Subgraph-centric Large-Scale Graph Analytics on Spark

Albert Koy
Department of Computer Science
University of Maryland
College Park, MD 20742

akoy93@terpmail.umd.edu

ABSTRACT

Over the past several years, large-scale graph analytics has
become a quickly growing research area. Practical com-
puting problems often deal with large graphs such as so-
cial networks and the Web graph, and as these graphs have
grown to billions of vertices and trillions of edges, there has
been an increased focus on executing graph computations
in a distributed fashion. Vertex-centric distributed graph
processing platforms like Pregel were some of the first sys-
tems meant specifically for distributed graph processing. Al-
though these systems have vastly simplified the implemen-
tation of certain distributed graph processing algorithms,
they are not well-suited for graph processing tasks that need
to consider vertices in the context of their neighbors rather
than in isolation. As such, one emerging paradigm is the use
of a subgraph-centric view of graph computation in which
users write programs at the level of subgraphs rather than at
the level of vertices. This paper elucidates the fundamental
differences between the vertex-centric and subgraph-centric
paradigms, outlines an implementation of a subgraph-centric
graph processing system called NScale on Apache Spark, a
widely used distributed dataflow system, and introduces a
novel interface for subgraph specification unseen in prior
subgraph-centric graph processing frameworks.

1. INTRODUCTION

Efficiently processing large graphs calls for both distribu-
tion and parallelization, but these methods introduce many
challenges. Graph algorithms tend to have their computa-
tions dictated by the structure of the underlying graph, mak-
ing parallelization difficult, exhibit poor locality of memory
access, have a high data access to computation ratio, and
have a varying degree of parallelism during execution [3].
In addition, as graphs become distributed across many ma-
chines, the task of processing a large graph inherits many
of the classic challenges in distributed systems: maximiz-
ing concurrency, load balancing, designing efficient patterns

for communication between machines, fault tolerance, and
scalability.

In the past several years, many systems have been devel-
oped in an attempt to provide scalable solutions to large-
scale graph processing tasks. Pregel [4], published in 2010
by Google, is a vertez-centric graph processing framework
for iteratively executing vertex programs across the vertices
of a graph. It was one of the first distributed process-
ing frameworks built specifically for handling large graphs.
When Pregel was developed, there were very few options for
users who wanted to process a large graph in any type of
distributed setting. Users often had to resort to creating
custom distributed infrastructure for different graph algo-
rithms and different graph representations, rely on using dis-
tributed computing platforms like MapReduce which were
poorly suited for graph processing, or use existing parallel
graph systems, which at the time did not handle important
issues like fault tolerance.

From Pregel, this research area of large-scale graph pro-
cessing has seen quickly growing interest. In recent years,
with systems like Giraph++ [15], NScale [7], and Arabesque
[14], there has been a paradigm shift towards subgraph-centric
implementations. Many of these implementations achieve
significant performance gains over Pregel and other vertex-
centric variants, however, there are still several challenges in
contention between these subgraph-centric systems. For in-
stance, providing a robust approach towards achieving fault
tolerance is still a common issue with these systems with
many of them opting for snapshot recovery instead. Addi-
tionally, these systems all use different approaches for al-
lowing users to specify subgraphs on which to run computa-
tions. Giraph++ provides users no control and instead has
the system automatically determine subgraphs, Arabesque
provides a relatively sophisticated interface for selecting sub-
graphs, but the paper fails to mention support for large
graphs that do not fit on a single machine, and NScale pro-
vides a subgraph specification interface that is only suitable
for specifying a neighborhood around a vertex rather than
subgraph patterns like triangles.

In this paper, we describe the implementation of a per-
formant, scalable, and fault tolerant system for distributed
graph processing, which we call NSpark. We hope to unify
the major pieces of wisdom gained from prior implementa-
tions of graph processing systems. In particular, NSpark
provides a subgraph-centric view of computation, provides
a flexible programming interface that allows users finer con-
trol over specifying the exact subgraphs for the system to
process, and is built on top of Apache Spark [19], a dis-

tributed dataflow framework that systems like GraphX [18]
have leveraged to great success.

To summarize, the main contributions of this paper are
as follows:

1. A survey of related work focused on motivating the
purpose of subgraph-centric graph processing systems
and uncovering some of the open research areas asso-
ciated with these systems.

2. An outline of the design and implementation of a novel
subgraph specification interface that allows users to
easily express complex subgraph patterns.

3. An overview of the implementation and applications
of NSpark, the successor of NScale, built on top of
Apache Spark.

2. RELATED WORK

Pregel, one of the first specialized graph processing sys-
tems, [4] introduced the ”Think Like a Vertez” paradigm in
which users implement graph algorithms in a vertex-centric
programming model. Each vertex in the graph contains only
information about itself and its outgoing edges, and com-
putations are expressed at the vertex level. As Pregel has
shown, vertex-centric programming is a very natural and
understandable model that has been used to create efficient
and scalable implementations of algorithms like PageRank.
However, vertex-centric frameworks are not always the most
effective for many types of graph algorithms. Vertex-centric
systems almost always operate on the entire graph, which is
not necessary in many cases. Additionally, since computa-
tions in vertex-centric systems happen at the vertex level,
these systems are not well-suited for graph algorithms that
require information about the neighborhood around vertices
due to the communication overhead and network traffic re-
quired to fetch this information.

Recognizing the deficiencies associated with many vertex-
centric systems like Pregel, researchers have done a lot of
work investigating potential optimizations to vertex-centric
systems while still maintaining the same general computa-
tion model. For instance, researchers have explored poten-
tial optimizations to implementations of graph algorithms
on Pregel-like systems to reduce communication overhead
and the number of supersteps required to execute graph al-
gorithms to completion [12].

On the other hand, systems like GraphX [18] attempt to
improve upon the vertex-centric approach by altering the
execution model and by leveraging existing distributed data
processing frameworks. GraphX is built on top of Spark
[19] and uses a Gather-Apply-Scatter decomposition as an
execution model with pull-based messaging.

