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Abstract
Despite persistent effort, there is no known technique for obtaining super-linear lower bounds
for the computational complexity of the problems in P. Vassilevska Williams and Williams [38]
introduce a fruitful approach to advance a better understanding of the computational complexity
of the problems in P. In particular, they consider All Pairs Shortest Paths (APSP) and other fun-
damental problems such as checking whether a matrix defines a metric, verifying the correctness
of a matrix product, and detecting a negative triangle in a graph. They show if there is a truly
subcubic algorithm (an O(n3−ε) time algorithm for a constant ε > 0) for any of these problems,
then there exist truly subcubic algorithms for other problems as well.

Abboud, Grandoni, and Vassilevska Williams [1] study well-known graph centrality problems
such as Radius, Median, etc., and make a connection between their computational complexity to
that of two fundamental problems, namely APSP and Diameter. They show any algorithm with
truly subcubic running time for these centrality problems, implies a truly subcubic algorithm for
either APSP or Diameter.

In this paper we define vertex versions for these centrality problems and based on that we in-
troduce new complementary problems. The main open problem of [1] is whether or not APSP and
Diameter are equivalent under subcubic reduction. One of the results of this paper is APSP and
CoDiameter, which is the complementary version of Diameter, are equivalent. Moreover, for some
of the problems in this set, we show that they are equivalent to their complementary versions.
Considering the slight difference between a problem and its complementary, these equivalences
give us the impression that every problem has such a property, and thus APSP and Diameter are
equivalent. This paper is a step forward in showing a subcubic equivalence between APSP and
Diameter, and we hope that the approach introduced in our paper can be helpful to make this
breakthrough happen.
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1 Introduction

Computational complexity focuses on classifying algorithmic problems mostly through
providing lower bounds to show solving a certain problem requires at least a certain amount
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of time, memory/space, number of gates in a circuit, etc. However, most of the lower bounds
have been proposed for the problems that are not yet proven to be in P. Recently, there
has been a vast line of research (see e.g. [1, 2, 4, 27, 38]) to study the computational lower
bounds of fundamental problems in P such as All Pairs Shortest Paths in graphs, matrix
multiplication, 3-SUM, finding central nodes in a network, etc.

However, despite persistent effort, still there is no known technique for proving super-
linear lower bounds for polynomially solvable problems. This directs this line of research
to provide conditional lower bounds, i.e., leveraging common and popular assumptions to
achieve lower bounds. Vassilevska Williams and Williams [38] introduce a fruitful approach
to provide evidence that significantly improving the running time for solving a certain set
of problems in P is unlikely. Their approach is to use combinatorial reductions to show
improving upon a given upper bound for a computational problem, implies improving a
breakthrough algorithm for another famous and fundamental problem. More specifically,
consider a well-studied problem A for which the best known algorithm has running time
Õ(nc). By providing a combinatorial reduction from another problem B to A, it can be
shown that an Õ(nc−ε) time algorithm for problem B, for a constant ε > 0, yields an Õ(nc−δ)
time algorithm for problem A, for another constant δ > 0. This means it is unlikely to obtain
an Õ(nc−ε) time algorithm for problem B. For c = 3 a reduction of the above kind is called
a subcubic reduction. Two problems A and B are called subcubic equivalent, if there is a
subcubic reduction from A to B and a subcubic reduction from B to A [1, 38].

Vassilevska Williams and Williams [38] prove a subcubic equivalence between APSP and
seven other fundamental problems, such as checking whether a matrix defines a metric,
verifying the correctness of a matrix product over the (min, +)-semiring, and detecting if a
weighted graph has a triangle of negative total edge weight. Since then many other works
have used the same approach to obtain interesting hardness results for polynomially solvable
problems (see e.g. [1, 3, 4, 18, 27]).

