of
the increase in the number of cores. The application cannot perform
better once the I/O time becomes greater than or equal to the com-
pute time for the queries. For the parallelization process, we assign
each compute thread a sub-chunk to perform the decompression
process in parallel, to remove the performance bottleneck of the ex-
pensive decompression operations. However, we note that there are
still load balance issues that limit performance even if we assign n
threads evenly to the kd sub-chunks (n ≤ kd, d = 3 in this case).
It is likely that at some times in executing the queries, the number
of sub-chunks to be processed will be less than n. This is because
a query region might intersect with too few sub-chunks in some

cases, or that different sub-chunks take different amounts of time
to process. Load imbalance is therefore another reason why the ap-
plication may not scale linearly with increasing number of threads,
if overall performance is limited by CPU computations rather than
I/O time.

Figure 6: Performance of array slicing queries for single-level and
two-level chunking.

6.4 Chunk Prefetching
Figure 10 shows the reduction in query execution time due to

chunk prefetching. Chunk prefetching is achieved by using double-
buffering in memory with the chunk to be processed next prefetched
and stored into memory while processing for the current chunk
takes place from a different buffer. Additional buffers could be em-
ployed if more than one disk is available. To perform the prefetch-
ing, we use two separate types of threads; several dedicated solely
to CPU processing (one per available CPU/core) while the other
is dedicated to disk I/O. This straightforward optimization hides
the disk access time behind the processing time, as long as the pro-
cessing time dominates the I/O time, as we have seen is true in most
cases we have experimented with. The current experiment is per-
formed on the 4D dataset where the partition parameter k is varied
from 4 to 20 in steps of 4, fixing t and s at 16 and 4, respectively.
From Figure 10 we observe that it is possible to completely over-
lap the disk access time with the CPU processing time via chunk
prefetching.

7. RELATED WORK



(a) Dataset t2m: k = 8, t = 16 (b) Dataset t2m: k = 16, t = 16

Figure 7: Query performance (CPU + I/O time) varying chunk size, for the 3D dataset t2m

Data compression has been very well studied and has been exten-
sively used in databases and general storage systems to reduce stor-
age requirements and improve query execution performance. More
recently there has been a resurgence in interest in the storage and
management of scientific data [2, 26, 25, 24, 22, 3]. Scientific ob-
servation and simulation data is typically stored in large arrays with
snapshots stored in different array structures, as they are progres-
sively generated. Due to the high degree of correlation that exists
within and across the snapshots, delta encoding is commonly used
to compressing such data. TimeArr [24] and Bicer et al. [3] use
very similar delta encoding techniques for compressing scientific
simulation datasets. Seering et al. [22] uses hybrid delta encoding
where the data is first encoded using “dense” encoding technique
and the result, which is relatively sparse so contains many zeroes, is
encoded with a “sparse” encoding technique. We have seen that not
all scientific datasets are amenable to delta compression and there-
fore there is a need to select the best possible compression scheme
for a given dataset. Moreover, the delta encoding techniques we
refer to do not consider floating point numbers explicitly, which is
the most common type of data generated by scientific simulations.
Due to the high degree of entropy present in the low-order man-
tissa bits, delta encoding between two floating point numbers does
not result in low magnitude values which can then be stored using
fewer of bits.

Schendel et al. [21] propose the ISOBAR system which does a
byte-wise partitioning of floating point numbers and preprocesses
the bytes to identify compressible and hard-to-compress bytes. They
observe that it may not be effective to compress all the bytes as
some of the bytes may be incompressible due to the high amount
of randomness present in them. We extend their technique to im-
prove the delta encoding performance for floating point numbers.
This partitioning strategy comes with the added benefit of being
able to query the data approximately. Not all applications require
full precision data and if the user specifies a relative error bound,
it is possible to avoid retrieving all the bytes from the disk which
makes query processing more efficient [11].

Other compression techniques for floating point numbers have
been proposed, such as fpzip [14] and FPC [4] that are also used
widely in scientific database applications. These techniques are
based on context modeling applications, and use predictors for pre-
dicting the next value based on the values seen earlier in a sequence.
The predicted value is then XORed with the actual value and the
leading zero bytes are compressed. The performance of these tech-

niques may degrade due to the use of predictors for predicting the
next value. However for data generated by scientific simulations,
one may do away with these predictors by using the next temporal
or spatial value in an array since the values are highly correlated
and are usually very close to the previous value. We extend FPC in
our tFPC and sFPC compression methods, which essentially XOR
neighboring temporal or spatial values, respectively.

Most of the prior work on storing and accessing multidimen-
sional data does not support versioning explicitly. The array en-
gines in use today, such as RasDaMan [1], are not specifically
tuned towards supporting versioning techniques that are critical to
no-overwrite storage systems. NetCDF [16] and HDF5 [9] are self-
describing, machine independent data formats for array-oriented
scientific data that physical scientists have long been using to store
and access multidimensional data generated by scientific simula-
tions. However these data formats do not support versioning either.
Most of these systems do support chunking for alleviating dimen-
sion dependency.

Prior work related to chunking multidimensional data has con-
sidered both single-level and two-level chunking for array stor-
age [18, 23, 25]. In the two-level chunking scheme, the proposed
techniques resort to different combinations of both regular and ir-
regular tiling. However they do not consider the effect of compres-
sion while chunking the array. In our work, we propose a variant
of two-level chunking that takes into consideration the effect of
compression. The problem of tuning the chunk shape and size for a
given query workload has also been considered previously [19, 17].
In our work, we show that the earlier formulations for computing
the optimal chunk size can be modified to take into consideration
the effect of compression.

8. CONCLUSION
In this paper, we presented the design, implementation, and eval-

uation of PStore, a no-overwrite storage manager that we are build-
ing for managing array data generated during scientific simula-
tions. Unlike other scientific data management systems, PStore’s
primary goal is to alleviate the data ingestion bottleneck, by com-
pressing the simulation data as it is being generated and offloading
it to storage nodes while minimizing the communication overhead.
The data ingestion module in PStore contains a suite of compres-
sion techniques designed to handle diverse types of floating point
datasets generated during scientific simulations, and we presented
an approach to choose an appropriate compression technique based
on the application needs. PStore also supports approximate query



(a) Dataset T: k = 8, t = 16 (b) Dataset T: k = 16, t = 16

Figure 8: Query performance (CPU + I/O time) varying chunk size for the 4D dataset T

processing by retrieving partial precision data if that is sufficient
for the application needs, and contains several other optimizations
for efficient query execution. Our extensive experimental evalu-
ation illustrates that different compression techniques work better
for different datasets, and further that using bytewise partitioning
and two-level chunking can lead to significantly higher compres-
sion ratios and lower query execution times respectively.

Figure 10: Effect of prefetching and double buffering on query
performance with different partition configuration (k) on the 4D
dataset P
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