Another notable approach is the use of a single multicore
machine, rather than a cluster of machines, for graph pro-
cessing. The key insight with these systems is that, often
times, distributed graph computation systems fail to out-
perform serial implementations on the same algorithm due
to an inherent lack of parallelizability [6]. Ligra [13] is a sys-
tem that is designed for graph processing on shared memory
machines. Compared to distributed memory systems, com-
munication costs are much cheaper and algorithm implemen-
tations are much simpler. X-Stream [9] is another shared-
memory system that instead uses an edge-centric graph pro-
cessing model using streamed partitions.

Beyond optimizations to vertex-centric systems and shared-
memory systems, there have been a number of systems that
have proposed subgraph-centric computation models. These
types of systems primarily aim to reduce the message pass-
ing overhead and scalability issues associated with vertex-
centric systems while still maintaining the benefits of having
a highly distributed system. For instance, Giraph++ [15]
proposes a subgraph-centric programming model in which
user programs are implemented at the subgraph level rather
than at the vertex level. Some more evolved systems like
NScale [7] and Arabesque [14] also use similar subgraph-
centric models ("neighborhoods” in the case of NScale and
?embeddings” in the case of Arabesque), but these systems
are also focused on some of the issues that arise when adopt-
ing a subgraph-centric model such as providing an interface
for users to specify subgraphs, distributing subgraphs across
machines, and automatic parallelization.

Moving forward, we will go into more depth discussing
each of these graph processing paradigms. In particular, we
will classify the above systems into one of three categories:

1. Vertex-Centric Approaches
2. Subgraph-Centric Approaches
3. Other Graph Processing Frameworks

Finally, we will present a set of issues and open research
areas unaddressed by the current graph processing systems,
which we hope to address in this paper.

2.1 Vertex-Centric Approaches

In recent years, the biggest graph datasets have been
growing exponentially in size. As graphs become too large to
store on a single machine, they must be distributed across a
cluster of machines and they can no longer be processed in-
memory by a single machine. ” Think Like a Vertex” graph
processing frameworks were developed in response to these
challenges of analyzing large graphs on a single machine.
Broadly speaking, these vertex-centric frameworks provide a
natural way to parallelize computations on large graphs that
are stored in a distributed fashion by taking user-defined
functions and executing them in parallel on all vertices of
the graph. The results of these computations are propa-
gated across the graph until some convergence property is
met.

Pregel [4] was one of the first and most influential vertex-
centric systems. Typically, Data-Parallel MapReduce [1]
systems are poorly suited for graph processing tasks due
to the data interdependencies inherent to many graph al-
gorithms. In most graph algorithms, vertex computations
are dictated by the results of computation on adjacent ver-
tices, making these algorithms difficult to parallelize. Pregel
introduces a Graph-Parallel abstraction in contrast to the
Data-Parallel abstraction provided by MapReduce systems.

Pregel uses a master-worker architecture in which a single
master machine coordinates all worker machines. The mas-
ter machine is responsible for managing partitions, coordi-
nating worker activity, and fault tolerance. Pregel is based
on the Bulk Synchronous Parallel (BSP) computation model
[16]. At the beginning of a graph computation, the mas-
ter is responsible for distributing the vertices of the graph
across different worker tasks running on different machines.
The graph processing task is broken down into iterations
called supersteps, the worker tasks execute in parallel, and

then all workers synchronize at the end of each superstep.
The graph processing task is implemented in a vertex-centric
fashion in which user-defined vertex programs are executed
on each vertex exactly once in every superstep. During ex-
ecution vertices may communicate with each other through
message passing. Typically, messages are sent to destina-
tions vertices that are accessible from the outgoing edges of
the source vertex.

Pregel has been used to create scalable implementations
of standard graph algorithms like PageRank, Shortest Path,
Semi-Clustering, and Bipartite-Matching.

Challenges. Vertex-centric systems such as Pregel limit
the user program’s access to solely the vertex on which the
program is executing by design. Consequently, the biggest
fundamental limitation with most vertex-centric systems is
the high communication overhead and network traffic needed
to execute many classes of graph algorithms. For instance,
graph algorithms that work at the subgraph level rather
than at the vertex level would have to rely on message pass-
ing for each vertex of the subgraph in order to reconstruct
the subgraph locally if the vertices are scattered across the
network.

On top of communication overhead, many vertex-centric
systems almost always process the entire graph, which is not
always necessary. For example, a user might want to only
analyze the neighborhood around certain vertices of interest.
This type of computation is not well-supported by vertex-
centric approaches, which tend to rely on all vertices needing
to meet a convergence property before execution stops.

Optimizations. In response to the big challenges faced
by vertex-centric systems, there have been efforts to imple-
ment optimizations that address the bottlenecks of vertex-
centric systems which are mainly the communication over-
head and the number of supersteps required to complete
the computation [12]. One of the most effective general
approaches has been to finish graph computations serially.
Given that some algorithms converge very slowly while work-
ing on only a tiny fraction of the input graph, one effec-
tive optimization has been to monitor the size of the ac-
tive graph for computation and, once its size falls below a
certain threshold, finish the rest of the computation seri-
ally in an effort to reduce the number of supersteps. Other
approaches require algorithm-specific optimizations. For in-
stance, "edge cleaning” is a common operation in graph al-
gorithms that has vertices delete neighbors from their adja-
cency lists based on their values. Pregel handles this oper-
ation by having vertices send each other their values in one
superstep and clean the adjacency lists in another superstep.
One optimization would be to clean edges only as they are
discovered, avoiding an unnecessary superstep.

Variants of Vertex-Centric Systems. On top of opti-
mizations to vertex-centric systems, there are a set of com-
ponents that many vertex-centric systems do differently de-
pending on their intended use cases [5]. These components
are the following:

1. Timing - How user-defined vertex programs are sched-

uled for execution. System execution can be synchronous,

asynchronous, or hybrid.

2. Communication - How vertex program data is made
accessible to other vertex programs. The two primary
methods are message passing or shared memory.