In the past few decades there has not been any significant improvement or computational
lower bound for these graph centrality problems, especially for APSP. Therefore proving a
subcubic equivalence between a certain problem with cubic time and APSP could be “a huge
and unexpected algorithmic breakthrough"[1]. Floyd [16] and Warshall [36] proposed an
O(n3) algorithm for APSP in 1962. There has been many attempts to improve this running
time [8, 9, 14, 17, 21, 22, 23, 32, 33, 34, 37, 40]. Nonetheless, the best known algorithm
for APSP runs in time O( n3

2Ω(
√

log n)
)1 [37]. But still “One of the Holy Grails of the graph

algorithms is to determine whether this cubic complexity is basically inherent, or whether a
significant improvement (say O(n2.99 time) is possible"[38].

Abboud, Grandoni, and Vassilevska Williams [1] study a series of fundamental graph
centrality problems having tons of applications such as finding influential person(s) in social
networks, finding key infrastructure nodes in the Internet or urban networks, and detecting
super-spreaders of disease. The problems they consider are Radius, Median, Diameter, etc.,
for which the fastest known algorithms are of Õ(n3) running time. Abboud et al. [1] make a
connection between the complexity of these problems to that of two fundamental problems,
namely APSP and Diameter. In Diameter we are asked to find the maximum distance
between any two nodes of a graph. They prove APSP, Radius, and Median are equivalent
under subcubic reductions, i.e. a truly subcubic algorithm for any of these problems implies
a truly subcubic algorithm for each of the rest. They also show Diameter, reach centrality,
and any constant factor approximation algorithm for betweenness centrality are equivalent

1 This still is not O(n3−ε) for a positive constant ε.
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under subcubic reductions.
However the main open question is whether we can obtain a similar connection between

Diameter and APSP. It is straightforward to show a reduction from Diameter to APSP; Once
you have all the distances between the nodes, you can find the maximum distance in time
O(n2) but is there a subcubic reduction from APSP to Diameter? Or can the largest distance
2 of a graph be calculated faster 3 than the time required to calculate all pairwise distances.

In this paper we consider the complementary version of Diameter and relate its computa-
tional complexity to APSP. In particular, we define CoDiameter as the problem of finding a
vertex of graph which is not an endpoint of a diameter, and show a subcubic reduction from
APSP to this problem.

I Theorem 1. APSP and CoDiameter are equivalent under subcubic reduction.

Furthermore, we define complementary problems for other fundamental problems studied
before. For instance, we define the CoRadiusproblem as finding a node which is not a solution
of Radius, and the CoMedianproblem as finding a node which is not a solution to Median. In
this paper we prove subcubic equivalences between APSP, CoMedian, and CoRadius, which
lead to subcubic equivalences between Median and CoMedian, and Radius and CoRadius.

I Theorem 2. APSP, CoMedian, and CoRadius are all equivalent under subcubic reduction.

We also make a connection between the computational complexities of CoNegativeTriangle and
CoAPSPVerification to that of the Diameter problem.

I Theorem 3. There exists a subcubic reduction from CoNegativeTriangle to Diameter.

I Theorem 4. There exists a subcubic reduction from Diameter to CoAPSPVerification.

The number of the problems considered in this paper may be high, however Figure 1
perfectly illustrates the complexity relations between the aforementioned problems. Note
that in Figure 1 any path from problem a A to problem a B denotes a subcubic reduction
from problem A to problem B.

2 Related Work

The most related studies to this paper are by Vassilevska Williams and Williams [38] and
Abboud, Grandoni, and Vassilevska Williams [1]. Vassilevska Williams et al. [38] introduce
the notion of subcubic reduction and prove subcubic equivalences between APSP and seven
other fundamental problems. Abboud et al. [1] use the same approach to obtain subcubic
equivalences among APSP, Diameter, and graph centrality problems such as Radius and
Median to show any truly subcubic algorithm for graph centrality problems can be used as a
black box to obtain a truly subcubic algorithm for APSP or Diameter.

