A Success Typing System on Imperative Programming Language

Yishan Zhao
University of Maryland

yishanzh@umd.edu

Abstract

Type system is not a foreign concept to programmers,
being present even in some of the most dynamically typed
languages like Javascript. A typical language that fully uti-
lizes the concept of types would require a type definition
in order to instantiate a variable of that type. Or in some
extreme scenarios, patching up concepts like interfaces, ab-
stract classes and even various design modes to impose con-
straints on a variable’s type. Creating a variable without
consciously thinking about its type seems like a liberty re-
served to insecure dynamically typed languages. Although
this paper is not a one-size-fits-all solution to an expressive,
minimalistic yet rigorous type system, it presents one that
omits the necessity of explicitly defining any type, but at the
same time deterministic and statically decidable. this type
system is similar to that of Erlang’s, but with a few major
differences. First, values are mutable and as a result, parts
of the typing rules are generalized to facilitate the extra ex-
pressiveness that it brings. Second, array types are defined
with bounds, which adds additional safety to indexing op-
erations. Finally, the type system introduces the concept
of constraints to provide further safety checks and narrow
down the set of false-negative results during type-checking.
In addition, this paper will also propose and discuss solu-
tions to the unsolved issues of the core Erlang success typ-

ing.

1. Introduction

Type inference is not a new concept. In many mainstream
functional programming languages, programmers can en-
joy the benefit of connecting pieces of the program together
without ever having to write down a single type signature.
Yet, most if not all languages still retain the notion of declar-
ing an algebraic type so that members of this type can be
constructed. Could a sufficiently sophisticated type infer-
ence algorithm get rid of type definitions at all, so that every
expression can be automatically matched to the most suit-
able type? When experienced programmers find themselves
reviewing the other one’s code without proper documenta-

tion on every variable or function, normally their reaction
would be to guess the properties of said variables without
resorting to documentation. In short, terms and expres-
sions are usually understood by observing their behaviors
and properties under various conditions, rather than study-
ing the ground truth, i.e. the type.

This is the heuristic of this type system: If a term ex-
hibits observable properties, then it must be a subtype of its
“true” type. Every new bit of information from type infer-
ence helps to narrow down the subtype even further, to a
point where all necessary type information about this term
has been discovered or the final subtype turns out to be L,
a contradiction thus arises and typechecking concludes.

In such a system, the typechecker must be optimistic
about the expressions and statements [4]. In other words,
there is an underlying assumption that everything in this
program is correct and introduces new knowledge to the
types, unless there is no way to reconcile the emerging con-
tradictions. At that point, the program must fail with no
exceptions.

It is worth noticing that the aforementioned strategy is
exactly the same as in success typing. In essence, the type-
checker optimistically assumes that the program is correctly
typed, until an indisputable contradiction arises. This be-
havior will be discussed in more detail in the next section.

2. Related Works

Despite the original exploration focus on a better type in-
ference algorithm and minimal type annotation, it naturally
and inevitably leads to success typing.

2.1. Success Typing

The idea of success typing is developed from soft typing.
Soft typing is one of the earlier works by Cartwright, et.
al[2] attempting to generalize dynamic typing and static
typing together into one single framework. By default, the
typechecker accepts all valid programs without type anno-
tation to serve the purpose of softly transforming a dynami-
cally typed language into a statically typed one through the
process of annotating and type inference. Inspired by soft
typing, success typing in Erlang (Lindahl, et. al[6]) inher-

its these traits and then allows types to be composed in a
bottom-up fashion in order to scale well in practice.

2.2. Conditional Typing

The type system in Erlang does take control flows into con-
sideration when solving for the type of an expression [6].
However, upon closer inspection, these additional typing
rules are only introduced by pattern matching and in short,
the inferred type of a case expression is always the union
type of all its branches. While this approach is safe and
practical, pattern matching is only one of the many branch-
ing operations. Another prior work by Aiken et. al[l] on
combining soft typing with conditional types reaches simi-
lar approaches, but with less expressiveness due to the lack
of concepts akin to Erlang’s constraints.

A work from 2011, by Guha et. al[3] also tries to lever-
age the power of flow control analysis, but the scope is lim-
ited to developing a compatible type system for JavaScript,
which greatly limits the space for type annotation and type
inference.