3. Execution Model - Implementation of vertex program
execution and flow of data. Vertex programs may
execute many phases of computation. For instance,
Gather-Scatter is a two phase model and Gather-Apply-
Scatter is a three phase model. Additionally, data flow
can be characterized as push or pull. In a push model,
information flows from the active vertex to adjacent
vertices. In a pull model, vertex programs ask adja-
cent vertices for information.

4. Graph Partitioning - How vertices of a graph are di-
vided up and stored across a set of worker machines.
Other than basic hash partitioning, there are systems
that implement streaming partitioning, vertex cuts (i.e.
partitioning a graph by its edges rather than by its ver-
tices), and dynamic repartitioning.

Beyond the standard Pregel implementation, which uses a
synchronous, single-phase push execution model with mes-
sage passing and hash partitioning, many systems have ex-
plored different design decisions across these four dimen-
sions. For instance, Ligra [13] uses shared memory for com-
munication and found that the communication overhead was
much lower with the tradeoff that extremely large graphs are
not supported by the system. GraphX [18] uses a Gather-
Apply-Scatter pull execution model and found that these
choices led to an improved work balance and reduced data
movement and enabled vertex-cut partitioning. In short,
the number of possible variations is endless and specific de-
sign decisions only depend on the intended use cases for the
system.

2.2 Subgraph-Centric Approaches

In this section, we shift paradigms from vertex-centric ap-
proaches to subgraph-centric approaches. Subgraph-centric
approaches work at the subgraph level rather than at the
vertex level. Generally speaking, subgraph-centric approaches
to distributed graph processing systems seek to offer lower
communication overhead, lower scheduling overhead, and
lower memory overhead when compared to vertex-centric
approaches. Many would argue that subgraph-centric ap-
proaches are also more natural and intuitive for many classes
of problems [15]. The key insight with these approaches is
that by having relevant edges and vertices for a computation
grouped together locally on one machine rather than scat-
tered across a network, network communication is vastly re-
duced, which can also lead to scheduling and memory gains.
However, these systems also introduce a new class of prob-
lems. Specifically, it is important to consider how best to
specify or select subgraphs and how partitioning and paral-
lelization is affected with this new paradigm.

Giraph++. One of the first subgraph-centric distributed
graph processing systems was Giraph++ [15]. This system
primarily addressed the message passing overhead and scal-
ability issues with the BSP model of computation used by
systems like Pregel. One of the key issues in systems like
Pregel is graph distribution often having a suboptimal num-
ber of edge cuts. As such, significant network communica-
tion is necessary for graph algorithms that require informa-
tion from adjacent vertices. Giraph++ addresses this issue
by creating subgraph partitions of graphs and distributing
them to multiple machines and then running a sequential
algorithm in a partition in each superstep.

On well-partitioned data, Giraph++ observes significant
performance gains over vertex-centric systems. For instance,
a graph-centric connected components algorithm on a graph
of 118 million vertices and 855 million edges ran 63x faster
than a comparable vertex-centric implementation and also
had 204x fewer network messages.

Despite these performance gains, Giraph++ does lack
some key features that become important when implement-
ing subgraph-centric graph algorithms. First, Giraph+-+
does not give the user any means of specifying subgraphs
of interest. Graphs are automatically partitioned into sub-
graphs by the system, which greatly limits the flexibility
a user might require for implementing a performant graph
algorithm. Secondly, Giraph++ executes computations se-
rially within partitions with no support for parallelization.
This leaves users to implement parallelization in user-defined
functions, which is an extremely difficult task.

Arabesque. One system that addresses the issue of al-
lowing users to specify subgraphs of interest is Arabesque
[14]. Arabesque is described as a distributed data processing
platform for implementing graph mining algorithms which
alms to automate the process of exploring a very large num-
ber of subgraphs. The approach Arabesque uses is what the
authors of the paper refer to as " Think Like an Embedding”
in which an embedding denotes a subgraph representing a
particular instance of a a more general subgraph pattern,
which represents a set of graphs.

The key contributions of Arabesque are its use of em-
beddings as the basic building block for graph mining and
its filter-process model which allows users to easily specify
graph mining tasks. To begin, users provide filter and pro-
cess functions and optional aggregation functions. Arabesque
computations proceed in a sequence of supersteps in which
the filter function is then used to identify embeddings of in-
terest. Once these embeddings are identified, the process
function runs on each embedding to generate output. At
the end of computation, the aggregation function is exe-
cuted if provided. Arabesque runs each of these supersteps
in parallel by partitioning the set of embeddings over mul-
tiple servers.

Arabesque also implements a variety of optimizations to
enable a coordination-free exploration strategy, support for
storing embeddings compactly, efficient partitioning of em-
beddings for load balancing, and fast pattern canonicality
checking to avoid duplicate work. These optimizations com-
bined with the ”Think Like an Embedding” paradigm lead
to a scalable system well-suited for problems like frequent
subgraph mining, counting motifs, and clique mining. The
authors claim that in comparison to vertex-centric systems,
Arabesque is clearly better. In comparison to ”Think Like a
Pattern” systems, which use a pattern-centric approach for
graph mining, Arabesque is more scalable.

NScale. Another subgraph-centric system that provides
an interface to allow users to specify subgraphs of interest
and also offers better support for parallelization is NScale
[7]. The key components of NScale include a “neighborhood-
centric” programming model, a graph extraction and pack-
ing module responsible for subgraph selection and distribut-
ing selected subgraphs across machines, and a distributed
execution engine that manages parallel execution of graph
computations.

NScale provides an interface that allows users to specify
subgraphs of interest by having users provide predicates to

specify a set of query vertices based on vertex attributes,
the radius around the query vertices to consider, and edge
and vertex predicates for the neighborhood. Additionally,
users specify the graph algorithm to run as a user-defined
function to run on the neighborhoods specified by their pro-
vided predicates. NScale constructs neighborhoods of in-
terest based on these predicates and then distributes them
across machines using a bin packing algorithm. Finally, the
distributed execution engine executes the graph algorithm
with support for varying degrees of parallelization by run-
ning the user-defined function on each neighborhood.