As mentioned above, APSP is among the most well-studied problems in P, for which
there has been a tremendous amount of work to improve its running time [8, 9, 14, 17, 21,
22, 23, 32, 33, 34, 37, 40]. Williams [37] proves there exists an O( n3

2Ω(
√

log n)
) time algorithm

for APSP, which is the best known algorithm so far. However, there are faster algorithms
for graphs with small integer weights (see [30, 39]). Also there are various studies to find
fast approximations for centrality problems. Chang [10] and Goldreich and Ron [19] present

2 Namely diameter.
3 In a subcubic time.
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Figure 1 All reduction colored in orange have been known prior to this work, dashed arrows
show trivial reductions, and blue arrows illustrate the reductions that we present in this work.

approximation algorithms for Median. Aingworth et al. [5] and Berman et al. [7] show there
exist (roughly) 3/2 approximation algorithms for Diameter and Radius in undirected graphs
that run in time Õ(m

√
n+ n2). Roditty and Vassilevska Williams [29] improve the running

time of these algorithms to Õ(m
√
n).

There are also numerous studies obtaining conditional quadratic lower bounds using the
3-SUM problem [3, 6, 11, 12, 13, 15, 18, 26, 27, 31, 35]. In 3-SUM, given a set S of n integers,
we are looking for three elements of S that sum up to zero. Gajentaan and Overmars [18],
for the first time, prove many problems in computational geometry are at least as difficult
as 3-SUM. Patrascu [27] and Abboud and Vassilevska Williams [3] show polynomial lower
bounds for combinatorial problems in dynamic algorithms using subquadratic equivalence
with 3-SUM. Subquadratic equivalence with 3-SUM is also used to obtain lower bounds for
graph algorithms (see [26, 27, 35]) and lower bounds for Stringology problems (see [4, 11]).

The Strong Exponential Time Hypothesis (SETH) of Impagliazzo, Paturi, and Zane [24, 25],
has also been an extremely popular conjecture and a powerful tool to provide surprising
lower bounds on different problems. According to SETH there is no O((2− ε)npoly(n)) time
algorithm to determine the satisfiability of an n-variable CNF formula for some positive ε.
Interestingly, SETH can also be used to obtain lower bounds for problems in P. Abboud
et al. [4] use this technique to obtain lower bounds on string matching problems. Roditty
and Vassilevska Williams [29] showed a lower bounds for approximating the diameter of a
sparse graph using SETH. SETH has also been used for obtaining lower bounds for dynamic
algorithms for maintaining the strongly connected components [3] and 3-party communication
complexity of Set-Disjointness [28].

3 Preliminaries

In all of the problems that we study, we assume the given graph has n vertices and m

edges. We refer to the vertex set and edge set of a graph G by V (G) and E(G), respectively.
For brevity, we sometimes omit the terms directed and weighted, but all of the graphs are
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considered to be both directed and weighted unless otherwise is stated. Also, the weights
of the edges are integer numbers between −M and M where M is a large enough integer
number that is polynomially bounded by n. We assume all of the basic operations (addition,
subtraction, multiplication, etc.) take time O(1). Whenever we use∞, it represents a number
larger than any other integer number including M . Similarly −∞ is always strictly less than
any integer number including −M . If there is no edge between a pair of vertices, we assume
an edge with weight ∞ for that pair. Addition and multiplication of positive numbers to
∞ and −∞ result in ∞ and −∞ respectively, with an exception of multiplication by zero
which is zero.

We say a problem A is subcubically not harder than a problem B or there is a subcubic
reduction from A to B , if every algorithm that solves problem B in truly subcubic time can
be used as a black box to solve problem A in truly subcubic time. We denote this reduction
with A ≤n3 B. Similarly, two problems A and B are subcubically equivalent if both A ≤n3 B

and B ≤n3 A hold. This relation is referred to by A =n3 B.
In the following, we define all of the problems in detail and explain the relation between

them. We divide the problems in three different categories. The first category contains the
problems in which the objective function is to measure a quantity of a given graph. The
output of these problems are either YES/NO, an integer number, or a matrix of integer
numbers. In all of these problems we are given a graph, and the goal is to determine a measure
or verify a given property of this graph. In the following we provide a formal definitions for
the problems of these three categories. The definitions of the problems may seem repetitive,
but as we show later in the paper, this does not necessarily mean the problems are equivalent,
and thus such claims require proofs.

3.1 The First Category: Original Version
The problems of this category are in fact some of the well-studied cubic-time problems in
their common definition. In the following we shortly bring a definition of each problem so
that the reader has a reference to compare these problems with the problems of the next
categories.