3. Language and Typing Rules

After decades of industrial application, most if not all of
the current imperative languages are complete with sophis-
ticated syntax and a diversity of practical features. This lan-
guage does not aim to compete in terms of completeness
nor practicality, but rather a demonstration of this improved
success type system.

This language contains only the minimum features of a
typical imperative language, namely conditional branches,
iterative loops, simple data structures and ways to alter the
values of variables.

3.1. Programming Language Syntax

The syntax allows for the minimum set of instructions that
any non-trivial and Turing Complete language must have,
shown in 1. The goal of this minimalism is to remove un-
necessary features that could complicate the type system by
introducing irrelevant edge cases that would require extra
proof.

The control flow consists of the 1 f and while struc-
tures that behave exactly like in many high-level imperative
programming languages, such as Java. The return and
break statements are implemented as propagating termi-
nation flags through the stack within the interpretation pro-
cess. A noticeable trait of this language, or rather the lack
thereof, is the tuples. Arrays in this language can have ele-
ments of different types, thus virtually marks the concept of
tuples redundant.

There are a few extra notations that are worth explana-
tion.

* ois the associative operator that joins two strings together.

» {Z : €} is the struct literal with a list of key-value pairs,
with the keys denoted as T and values e.

* Arrays have two constructors: they are either from an
array literal [eq,...,e,], or in a C-like style where the
length and type are given, i.e. T'[¢].

» The assignment expression is a bit different: the vari-
able x could be an indexing on an array (in the form of
x[i] where 7 is a natural number), or a projection (in the
form of x.y). While it is possible for this syntax defini-
tion to give rise to assignments such as {z : 1}.z = 2;
where values are assigned to constant left-hand-side ex-
pressions, these do not have any effect on the runtime en-
vironment.

The operational semantics for this syntax virtually fol-
low the usual expectation for imperative languages of this
kind. However, the indexing and projection slightly devi-
ate from a typical definition, in that if the referred key or
index does not exist, they will be declared at that point and
appended to the corresponding data structure. This design
choice may seem counter-intuitive, but it is due to the pecu-
liarities of success typing that will be discussed in detail in
the next subsection.

It is worth mentioning that the switch is rather differ-
ent from expectation, as it is instead a pattern matching.
Normally, the case expression matches the constructors of
an existing type. As no types are explicitly defined in this
language, the only constructors that it can match are from
structure and array literals. It may appear quite limiting on
the expressiveness, but considering that tuples are equiva-
lent to short arrays and singleton types allow the creation of
singleton types to simulate the behavior of type construc-
tors, the switch statement is not as limiting as it appears
to be. For example, consider the following:

sum(tree) {
switch (tree) {
case "Leaf":
return 1;
case ("Branch", 1, r):
return sum(l) + sum(r);

}

tree can be thought of as a member of the Tree type that
has two constructors, defined as follows:

Leaf :Tree
Branch :Tree — Tree — Tree

It may appear confusing that, there is no guarantee that
the tree variable is indeed the exact type, it could very possi-
bly have another constructor that is not matched by the case
expression. The concern is indeed valid, but the primary

su=x = e

|if (e) {ei1} then {es}

|while (e) {e1}

| return;

| break;

| e(e’)

| f(@){5}

| switch (e) {p1 = ¢ ... pn — Cn}
ex=lep < ealer > e

ler Aealer Voes|—e

ler + ealer — e

el o ey

| int | bool | char

|z |ey|ele]| f(e)

| [e1,-..,en] | T[e]

| {z:e}

Figure 1. The operational semantics of this language, omitting the
optional type annotations.

Tu=T1UT
|int | bool | T| Lo
| (T, n, @ :75)
{7 : 7}
|77
{2}
| [n1, n2)

| {true} | {false}

Figure 2. The types

focus of success typing is not to capture the lower bound
of the types — that would be the definition of static typing
— but rather to set an upper bound for every type so that
programs that will fail can be identified.

3.2. Type

The type system is quite similar to Erlang’s. However,
the presence of mutable variables introduces challenges and
necessary generalizations to the typing rules. For example,
the following code is perfectly valid in this type system:

x = true;
X 1;

The underlying reason and corresponding typing rules will
be discussed in the next section.

Although the goal of this type system is to omit type dec-
larations completely, it is undeniable that appropriate type
annotation is still crucial to a readable and secure program.
Therefore the typing rules are designed in a way that is com-
patible with type annotations. However, they will not be
shown in this paper since the work is rather trivial.