Out of comparisons to Giraph (open-source version of
Pregel), GraphLab, and GraphX, GraphX is the best per-
forming alternative to NScale. GraphX does well for ap-
plications that use 1-hop neighborhoods, but performance
deteriorates as the graph size increases. In short, NScale is
a much more scalable solution, as would be expected with
many subgraph-centric systems.

2.3 Other Graph Processing Frameworks

There have been several other alternatives to vertex-centric
graph processing frameworks beyond subgraph-centric ap-
proaches.

X-Stream. X-Stream [9] is a system that runs on a sin-
gle shared-memory machine that uses an edge-centric graph
processing model with stream-based partitioning. The sys-
tem uses a synchronous Scatter-Gather execution model in
which scatter and gather functions are executed in phases
on edges to dictate state changes maintained in the vertices.
X-Stream uses streaming partitions because they enable se-
quential access to slow storage for edge and update streams.
Additionally, like Ligra [13], X-Stream avoids the cost asso-
ciated with network communication by being a single ma-
chine, shared-memory system.

Overall, X-Stream has limitations similar to those en-
countered by vertex-centric systems. The edge-centric view
is fundamentally restrictive in the same way the vertex-
centric view is for graph algorithms that analyze subgraphs
or neighborhoods. Additionally, single machine, shared-
memory systems are inherently not as scalable as distributed
systems.

GraphX. One notable system is GraphX, [18] which at-
tempts to address the limitations of vertex-centric systems
by building a graph analytics framework on top of the exist-
ing distributed processing framework, Spark [19], and by
modifying the vertex-centric model to be less restrictive.
Instead of using the Graph-Parallel abstraction of Pregel
in which user-defined vertex-programs are executed concur-
rently on vertices and in which communication between ver-
tices is done through push-based message passing, GraphX
uses a Gather, Apply, Scatter abstraction that leads to a
pull-based model of message computation. Vertex programs
ask adjacent vertices for messages rather than sending them.
In addition, on top of GraphX, researchers have explored
efficiently implementing high-level primitives for large-scale
graph processing [11] to help programmers avoid the com-
mon pitfalls in implementing common graph processing tasks
on their own.

2.4 Open Research Areas

This set of open research areas is not exhaustive, but it
represents a few of the issues in contention between the dif-
ferent subgraph-centric systems we have evaluated so far.

We hope to address these issues in this paper.

Fault Tolerance. In pursuit of performance, many graph
processing systems abandon fault tolerance in favor of snap-
shot recovery [18]. For instance, Pregel and Giraph++
achieve fault tolerance through checkpointing, and the pa-
pers for Arabesque and NScale fail to mention considera-
tions for fault tolerance. GraphX is the only system we
have encountered that provides very robust fault tolerance
by relying on the lineage-based fault tolerance provided by
Spark.

Graph Partitioning Another big challenge these sys-
tems face is efficient partitioning of graphs. Pregel imple-
ments hash-partitioning in which each vertex is assigned to a
worker based on its hash value. This creates balanced parti-
tions, but it also creates a suboptimal number of edges that
span two different workers. With more efficient partitioning,
there are great opportunities to reduce network communi-
cation during algorithm execution. Different vertex-centric
systems have explored different ways of partitioning such
as streaming partitioning, vertex cut partitioning, and dy-
namic repartitioning. When it comes subgraph-centric sys-
tems, partitioning challenges are similar, but there is also
the additional challenge of efficiently packing subgraphs onto
different machines.

Subgraph Specification. When dealing with subgraph-
centric systems, interfaces that allow users to specify the
subgraphs considered for execution enable more performant
implementations of graph algorithms. Systems like NScale
and Arabesque provide interfaces for users to specify sub-
graphs, but these are very nascent and lack flexibility. For
example, with NScale’s interface, it is hard to specify sub-
graph patterns like triangles.

3. NSPARK PROGRAMMING MODEL

3.1 Overview

NSpark assumes a standard graph definition in which each
graph, G(V, E) consists of a set of vertices, V, and a set of
edges, E. One of the main goals of the NSpark system is to
offer a programming abstraction that makes implementing
graph processing tasks very simple. In order to implement
a graph processing task, the user is required to provide (1)
subgraphs of interest on which to run the computation, and
(2) a user program. The user specifies subgraphs of interest
by providing an extraction query, which consists of:

1. A list of vertex patterns. Each vertex pattern is im-
plemented as a function that accepts a vertex, imple-
ments a filter on the vertex, and returns a Boolean
value based on the results of the filter.

2. A list of edge patterns. Each edge pattern is a 2-tuple
in which each component in the tuple contains an index
value corresponding to the set of vertices associated
with each vertex pattern. Each edge pattern asserts
that, in the extracted subgraph, there must be an edge
present between the two corresponding vertices.

3. A neighborhood size. This is an integer value that in-
dicates the size of the neighborhood to extract around
the subgraphs denoted by the vertex and edge pat-
terns.

Within the user program, the user provides the following:

id: 9403

"HIHHE"
id: 4034

id: 1000

id: 4903

// extractOneHopNeighborhood.scala
val extractionQuery = (
List(
(v: Vertex) => v.id == 1000
),
List(Q),
1

Figure 1: The 1-hop neighborhood around vertices
with ID 1000.

1. A map function. This map function executes on each
of the extracted subgraphs and outputs a result.

2. A reduce function. The reduce function accepts a list
of results from the map function executing on the ex-
tracted subgraphs and returns a user-defined aggregate
result.

Overall, the key novelty in NSpark’s programming model
over NScale’s is the extraction query. In NScale, the user
provides a single vertex filter (analogous to vertex patterns
in NSpark), which is used to extract query vertices, a neigh-
borhood size, and a set of vertex and edge filters for the
vertices and edges in the neighborhood of the query vertex.
The key downside to this approach is that the user would
not be able to easily express relationships between different
vertices in the extracted subgraph. We address this issue by
introducing the notion of edge patterns in NSpark’s inter-
face.

3.2 Subgraph Specification Interface

To illustrate both the power and simplicity of NSpark’s
subgraph specification interface, we present a few extraction
queries and their corresponding extracted subgraphs.