I Definition 5. Given a graph G, APSP asks for an n× n matrix D such that Di,j specifies
the distance of the j’th vertex from i’th vertex of G.

We also study another variant of the APSP problem in which we are not required to compute
the whole matrix of distances but we only need to verify if a given matrix is the correct
distance matrix of the graph.

I Definition 6. Given a graph G and a matrix D, the objective of APSPVerification is to
determine whether D is the correct distance matrix of G.

One of the important problems that has been studied in the literature of subcubic
equivalences is the NegativeTriangle problem. In this problem the goal is to determine
whether a given digraph has a triangle with a negative weight. Although the solution of
every instance of this problem is either YES or NO, it has been shown that this problem is
as hard as APSP with regard to having a subcubic algorithm [38].

I Definition 7. Given a graph G, NegativeTriangle asks whether the graph has a triangle
with a negative weight.

We also study the Median, Radius, and Diameter problems for weighted digraphs with non-
negative weights. All these problems have been vastly studied in the literature. Many



6 Subcubic reductions

algorithms have been proposed for each of these problems but none of them has a truly
subcubic runtime [20, 5]. In a recent work of Abboud et al.[1] it has been shown that
a subcubic algorithm for either of these problems leads to a subcubic algorithm for the
APSP problem. It is trivial to show that any truly subcubic algorithm for APSP solves any
of these problems in truly subcubic time.

I Definition 8. Given a graph G with non-negative edge weights, the goal of Radius is to
find the smallest number R∗, such that there exists a v ∈ G that can reach every other vertex
within a distance of R∗.

I Definition 9. Given a graph G with non-negative edge weights, the goal of Median is to
find a vertex whose total sum of distances to all other vertices is minimal and report this
total sum.

I Definition 10. Given a graph with non-negative edge weights, Diameter asks to compute
the longest distance between any pair of vertices in G.

3.2 The Second Category: Vertex Version
In the second category we introduce the vertex versions of the problems in the first category.
In Lemma 16 we show equivalences between the original version and the vertex version for
some of the problem 4.

IDefinition 11. Given a graphG and a matrixD, the goal of the APSPVerificationIndex problem
is to either report that D is the correct distance matrix of G or return an index (i, j) such
that Di,j is not equal to the distance of vertex j from vertex i.

I Definition 12. Given a graph G, the goal of the NegativeTriangleVertex problem is to
either report the graph has no triangle with a negative weight or report a vertex i which
forms such a triangle with two other vertices.

IDefinition 13. Given a graphG with non-negative edge weights, the goal of the RadiusVertex problem
is to find a vertex which has the minimum maximum distance to all other vertices. Note
that this problem is equivalent to finding a center of G.

IDefinition 14. Given a graphG with non-negative edge weights, the goal of the MedianVertex problem
is to find a vertex which has the minimum total sum of distances to all other vertices.

IDefinition 15. Given a graphG with non-negative edge weights, the goal of the DiameterVertex problem
is to find a vertex i such that there exists a vertex j that has a distance from i equal to the
diameter of the graph.

The reason we define different versions of a problems is because this helps convey a better
understanding of the idea behind our reductions. It is important to mention that these
different definitions of a problem do not change its hardness under subcubic reductions. To
prove this we use binary search as the main tool to solve one problem from another. In other
words, it can simply be shown that each problem in the first category is equivalent to its
corresponding problem of the second category.

I Lemma 16. Given a graph G = (V,E), the following pairs of problems are equivalent
under subcubic reduction.

4 A similar idea can be used to prove the same claim for the rest of the problems.
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Radius and RadiusVertex(Center).
Median and MedianVertex.
Diameter and DiameterVertex.

The proof of this lemma is in the Appendix A.

3.3 The Third Category: Complementary Version
The problems of this category are defined in the same way as the problems of the second cat-
egory, however, the objective here is exactly the opposite. For instance, in DiameterVertex the
goal is to find an endpoint of a diameter, where the goal of CoDiameter is to find a vertex
that is not an endpoint of a diameter. Although the definitions of two problems seem very
similar, we point out a wide gap between them. This is interesting since as shown in this
paper, some of the other similar problems such as Median and Radius, are equivalent to
their complementary versions. As a contribution of this paper, we simplify the gap between
Diameter and APSP to the gap between Diameter and CoDiameter.