3.3. Success Typing and mutable variable

A natural generalization of the original success typing
would be that a term can only be assigned to a variable if
the term is a subtype of that variable, i.e.

Au{z—71}, Cre:7C7
A (C-Cp)UClers z]lFx=ec:0, z:T

The advantage is obvious: the type of any term will nar-
row down monotonously, thus if the said term terminates,
it must preserve all the previously known typing relations,
regardless type inference reaches L. An additional bene-
fit is that in a while loop, types of all terms can always
be guaranteed to be well-defined without the extra need to
backtrack. Although this is a plausible axiom, it offers little
freedom to the semantics. Consider this example:

x = 5;
6;

X =

Line 1 assigns 5 to z, so that the type of z is the single-
ton type {5}. However, {5} is not a subset of {6} thus the
second line will reach a type error. Considering this type
of assignment is extremely common, it would be ridiculous
to prohibit it. Thus the current approach is to allow both
union and intersection to be valid algebra. However, the
loop structure becomes, once again, the critical issue. For
example,

y = [...]; /+* a bunch of values
that share little in common =*/
i=0;
x = 0;
while (b) {

xX++;

x = yl[il];

i++;

The type of = can grow arbitrarily large: suppose =z : X
during the first iteration, in the second iteration, z : X; =
XoUY; where Y; is the type of the i element, that does not
necessarily have to be a subset of X, and therefore break
the typing relation. This has the disastrous implication that,
if the typechecker naively prohibits backtracking, the only

AU{z 71}, C, Sktx:7 V=0 T

Var

A Ckha:ir=(T,n, ...Ti...), 1T,
— T-Index
A CUC;talil:m, di:1;N[0n) V=20
A Ctz:7U{zy— 7'} T-Proj
A Crhay:7 V=0
AClte T, ..., en:Tn V =7, TS
A,CkEcler, ..., en)ice(r, ..., ™) V=71, -truct
A, Ckler:m, ... en:Tn V=71
— - T-Arrl
A, CUC e, ..., en): (1yn, 7)) V=71,
A Clte:te V=1, A2
A, CEtrle]: {r,n, 0), e:7.=glb(re,Z), n=max7, V=1, “ATE
A,Cl—e:T V=1 Au{z—7},ClFa:T T Assign
A (C—-Cy)UClez|Fz=e€e:0, z:7 V=1v,U{z}
Ad{zi—1,....,cn =T, f= 714}, Cle:7e V=1 -
A, Ch1pflzr,...xn) weio, Tp=((T1, ..,m) = T) V=0 ¥
_ A, CEfitper T, en:Ty V=7 T-App
A C—-Crt fler,...,en): B, Tp=o1,...,0np =0, BCa T Co,....,7nCan, V' =VyUTg
AU{ve v €Var(p)}, CHpr:aq, byt B
A Clre:r,Cc AU{v mlve€Var(py)t b pn:an, by: By V=1 .
A, CF (switch () p1 = b1;...;pp = by) 0 V =10,U7,, “Lase
A, Ckcebool V.=71,
A,CUCt—Cvcl_,etth Vt:VCUUTt
A,CUOf—Ovcl—ef:Tf VfZVCUW
A, CkE(if (c)eref):0 V=V, UV; Tt
A, CkFcebool V.=71,
A CUC—-Cy Fe:m V=V, Ut)
T-While

A, CF (while (¢)e):o0 V =V, U7,

Vo € V.A[u/v'|(v) C A(v)

Figure 3. The majority of the typing rules, note that the rule T-App is drastically different from a normal one

sensible type to assign to x is at most X; which contradicts
the typing rule for x++ during the second iteration.

Backtracking seems crucial to the solution, but it is at the
cost of determinism which is also an indispensable property
for a practical typechecker. Thus the compromise is to use

a special typing rule for a loop, so that all terms at the end
of an iteration must be a subtype of what they start to be.
To keep track of this without backtracking, in Fig. 3, there
is a set V being the set of all variables whose states may be
altered in the current scope and up to this point. Similarly,

the notation v, denotes all the variables that may be altered
in the expression e. In addition, the set V'also helps to deter-
mine whether a constraint in set C' is “outdated”, meaning
the constraint no longer applies to some variables’ states.