Taking a look at Figure 1, we present a simple subgraph
pattern consisting of the vertices with ID 1000 and their
1-hop neighborhoods. This is the type of subgraph that
could easily be specified by NScale’s subgraph specification
interface.

The subgraph pattern in Figure 2 is where we begin to
have issues with NScale’s subgraph specification interface. A
triangle is a very common pattern in graph processing tasks,
but since NScale only allows users to provide a filter for a
single set of query vertices, it becomes extremely difficult to
express patterns like triangles in graphs.

id: 3000

id: 2000

// extractTriangle.scala
val extractionQuery = (
List(

(v: Vertex) => v.id == 1000,
(v: Vertex) => v.id == 2000,
(v: Vertex) => v.id == 3000

),

List((0, 1), (0, 2), (1,2)),

0

Figure 2: A triangle pattern between vertices with
ID’s 1000, 2000, and 3000.

id: 8394

id: 4352 id: 1998

id: 7983

// extractDisconnectedVertex.scala
val extractionQuery = (
List(

(v: Vertex) => v.id == 1000,
(v: Vertex) => v.id == 2000,
(v: Vertex) => v.id == 3000,
(v: Vertex) => v.id == 4000

)’

List((0, 2), (1, 2)),

1

Figure 3: The 1-hop neighborhood around sub-
graphs with vertices with ID’s 1000, 2000, 3000, and
4000 and edges between vertices 1000 and 3000 and
2000 and 3000.

// Compute the number of triangles containing each
// vertex
val triCountGraph = graph.triangleCount ()
// Determine the number of triangles possible at
// each vertex
val maxTrisGraph = graph.degrees
.mapValues(d => d * (d - 1) / 2.0)
// Normalize the number of triangles at a vertex by
// the number of triangles possible at the vertex
val clusterCoefGraph = triCountGraph.vertices
.innerJoin(maxTrisGraph) {
(vertexId, triCount, maxTris) => {
if (maxTris == 0) O else triCount / maxTris
}
}

Figure 4: An implementation of computing the Lo-
cal Clustering Coefficient using the GraphX pro-
gramming model from [10].

The example in Figure 3 shows a subgraph pattern that is
impossible to express with NScale’s subgraph specification
interface. The subgraph pattern consists of three vertices
with another disconnected vertex along with their 1-hop
neighborhoods.

Throughout these three examples, it is important to note
that, despite the increasing complexity of the extracted sub-
graphs, the complexity of the extraction queries remained
the same.

3.3 Local Clustering Coefficient

To illustrate an the end-to-end process of implementing a
common graph processing task using the NSpark program-
ming model and how it compares to using popular graph pro-
cessing frameworks like GraphX, we provide two implemen-
tations for computing the local clustering coefficient [17].

Clustering coefficients are measures of the degree to which
vertices in a graph tend to cluster together. The local clus-
tering coefficient of a vertex is a measure that quantifies how
close that vertex and its neighbors are to forming a clique
(a complete graph). The local clustering coefficient C for a
vertex that has k neighbors and ¢ triangles is:

2t
Kk—1))

In the GraphX implementation of computing the local
clustering coefficient (Figure 4), we need to compute tri-
CountGraph, which contains the number of triangles formed
at each vertex in the graph, and maxTrisGraph, which con-
tains the maximum number of triangles that can be formed
at each vertex, which can be derived from the vertex’s de-
gree. Once these values are computed, we do a join on the
two tables and compute the local clustering coefficient with
the joined values.

In the NSpark implementation of computing the local
clustering coefficient, we build an extraction query to specify
the subgraphs of interest, which include the 1-hop neighbor-
hood around every vertex in the graph, and then we write a
map function that computes the local clustering coefficient
for each subgraph of interest. This map function computes
the local clustering coefficient computing the number of tri-
angles in the subgraph and dividing by the number of max-

// Specify the subgraphs of interest, which consists
// of the 1-hop neighborhood around each vertex
val extractionQuery = (
List((v: Vertex) => true),
List(),
1
)
// Specify the map function, which computes the local
// clustering coefficient for the extracted subgraph
val mapFn =
(subgraph: Graph, queryVertices: List[Vertex]) => {
val deg = subgraph.getDeg(queryVertices(0))
val maxTris = deg * (deg - 1) / 2.0
val triCount = subgraph.triangleCount ()
if (maxTris == 0) O else maxTris / triCount
}
// Specify a reduce function, which is not needed in
// this case
val reduceFn = None
// Run the Local Clustering Coefficient Algorithm
GraphExecutor.run(
graph, extractionQuery, mapFn, reduceFn

)

Figure 5: An implementation of computing the Lo-
cal Clustering Coefficient using the NSpark pro-
gramming model.

imum possible triangles at the vertex associated with the
subgraph, which is derived from the vertex’s degree.

As shown in the NScale paper [7], this type of local clus-
tering coefficient implementation is comparable to the one
for GraphX, and even vastly outperforms the GraphX im-
plementation on densely connected graphs. Even with this
performance boost, the NSpark implementation remains rel-
atively simple compared to the GraphX implementation. In
the NSpark implementation, the ease of use of the subgraph
specification interface, the subgraph-centric view of com-
putation, and the Map-Reduce [1] model for defining user
programs afford the user the luxury of only having to think
about the local clustering coefficient computation in the con-
text of a single vertex and its 1-hop neighbors. Contrast
this with the GraphX implementation in which the user has
to think about various joins and maps on potentially large
tables and it becomes clear that NSpark offers a simpler
interface for this class of graph algorithms.