I Definition 17. Given a graph G and a matrix D, the goal of CoAPSPVerification is to
either report that none of the entries of D is correct or report a pair (i, j) such that Di,j is
equal to the distance of vertex j from vertex i of G.

I Definition 18. Given a graph G, the goal of CoNegativeTriangle is to either report that
every vertex of G is in a negative triangle or return a vertex which is not in any negative
triangle.

I Definition 19. Given a graph G, The goal of CoRadius is to report a vertex which is not
a solution to the RadiusVertex problem for the same input, if exists one. Otherwise reports
that every vertex is a solution to Radius, i.e. all vertices are centers of G.

I Definition 20. Given a graph G, the goal of CoMedian is to report a vertex which is not
a solution to Median, if exists one.

I Definition 21. Given a graph G, the goal of CoDiameter is to report a vertex which is
not a solution to DiameterVertex, if exists one.

4 Reductions

In this section we explain all of our reductions in detail. In Section 4.1 we provide a subcubic
reduction from Radius to CoRadius and CoDiameter. In Section 4.2 we show a subcubic
reduction from NegativeTriangle to CoMedian. Next, in Sections 4.3 and 4.4 we demonstrate
subcubic reductions from Diameter to CoAPSPVerification and from CoNegativeTriangle to
Diameter, respectively.

4.1 Radius to CoRadius and Radius to CoDiameter
The main idea behind our proof is constructing a new graph instance and provide a subcubic
reduction via a binery search. In contrast to Theorem 25 which directly follows from trivial
observations, the proof of Theorem 24 involves more a complicated combinatorial analysis.

I Lemma 22. Given an Õ(T (n)) time algorithm for CoRadius, where T (n) is polynomial in
n, there exists an Õ(T (n) + n2) time algorithm for Radius.
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Proof. First, without loss of generality we assume every edge in G has an even weight since
otherwise we can double the weight of each edge without loss of generality. Let A be an
Õ(T (n)) time algorithm for CoRadius. Given graph G, we construct graph G′ as follows.
Put all vertices and edges of G in G′, plus two new vertices x and y. For each vertex
v ∈ V (G′) \ {x, y} add two bidirectional edges from v to x and y with weight q. Now we
claim that the radius of G is less than 2q if and only if there is a vertex in G′ which is not a
center. For simplicity we call such a vertex a CoCenter.

Given the claimed proposition we can use algorithm A to determine whether there exists
a CoCenterin G′, in time Õ(T (n)). Hence, a binary search on q can find the minimum value
of q such that the radius of G is no less than 2q, i.e. every vertex in G′ is a center. The
number of times we need to use A is O(lognM) ∈ Õ(logn), therefore there exists an Õ(T (n))
time algorithm for Radius.

In order to prove the claim, we first show that if there exists a CoCenterin G′, then the
radius of G is less than 2q. Let u be such a vertex. Note that for each vertex v ∈ G′, there
exists a path from u to v of length at most 2q. Since u is not a center, there exists a vertex
t ∈ V (G′) such that for each vertex v ∈ V (G′), there is a path in G′ from t to v of length
less than 2q. This implies there exists a vertex t ∈ V (G) such that for each vertex v ∈ V (G),
there is a path in G from t to v of length less than 2q. Thus the radius of G is less than 2q.

Similarly, if the radius of G is less than 2q, then there exists a CoCenterin G′. The
shortest path between x and y is of length 2q, which implies x is not a center.

The claim is proved and thus there exists an Õ(T (n) +n2) time algorithm for Radius. J

Interestingly, in proof of Lemma 22, we do not need to know which vertex is not a center.
More precisely, it is only sufficient to know whether all vertices of the graph are centers
or not. Via the following observation, we conclude the same proof can be used to reduce
Radius to CoDiameter.
I Observation 4.1. Every graph G has a vertex u which is not a center if and only if it has a
vertex v which is not a diameter endpoint of the graph.