3.4. Bounded Array

As mentioned above, some types can be dependent on stati-
cally determined values, namely the types with the singleton
property. It is natural to ask, are there any more types that
can be constructed in this way? Admittedly, constructions
in the form of N — 7, where N is the set of all normal
forms, make sense in only a few selected contexts, but a
bounded array would be such one.

Array has been plagued by the issue of invalid indices for
a long time, and there are numerous attempts to reconcile
the intrinsic conflict between unsafe memory access and the
convenience that it provides.

Arrays in this language is encoded by a triplet,
(7, n, (i, 7)), where 7 represents the lowest upper bound
of the types of all its elements, n € N is its length and
(i, 7;) is the set of scoped type relations, that the element
at index ¢ is not only a subtype of 7, but is also a subtype of
Ti.

This notation may appear unintuitive at first glance, but
it is a compromise between expressiveness, practicality in
terms of memory consumption and convenience. If an ar-
ray is constructed from the expression 7[n], then n can be
arbitrarily large, while all elements are of exactly the same
type. On the other hand, if it comes from an array literal,
n should be relatively small, although the elements might
have drastically different types.

However, if n is statically determined, how could the
type express dynamically bounded arrays? Consider this
example:

X = scan|();

Suppose scan is an IO action that returns a dynamically
allocated array of characters, which are then assigned to x.
What would the type of = be? Since there are no further
information about the size of this array;, it is only sensible to
assume the length to be maximum integer. Admittedly, this
is a rather peculiar and useless choice: it does not enforce
static check on bounds, which is the sole purpose of type
checking [5]. However, this is due to the nature of success
typing that a typechecker does not signal false positives, but
rather raises a contradiction only when the program is des-
tined to fail.

We can, however, make this system more useful than it
first appears. Consider the following:

y = some_int;
X = int[42];
... = xlyl;

b =y <= 42;

x is an array of length 42, and then it is indexed by y.
From line 1, the typechecker infers that y is a subtype of
the integer, [int.min, int.max]. The typechecker then op-
timistically assumes the indexing will happen at line 3 is
the intended behavior, not contradicting against any known
type relations. In order for it to be true, y has to be lowered
to the subtype of [0, 42). Finally, this additional informa-
tion helps to determine that b has a more specific type, i.e.
the singleton type { false}.

As mentioned above, this inference is only possible if the
typechecker keeps updating the existing knowledge of the
types. On the other hand, if the newly inferred information
produces a contradiction with existing type relations in the
form of a bottom type, then it is an indirect way of warning
the programmer that the assumption about arrays’ bounds
may be flawed.

3.5. Flow-sensitive Typing

Additionally, we can make the claims on bounded arrays
even stronger by combining it with flow-sensitive typing.
Consider this example:

if (a < 42) {
x = int[a]

Intuitively, we would like the typechecker to infer that x
can only be of type (int, a, (). However, knowing that the
bounds are statically determined, the best guess can only
be that = : (int, 42, (). To obtain this crucial constraint,
the typechecker must allow boolean expressions to be used
as if it is a relation on variables. In an ideal setting where
values are immutable and no side-effects are involved, we
can safely assume that any binary operation that maps to a
boolean value is a relation defined on the two types.

While < is indeed a relation in this specific case, it may
not hold in general. Suppose f : (71, 72) — bool is a
procedure with side effects on its arguments with types 7
and 7o, apparently the relation is ill-defined as any side ef-
fect would interfere with the result. Therefore, the attempt
of incorporating the conditionals into the type relations is
extremely prone to error and pitfalls. To salvage this op-
portunity, the type system introduces another type of rela-
tions that are defined on terms instead of types, called “con-
straints”.

The definition of a constraint is therefore a binary rela-
tion with the signature (71, 72) — bool.