4. NSPARK IMPLEMENTATION

4.1 Overview

NSpark is a subgraph-centric, distributed graph process-
ing framework built on top of Apache Spark [19]. The
NSpark system is divided into two key components, which
include a Graph Extraction and Packing (GEP) module,
which is responsible for extracting subgraphs of interest from
the input graph and a Distributed Execution Engine, which
is responsible for executing distributed graph processing tasks
on the extracted subgraphs. Prior to the execution of any
graph processing task, a user will provide an input graph,
G, an extraction query to specify subgraphs of interest, and
a user program in the form of Map and Reduce functions to
execute on the subgraph. The GEP module will translate
the extraction query in to a series of Spark dataflow opera-
tors, which will then be executed to extract the subgraphs of

interest out of the interest graph G. Next, the GEP module
will run a shingle-based graph partitioning algorithm [8] to
pack the extracted subgraphs into different partitions across
distributed memory using the Spark API. Finally, the Dis-
tributed Execution Engine will run the user-provided Map
and Reduce functions in parallel on the packed subgraphs.
NSpark is largely based on the work done in NScale [7].
The main distinctions between these two systems are that
NSpark is written in the Scala programming language and is
built on top of Apache Spark while NScale is written in Java.
Additionally, NSpark offers a more sophisticated subgraph
specification interface than what is offered by NScale, allow-
ing users to more naturally specify complex subgraph pat-
terns. As shown in the prior NScale paper [7], compared to
graph processing frameworks like GraphX, subgraph-centric
systems like NScale and NSpark are more suitable for a large
number of graph processing tasks, especially those that re-
quire high communication between vertices in the graph.

4.2 Leveraging Apache Spark

One of the most critical design decisions for NSpark was to
build the entire system on top of Apache Spark [19]. Other
systems like GraphX [18] have leveraged Apache Spark to
great success, observing that there is a very close relation-
ship between common graph operators and the various dataflow
operators provided by Spark. With that in mind, we decided
to build on top of Spark for the following reasons:

1. Fault Tolerance. Many specialized graph processing
systems offer very poor guarantees in regards to fault
tolerance. These systems often abandon fault toler-
ance in favor of snapshot recovery to achieve greater
performance. By building on top of Spark, NSpark
automatically offers the lineage-based fault tolerance
of Spark RDD’s in which Spark logs the lineage of
operations for each RDD, which enables automatic re-
construction upon failures.

2. Rich Dataflow Operators. GraphX discovered that
many graph computations can be efficiently translated
into a series of Spark dataflow operators, which be-
comes especially useful when dealing with distributed
memory. In particular, the Graph Extraction and Pack-
ing module in NSpark exclusively uses Spark dataflow
operators for extracting subgraphs of interest.

3. User-Defined Data Partitioning. Spark offers fine
user control over how data is partitioned. This is useful
in the context of our Graph Packing implementation,
which attempts to find efficient configurations for stor-
ing different subgraphs across distributed memory.

4. High-Level Scala API. Spark offers an extensible,
high-level Scala API, which allows us to implement the
Distributed Execution Engine using the Scala Actor
system. The Scala Actor system is a well-regarded tool
for building high-concurrency systems, which makes
perfect sense for NSpark.

4.3 Graph Extraction and Packing Module

The Graph Extraction and Packing Module is written us-
ing dataflow operators provided by Apache Spark and is re-
sponsible for extracting subgraphs of interest and determin-
ing an efficient configuration for packing the different sub-
graphs onto different machines. The user specifies the sub-
graphs of interest by providing an extraction query, which

consists of a list of vertex patterns, a list of edge patterns,
and a neighborhood size, and the GEP module translates
this extraction query into a sequence of Spark dataflow op-
erators. These operators are executed first to construct the
neighborhoods for each vertex, then to construct the sub-
graphs corresponding to the vertex and edge patterns, and
then finally to join the neighborhoods of each vertex to the
constructed subgraphs to produce the final subgraphs of in-
terest. This process is done entirely within Spark’s Resilient
Distributed Datasets (RDD) [19].

4.3.1 Graph Extraction

To go into more detail on how neighborhood construction
is implemented, consider Figure 6. The simplest case is a 1-
hop neighborhood, which only requires a single groupByKey
on the edge list. For neighborhoods of size k with k s 1,
the general process is to initialize an RDD of neighborhoods
as the adjacency list (an RDD containing a vertex’s 1-hop
neighbors), re-key the RDD with a flatMap transformation
such that each neighbor in a vertex’s neighborhood becomes
a key, and then join this RDD with the adjacency list to in-
troduce all of the neighbors of the vertices in the prior itera-
tion’s neighborhood into the RDD. This process is repeated
for k - 1 iterations. Given this approach, it is important
to note that on each iteration, the size of the RDD’s being
joined increases by a factor of n with n being the average
size of the neighborhoods.

In order to construct the subgraph patterns, consider Fig-
ure 7. The first step is to filter the edge list using each vertex
pattern to generate a set of vertices corresponding to each
vertex pattern. The subgraphs RDD is initialized as the first
constructed edge pattern. Edge patterns are constructed by
joining the left and right sides of the edge list with the cor-
responding vertex sets retrieved with the vertex patterns.
Then, the remaining edge patterns are constructed one-by-
one. The final subgraphs RDD is constructed by joining all
of the constructed edge patterns incrementally on the initial
subgraphs RDD, and then joining in the neighborhood for
each vertex in each subgraph from the neighborhoods RDD
to complete the extraction query.

4.3.2 Graph Packing

In order to pack the extracted subgraphs onto different
machines across distributed memory, we employ the same
shingle-based partitioning algorithm used by NScale (Figure
8). The key idea is to choose a set of k different random
pairwise independent hash functions, use each to compute
the hash of each vertex in a subgraph, and take the minimum
result for each hash function as a shingle value. Subgraphs of
interest are sorted based on the single values associated with
them in a lexicographical fashion, which will place subgraphs
with high overlap in close proximity to each other. Finally,
a greedy algorithm is used to pack subgraphs into different
partitions.

4.4 Distributed Execution Engine

The Distributed Execution Engine component of NSpark
is responsible for executing the user program, specified as
a pair of Map and Reduce functions, on the extracted sub-
graphs in a parallel fashion. The Distributed Execution En-
gine is written in Scala and makes heavy use of the Scala
Actor system, which is based on the Actor model defined

by Hewitt [2]. Scala Actors provide a high level of abstrac-
tion for writing concurrent and distributed systems. They
rely on message passing for communication and free the pro-
grammer from handling finer details like explicit locking or
thread management, making it easier to write correct pro-
grams.