I Corollary 23. Given an Õ(T (n)) time algorithm for CoDiameter, there exists an Õ(T (n) +
n2) time algorithm for Radius.

The following theorems follow directly from Lemma 22 and Corollary 23.

I Theorem 24. Radius≤n3 CoCenter.

I Theorem 25. Radius≤n3 CoDiameter.

Note that due to Abboud et al. [1], APSP and Radius are equivalent under subcubic
reduction. Thus by Theorems 24 and 25 CoRadius and CoDiameter are also equivalent to
APSP under subcubic reduction.

I Corollary 26. APSP =n3CoRadius =n3CoDiameter.

4.2 NegativeTriangle to CoMedian
In this section we provide a subcubic reduction from NegativeTriangle to CoMedian. The
reduction uses a tricky graph construction to create a symmetric instance graph that helps
to make a connection from NegativeTriangle, which is subcubically equivalent to APSP, to
CoMedian.

I Lemma 27. Given an Õ(T (n)) time algorithm for CoMedian, where T (n) is polynomial
in n, there exists an Õ(T (n) + n2) time algorithm for NegativeTriangle.
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Proof. Given a graph G(V,E,w), we construct a directed graph G′(V ′, E′, w′). The approach
to solve the problem is to see whether G′ has a vertex which is not median (co-median). If
not, we show finding out whether G has a negative triangle can be done simply by a Dijkstra
from an arbitrary vertex of G′. To this end, we construct G′ with 3 times as many vertices
as G has. The limited size of G′ ensures that the subcubic reduction is preserved here.

Without loss of generality we assume there exists an edge between every two vertices of G,
because otherwise we can put an edge with a big enough weight H and be sure that it does
not contribute to any negative triangle. The vertex set of G′ contains three copies of V (G),
namely A, B and C. Let vX denote a copy of a vertex v ∈ V (G) in part X ∈ {A,B,C}
of G′. We draw an edge of weight H/2 from every vX to every other uX in the same part.
Moreover, for every two vertices vA and uB we draw an edge of weight H + wv,u from vA
to uB and an edge of weight 2H − wv,u from uB to vA. We do the same for edges between
parts B and C and parts C and A. Figure 2 shows graph G′ and the symmetry between its
three parts.

𝐻/2

𝐻/2

𝐻/2

𝐻/2

𝐻/2

𝐻/2

𝑣𝐴𝑢𝐴

𝑢𝐵

𝑣𝐵𝑢𝐶

𝑣𝐶

2𝐻 −𝑤𝑣,𝑢

𝐻 + 𝑤𝑣,𝑢

2𝐻 −𝑤𝑣,𝑢

𝐻 + 𝑤𝑣,𝑢

2𝐻 −𝑤𝑣,𝑢

𝐻 + 𝑤𝑣,𝑢

Figure 2 Constructing a symmetric graph G′ from G in the reduction from NegativeTriangle to
CoMedian.

Since G′ is symmetric, we can assume that it has a median in every part. Let rA be a
median in part A. The shortest path from rA to vA is a direct edge of weight H/2. The
shortest path from rA to every vB is also a direct edge with weight H+w′rA,vB

. For every vC ,
the shortest path from rA is either a direct edge of weight 2H − w′rA,vC

or a path through
an intermediate vertex uB with total length of H + w′rA,uB

+H + w′uB ,vC
. If the latter is

smaller than the former, we can imply that r, u and v form a NegativeTriangle in G:

2H + w′rA,uB
+ w′uB ,vC

< 2H − w′rA,vC
⇒ wr,u + wu,v < −wv,r ⇒ wr,u + wu,v + wv,r < 0
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On the other hand, if the shortest path from rA to every vertex vC is the direct edge
(rA, vC), then using similar inequalities to above, it can be shown that rA does not contribute
to any negative triangle in G. In this case, all vertices of G′ have a fixed summation of
distances from all other vertices. Let sum(v) denote this summation for a vertex v. Below,
we formulate this value only for vertices in part A, because based on the symmetricity of G′,
the value of sum(v) can be determined via the same formulas for the vertices in parts B and
C.