X1 =Ty = Tyy = Tay
1 N\NTo = 21
1 N\ To = T1

—(z1 V x2) = —x1 A2
x1 < Ty = (T, x2, T;) C (T, T1, T7)
x1 > x9 = (T, 1, Tq) C (T, T2, T5)
21 < Tg = max (7,) < min (7,,)

x1 > o = min (7,) > max (74,)

Figure 4. Deconstruction rules

C:=zx
| 21 = 29
| 21 A 2o
| 1 V 29
| 21 < 29
| 21 > 29

|~

Superficially, this seems identical to the boolean expres-
sions defined above, and indeed they carry the same seman-
tics. But they provide a way to formalize the concept of
relation. In addition, only variables and variable-like ex-
pressions such as indexing and projection are allowed to be
operated upon because functions with side-effects in gen-
eral, are ill-defined mathematically and thus hard to keep
track of. In this way, the typechecker can be sure that if
a variable is not referred to in previous computations, its
value will never change. For example, the notations in Fig.
3 such as Cy, Cy and alike are the constraints on variables
that are present in expression ¢ and f. Specifically, in the
T-If type rule, for instance, constraints in C' U C} are imme-
diately dismissed if they contain variables that are present
in V., meaning that their states have been altered by the
side-effects in c.

The constraints are in an intermediate state between
propositions and functions, in the sense that structural
equality is congruent with semantic equality, and conjunc-
tion/disjunction conditions can be split further into clauses.
In fact, many of these constraints have their special rules
that interact with the type system to provide more typing
information. However, some common inference rules are
missing, namely disjunction and negation. This is because
determining a boolean assignment to a disjunction clause is
an NP-hard problem, and the negation rule itself does not
provide much information.

In the last two rules in Fig. 4, the types of 2 and x5 will
be narrowed down to match this constraint.

4. Algorithm

The typechecker in Erlang Core Language uses a two-pass
algorithm to determine the type for every expression, as
described in the paper [6]. To summarize, during the first
stage, the algorithm traverses through the code and gener-
ates a set of constraints, and then solves these constraints us-
ing a set of type resolution rules. To handle situations where
functions are recursive or mutually recursive efficiently, an
extra sub-stage is introduced when generating constraints,
where function calls are reduced to SCC (Strongly Con-
nected Components) which then form a DAG (Directed
Acyclic Graph). The two-pass algorithm in Erlang lever-
ages the fact that the program is composed of interdepen-
dent functions and types of terms always satisfy previous
constraints.

However, these two assumptions are counter-productive
in this success type system, as a program is defined as a
sequence of statements that can not be evaluated to a value,
hence has no appropriate type associated, as well as that
types of values can and will break previous “constraints”, if
there are any.

The proposed typechecker therefore does not take the
similar approach, but builds a DAG of types gradually as it
checks through each statement. Each vertex in the DAG can
be conceptualized as a tuple of a type and its automatically
generated ID, although the actual implementation is differ-
ent due to performance considerations. Two nodes are con-
nected if one is strictly less than the other, so that all types
are always connected to L with finitely many steps, and
conversely, T is always connected to all types with finitely
many steps.

When inferring the type of an expression, the inference
algorithm will start with a given upper bound. Assume the
inferred type is ¢ of expression e after applying the typing
rule T-App, then the algorithm will determine if ¢ exists in
the graph. If not, then a new vertex, ¢ with its generated
ID, will be added to the graph, as shown in 1. In addition,
since some methods, referred to as procedures, can have
side-effects where variables’ values in the environment are
altered and invalidate some constraints, these side-effects
are captured and encoded as the variables that are changed,
denoted as V. Then typechecking algorithm only proceeds
after removing all constraints on v where v € V.. Addi-
tionally, 7" is the set of mappings from variables to type ID
as a way to decouple the type objects from variables: their
types can change, whereas type objects that have already
been added into the graph should not be altered arbitrarily.

The actual typechecking algorithm closely resembles the
typing rules mentioned above 2. When type coercion — a
term’s type must be updated to capture the newly implied

property — happens, the type object ¢ in the graph only
then updates to the intersection between its original type ¢
and the inferred type that it must satisfy. A good property
of this update is that, the subgraph that is rooted on ¢ pre-
serves previous structures, so the change is limited to a cer-
tain scope. On the other hand, types that are parametrized
by ¢, which are also in the scope, need to be updated as they
are not necessarily subtypes of ¢.

The aforementioned type conjunction has its counterpart,
type disjunction. It closely resembles the disjunction in Er-
lang’s success typing, that it can be only introduced by pat-
tern matching and 1 f statements, although a few points are
worth mentioning after being generalized into this context.
Its subtypes are not updated in order to preserve their struc-
tures, but the types that are parametrized by it are still up-
dated in a similar manner. For example,

x = [1, 1]
if (b) {
x[0] = 2

As z[0] changes from {1} to {2}, the type for = changes
from ({1}, 2,) to ([1, 3), 3, {0: {2}, {1:{1}}).