4.4.1 Custom-Built Graph Data Structure

As a first step to building out the Distributed Execution
Engine, we need to build a custom graph data structure
since Scala fails to provide a graph data structure in its
standard library. NScale [7] used the Java BluePrints APT",
which provides a graph data structure with many standard
functions for interacting with a graph, so we seek to replicate
that functionality in Scala.

The graph data structure we built stores a set of vertices
and a set of edges as fields. In addition, it uses the adjacency
list representation of graphs and stores a Map that contains
the set of edges associated with each source vertex and a
Map that contains the set of edges associated with each
destination vertex. The graph data structure also provides
a set of common functions for interacting with graphs, which
include getting the neighbors of a vertex, getting the edges
associated with a vertex, getting the degree of a vertex, and
adding and removing vertices and edges from the graph.

One notable detail about the graph data structure we im-
plemented is support for denoting different subgraphs. One
of the findings from the original NScale paper was that by
storing multiple subgraphs in a single graph data struc-
ture, memory usage during computation can decrease signif-
icantly. The scheme NScale used involved storing a BitMap
along with each edge and vertex in the graph. The BitMap
would have a size equal to the number of subgraphs packed
into the graph data structure, and each index in the BitMap
would correspond to a specific subgraph. Vertices and edges
were marked as part of a subgraph by having the index cor-
responding to that subgraph in the BitMap set to 1. This
idea eliminates the need to store multiple copies of vertices
and edges in the case of overlapping subgraphs. As such,
similar to NScale, NSpark stores a Scala BitSet along with
each vertex and edge in the graph data structure.

4.4.2 Distributed Execution with Scala Actors

In order to execute graph processing tasks in a distributed
fashion, we built a set of Scala classes called SubgraphFEz-
ecutor, SubgraphMapper, and SubgraphReducer. The general
execution scheme is described in Figure 8. The SubgraphEx-
ecutor is the starting point for distributed graph computa-
tions. It accepts a graph contained within our custom graph
data structure, a Map function, and a Reduce function. The
SubgraphExecutor will spawn a SubgraphReducer and a set
of SubgraphMapper’s and send a message to each of the
SubgraphMappers consisting of the graph data structure, a
subgraph ID, and the Map function. The SubgraphMap-
per will run the Map function on the graph data structure
with the access of the Map function limited to only vertices
and edges with a set bit in their BitSet corresponding to
the subgraph ID passed in. Once the execution of the Map
function is complete, the Subgraph Mapper sends a mes-
sage to the SubgraphReducer. Once the SubgraphReducer
has collected messages from all of the SubgraphMapper’s,

"https://github.com/tinkerpop/blueprints /wiki

Re-keyed 1-Hop Joined Re-keyed 1-Hop Merged Lists

Edge List Neighborhoods Neighborhoods After Join
01 1 (0,[1,23) 1] (0,01,273),123]) 0| 1,23
map - switch
0|2 1-Hop 2| (0,123) 2 ((0,[1,2 3]), 1) l?ack to 0 [1,23] 2-Hop
Neighborhoods L Neighborhoods

0 3 flatMap - 3 (0,[1,23) 3 ((0,[1,23]),[0,1,2]) | original keys 0 00,123

0 [1,2,3] expand join with 1-Hop and merge 00123
112 groupByKey 2.5 | Meighbors list 2 (23 | Neighborhoods = 2 (a. 2.3, lists T 23 reduceByKey 0,1,2,3]
13 | —) m [— 3 (1L[23) [e— 3 ((1,[23)100.1,2]) — 11100,1,23 — 5 n2.3
21 1 (2.11) 1 (211, [2,3]) 2| 1,23 =

3 012 3 00,123
23 0| (3101,2) 0 ((300,1,2),01,23]) 3/00,1,23
31 1 (3,00,1,2) 1] (301,2)023]) 3/00,1,23
32 2 (3,00.1,2) 2| (31001,2)01) 30,12

Figure 6: An example of the sequence of Spark dataflow operators needed to construct 2-hop neighborhoods.
Beginning with an edge list, a groupByKey operation can be used to construct the 1-hop neighborhoods.
Then, a flatMap to expand the neighbor list as keys, a join with the 1-hop neighborhoods, and a map and
reduceByKey can be done to retrieve the 2-hop neighborhoods.

Joined on Left

of Edge List
Edge List chs;:np:\::’:f 0 join right side Fully Joined Constructed
Vertex Patterns: (0, 1) on edge 0l 2 of edge pattern Edge List map - store Edge Pattern 0
. 01 ' Jist 9 (0, 1) on edge each vertex in
0: (v: Vertex) => v.id % 2==0 0 3 list 0 1 a list [0, 1, NULL]
1: (v: Vertex) => v.id == 1 0|2 —_— ——
2: (v: Vertex) =>v.id == 3 03 2 1 2 1 [2,1,NULL]
Edge Patterns: 1 Vertex Pattern Lists 2 3 map and join - Extracted
filter 0 . Subgraphs
) -key and join 9!
0: (0, 1) 13 1 3 re)
1(12) — 2 to merge lists 01,3
21 | —
. 1 2 . 2,1,3]
2 3 join left side of yoined on Left join right side
(?dg)eg:gzme of Edge List of edge pattern Fully Joined ~ map - store Constructed
3.1 ' Jist 9 1 2 (1, 2) on edge Edge List each vertex in Edge Pattern 1
3 2 list a list
13 — 13 [NULL, 1, 3]

Figure 7: An example of constructing the subgraphs specified by the sample vertex and edge patterns. First,
each vertex pattern is applied to the edge list to get a set of vertices for each vertex pattern. Then, for each
edge pattern, the edge list is joined on both sides with the vertices for the corresponding vertex patterns.
Finally, the constructed edge patterns will be joined together to produce the set of extracted subgraphs.