∀vA ∈ G′ : sum(vA) =
∑

xA∈A\{vA}

(
H/2

)
+
∑
xB∈B

(
H + w′vA,xB

)
+
∑
xC∈C

(
2H − w′vA,xC

)
= (n− 1)H/2 +

∑
x∈V (G)

(
H + wv,x

)
+

∑
x∈V (G)

(
2H − wv,x

)
= (n− 1)H/2 + 3nH (1)

According to 1, we only need to construct G′ as above and see if all vertices are medians,
and if sum(v) = (n − 1)H/2 + 3nH for every v ∈ V (G′) 5. If these two hold, then G

is free of negative triangles. Otherwise, there exists a median rA in G′ with sum(rA) <
(n− 1)H/2 + 3nH indicating the existence of a negative triangle in G.

J

I Theorem 28. NegativeTriangle ≤n3 CoMedian.

4.3 Diameter to CoAPSPVerification
In this section we provide a subcubic reduction from Diameter to the CoAPSPVerification problem.

I Lemma 29. Given an Õ(T (n)) time algorithm for CoAPSPVerification, where T (n) is
polynomial in n, there exists an Õ(T (n) + n2) time algorithm for Diameter.

Proof. The outline of the proof is as follows. First, we show an algorithm for finding the
solution of the CoAPSPVerification problem can be used as a black box for determining
whether the diameter of a graph is greater than or equal to an integer number d. Then we
run a binary search on d to find the exact diameter of the graph. Assuming the algorithm for
CoAPSPVerification runs in subcubic time, the total running time of the algorithm remains
subcubic. In the rest we show how we can determine if the diameter of G is at least some
given value d.

We construct a graph G′ from G by taking all the vertices and edges of G and adding
an additional edge from every vertex of G to every other vertex with weight d. By taking
the minimum, multiple edges of G′ can become simple edges. With this construction the
diameter of G′ is at most d since there exists a shortcut of weight d between every two
vertices. Moreover, if the diameter of G′ is exactly d, it means there are two vertices x and y
in G such that the distance of y from x is at least d. Otherwise the distance of every vertex
of G from every other vertex is at most d − 1. Thus, the diameter of G is more than or
equal to d if and only if there exists a pair (x, y) of vertices in G′ such that distance of y
from x is exactly d. Let D be an n× n matrix such that all of its entries are equal to d. If
we give G′ and D as inputs to the algorithm for CoAPSPVerification, it will report if any

5 It suffices to check this value just for one vertex, because now we know all vertices are median.
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index of D represents the true distance of the corresponding vertices in G′, and hence we
can determine if the distance of any two vertices of G′ is exactly d which is equivalent to G
having a diameter of no less than d. J

The following theorem follows directly from Lemma 29.

I Theorem 30. Diameter ≤n3 CoAPSPVerification.

4.4 CoNegativeTriangle to Diameter
In this section we provide a subcubic reduction from CoNegativeTriangle to the Diameter problem.

I Lemma 31. Given an Õ(T (n)) time algorithm for Diameter, where T (n) is polynomial in
n, there exists an Õ(T (n) + n2) time algorithm for CoNegativeTriangle.

Proof. For every graph G, we create a graph G′ with six times as many vertices. More
precisely, V (G′) is consisted of six parts A, B, C, D, X, and Y . For every vertex v ∈ V (G),
we put vertices vA, vB, vC , vD, vX , and vY in parts A, B, C, D, X, and Y , respectively.
Moreover, for every edge from a vertex u to a vertex v with weight w in E(G) we draw an
edge with from uA to vB , uB to vC , and from uC to vD with weight w+H where H = 10M .
Furthermore, we add an edge from every vX to vA with H. Similarly we draw an edge from
every vertex vD to vY with weight H. Finally for every u 6= v we add an edge from uA to
vD with weight 0.

In the following we show G has a vertex u which does not take part in any negative
triangle if and only if the diameter of G′ is at least 5H. Note that due to the construction of
G′, the diameter of the graph is always the distance of a vertex of part X to a vertex of part
Y . Since we put an edge of weight 0 from uA to vD for every u 6= v, the distance from every
vertex uX to every vertex vY is at most 3H for u 6= v. However, the distance of every vertex
vX to vY is more than 3H. Therefore the diameter of the graph is always from a vertex
vX to a vertex vY . Note that, the distance of a vertex vA to vD is equal to weight of the
minimum weight triangle in G that contains v plus 3H. Thus, the diameter of the graph is
at least 5H if and only if there exists a vertex v in G which lies in no negative triangle.

All that remains is to find a vertex which does not contribute to any negative triangle if
there exists one. Lemma 16 shows given a truly subcubic algorithm for Diameter that only
finds the length of the diameter, we can obtain a truly subcubic algorithm that also find the
endpoints of the diameter. Therefore, we can find two vertices vX and vY such that their
distance is equal to the diameter of the graph in time Õ(n3−δ) for some constant δ. If the
distance of vA and vD is at least 3H, we can report v as a vertex which does not contribute
to any negative triangle, otherwise every vertex of G contributes to a negative triangle. J

Theorem 32 follows directly from Lemma 31.

I Theorem 32. CoNegativeTriangle≤n3 Diameter.

5 Conclusion and Open Problems

This paper has been an effort to close the gap between sucubical reducibility between
APSP and Diameter. We introduce complementary problems in order to draw new reductions
between the problems that are subcubically equivalent to either of APSP or Diameter. There
are some interesting problems that are left open in this paper. One is whether Diameter or
NegativeTriangle are equivalent to their complementary versions. In this paper, we show for
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Median and Radius that they are subcubically equivalent to their complementary versions.
This gives us the impression that the same claim also holds for the other complementary
problems. If so, a groundbreaking subcubic equivalence between APSP and Diameter would
be reinforced.
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A Equivalence of vertex version and numerical version

Proof of Lemma 16: For each of these three problems, the reduction from the numerical
version to the variant in which the output of the problem is a vertex is trivial. This holds
since having an optimal solution of the vertex version, we can simply run a single-source-
shortest-path algorithm and find the numerical solution of the problem in time O(n2).

To reduce the vertex version to the numerical version, we assume there is an algorithm
that solves the numerical version and will access the algorithm as a black box Õ(log(n))
times. Note that this keeps the reduction subcubic since the number of accesses is less than
nε for any ε > 0. The overall idea is the same for all of the three problems. We first show
how to use the solver of the numerical version to see whether or not a set S ⊆ V contains a
solution of the vertex version. Then everything boils down to a binary search: Beginning
from a set of vertices S = V (G), at each step we divide S into two subsets of size fairly equal
S1 and S2 and search for the solution of the vertex version in either S1 or S2. This cuts the
size of the search space into half at every step and finally finds the desired vertex in at most
dlog(n)e steps.

In the following, for each of the three problems we show how to use a solver of the
numerical version to see whether or not there exists a solution of the vertex version in S.

Diameter: Suppose the diameter of G is equal to d. We construct G′ from G by adding a
dummy vertex x′ for each x ∈ S and connecting them with an edge of weight ε. Let d′
denote the diameter of G′. If there is no vertex in S that is an endpoint of a diameter of
G then d′ will be equal to d. Otherwise, d′ will be at least d+ ε.
Radius: Suppose the radius of G is r. We construct G′ from G by adding a dummy node
x and connecting it to all vertices of S with edges of weight r. Let r′ be the radius of G′.
If r′ > r then all centers of G are in V \S, since they need to reach x through S in G′.
Otherwise, there exists a center of G in S and r′ = r.
Median: Suppose m is the value of the median of G. We construct G′ from G by adding
a dummy vertex x. Let’s Q be a very big number. We connect x to vertices of S with
edges of weight Q and to the rest of graph with edges of weight Q+ ε. Let us use m′ to
denote the value of median in G′. If there exists a median vertex of G in S, then that
vertex can be a median vertex of G′ too. In this case, m′ = m+Q. If no such a vertex
exists, then all medians of G′ are out of S and m′ = m+Q+ ε.
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Figure 3 (i) Left figure shows the reduction for Diameter, (ii) the figure in the middle illustrates
the reduction for Radius, and (iii) the figure on the right shows the reduction for Median.
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