Sorted M: R
Subgraphs Subgraphs appers educers
send Graph 0 to —)
1,234 [1,2,3,4] SubgraphExecutor .
) Graph id: 0 [
[3.4,5,6,9,10] [1,4,6,7,8] {) I
[, 5] [1.2.3] d Graph 1 t —)
send Graph 1 to
[1,4,6,7,8] 1,3,4,6,7,8,9] SubgraphExecutor . 5
) id: ! \—I > Results
[4,9] 2,4,5] Packed Subgraphs (Crapbidat) —
. id: 0, Result(...)
1,23 [3,4,5,6,9,10] id: 0, Graph([1, 2, 3, 4], [1, 4,6,7, 8], [1,2, 3], [1, 3.4, 6,7, 8,9])
6, 8,9, 10] 3,5, 9] o send Graph 2 to id: 1, Result(...)
[6,8,9,10] sort based on [3,5,9] send to GEP id: 1, Graph([2, 4, 5], [3, 4, 5, 6,9, 10], [3, 5, 9]) SubgraphExecutor L 1612, Resul()
56,71 shingles 4.5 module id: 2, Graph((4, 51, 5, 9]) ‘ (Graph id: 2) e % e
[— [— - id: 3, Result(...
[3.5,9] 4.9 id: 3, Graph([5, 6, 7, [5, 6, 7], [5, 7, 8])
o send Graph3to —————— id: 4, Result(...)
2.4,5] [5,6,7] id: 4, Graph([6, 8, 9, 10}, [8], [9, 10]) Subgraphixecutor [e—
8] [5,6,7] [(Graph id: 3) L |:>
[1,3.4,6,7,8,9] 5.7.8) —
[5,6,7] 6. 8,9, 10] send Graph 4 to —_—
SubgraphExecutor
[9,10) 8] - \ >
) (Graph id: 4)
5,7,8] [9, 10] [

Figure 8: An illustration of NSpark’s shingle-based graph packing algorithm and distributed execution engine.
After building an RDD of subgraphs from the extraction query, compute a set of shingle values for each
subgraph and sort the RDD based on the lexicographical order of the shingle values associated with each
subgraph. Use a greedy graph packing algorithm to load overlapping subgraphs into a custom-built Scala
graph data structure, initialize a SubgraphExecutor for each subgraph, and then run the user-provided Map
and Reduce functions.

the SubgraphReducer runs the Reduce function on the col-
lected results. Finally, it sends this final result back to the
SubgraphExecutor and the task is finished.

During distributed execution, a SubgraphExecutor is spawned
for each graph data structure in the packed subgraphs RDD
produced by the Graph Extraction and Packing module.
Since the RDD is stored in distributed memory, this en-
sures that we have both parallelism within a machine and
distribution across many machines.

S. FUTURE WORK

By taking the best ideas from NScale [7], adding a more
flexible subgraph specification interface, and building the
system on top of Apache Spark [19], we hope to offer NSpark
as an overall improved version of NScale. However, in or-
der to be certain of the correctness of many of our design
decisions, it will be necessary to conduct a comprehensive
experimental analysis comparing the performance and mem-
ory usage of NSpark against NScale and other comparable
graph processing systems. We hope to conduct this experi-
mental analysis, use the results to tune the implementations
of the algorithms described in this paper, and then eventu-
ally bring NSpark to a state in which it would be suitable
for releasing as an open-source graph processing system.

6. REFERENCES

[1] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107-113, 2008.

[2] C. Hewitt, P. Bishop, and R. Steiger. A universal
modular actor formalism for artificial intelligence. In
Proceedings of the 3rd international joint conference
on Artificial intelligence, pages 235-245. Morgan
Kaufmann Publishers Inc., 1973.

[3] A. Lumsdaine, D. Gregor, B. Hendrickson, and
J. Berry. Challenges in parallel graph processing.
Parallel Processing Letters, 17(01):5-20, 2007.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference
on Management of data, pages 135-146. ACM, 2010.

[5] R. R. McCune, T. Weninger, and G. Madey. Thinking
like a vertex: a survey of vertex-centric frameworks for
large-scale distributed graph processing. ACM
Computing Surveys (CSUR), 48(2):25, 2015.

[6] F. McSherry, M. Isard, and D. G. Murray. Scalability!
but at what cost? In 15th Workshop on Hot Topics in
Operating Systems (HotOS XV), 2015.

[7] A. Quamar, A. Deshpande, and J. Lin. Nscale:
neighborhood-centric analytics on large graphs.

10

(12]

(13]

(16]

(17]

(18]

(19]

Proceedings of the VLDB Endowment,
7(13):1673-1676, 2014.

A. Rajaraman, J. D. Ullman, J. D. Ullman, and J. D.
Ullman. Mining of massive datasets, volume 1.
Cambridge University Press Cambridge, 2012.

A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
Edge-centric graph processing using streaming
partitions. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages
472-488. ACM, 2013.

S. Ryza et al. Advanced analytics with Spark. ed. by
Ann Spencer. O’Reilly, 2014.

S. Salihoglu and J. Widom. High-level primitives for
large-scale graph processing. In Proceedings of
Workshop on GRAph Data management Experiences
and Systems, pages 1-6. ACM, 2014.

S. Salihoglu and J. Widom. Optimizing graph
algorithms on pregel-like systems. Proceedings of the
VLDB Endowment, 7(7):577-588, 2014.

J. Shun and G. E. Blelloch. Ligra: a lightweight graph
processing framework for shared memory. In ACM
SIGPLAN Notices, volume 48, pages 135-146. ACM,
2013.

C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos,
M. J. Zaki, and A. Aboulnaga. Arabesque: a system
for distributed graph mining. In Proceedings of the
25th Symposium on Operating Systems Principles,
pages 425-440. ACM, 2015.

Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and
J. McPherson. From think like a vertex to think like a
graph. Proceedings of the VLDB Endowment,
7(3):193-204, 2013.

L. G. Valiant. A bridging model for parallel
computation. Communications of the ACM,
33(8):103-111, 1990.

D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):440-442,
1998.

R. S. Xin, J. E. Gonzalez, M. J. Franklin, and

I. Stoica. A resilient distributed graph system on
Spark. In First International Workshop on Graph
Data Management Ezxperiences and Systems, page 2.
ACM, 2013.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and

I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and
Implementation, pages 2-2. USENIX Association,
2012.