To typecheck the entire program is no more different
than simply checking a sequence of statements. In fact, it
is indeed defined that way. Usually, if a statement passes
typechecking, then its evaluated type is discarded while its
environment is passed to the next statement. One exception
is the return statement, where the following evaluation is
terminated and the returned value is used to determine the
type signature of caller.

Algorithm 1 The type inference algorithm

procedure INFERTYPE(e, G, T, C)
t, Vo < typeof eunder G T C
guardt # |
G+ GU({t}
T+ TU (6, t]D)
returnt;p, V.

end procedure

> if ¢ is new, assign anew ID ¢;p

5. Parametrized Type and Method Overload

One limitation of this type system is that the type signa-
tures of functions might not be informative enough to en-
force meaningful type checks. This is an example from the
original paper, adapted to the current syntax:

and (x1, x2) {
switch (x1, x2) {
case False,
return False;

Algorithm 2 The typechecking algorithm

procedure TYPECHECK(s, C)

if s = Assign x e then
T(x), Ve < inferTypee GT C
C+ (C—-C,)UCler z]
return V = {2} UV,

else if s = Impure e then
t, Vo < inferTypee GT C
return V,

else if s = Break then
return [J

else if s = Return e then
t, Vo < inferTypee GT C
returnt, V., [

elseif s =If ¢ ¢ f then
cip, Ve < inferType cGT C
C+C-0Cy,
C} < toConstraints; ¢
ty, Vi < checkMany t C'
tg, V§ < checkMany f C
returnt; Uty, V; UV}

else if s = While e ss then
cip, Ve < inferType cGT C
C+C-0Cy,
C; + toConstraints; ¢
t, V < checkMany t C
guard Vv € V. T'(v) C T'(v)

else if s = Procedure z ps ss then
T+ TU(ps, T)
t, V < checkMany ss C
Add (z, t) to G and T accordingly
return ()

else if s = Switch e {p; — §55;} then
bind the variables and infer types
t;, Vi < checkMany 53; C
return J#;, UV;

end if

end procedure

case _, X2:
return x2;

Since there always exists one branch that works for any
type of x1 or xo, the typechecker would infer that the func-
tion signature is

(any, any) — any

, the most generic type for functions of arity 2. While it
indeed captures the set of all possible subtypes, the signa-
ture itself is rather unintuitive and unhelpful compared to

Algorithm 3 Typecheck a sequence of statements

procedure CHECKMANY(ss, C)
if ss = [| then
return [J
else if ss = s : s’ then
t, V, 07 < typeCheck s
if (] then
return ¢, V, OJ
else
t, V' « checkMany ss'(C' — Cy)
returnt, VUV’
end if
end if
end procedure

statically typed languages’. One proposed solution, albeit
never implemented, is to incorporate qualifiers into the type
signature, i.e.

Vaq ag.({false}?(ar C {{false})}) U (a)

As admitted in the original paper, this does mitigate the
problem of overly generic type signatures, but it is at the
cost of readability.

However, we can further generalize the idea of
parametrized types as a member of the mapping between
types, and all types that are parametrized by two types are
constructions of the members of kind *+ — * — *. The
construction themselves may not need to be limited to set
operations or bijective mappings such as the type signature
T — [7]. If we treat types as if they are values in the con-
text of higher-order type operators, we can utilize famil-
iar concepts such as pattern matching to construct a surjec-
tive, statically determined and terminating type constructor.
Consider this example:

f :Vr.case 7 of bool — {0}; 7'[] — {[]}

the semantics of this example is obvious: if 7 is bool,
then f(z) for any valid = would be the singleton type of
{0}, and similarly, f(x) would be of type {[]} if 7 has type
(7', n, 7;) for some integer n and additional typing 7;. Note
that this is not a mere change in notation compared to the
qualified set expression, as the fundamental difference is
the capability to evaluate the higher-order expression and
obtain the normal form. Note that, however, not all expres-
sions are valid since the value of this expression needs to be
determined statically, loops and recursions, if they can exist
at all, should be strictly limited so that the typechecker can
reason about the termination. Furthermore, the type expres-
sion could be formally defined to have only the construction

from pattern matching, as any other types of operations on
types and the underlying sets would not make enough sense.

Revisiting the previous example 5, we can rewrite its
type signature as follows:

and : VBq, Pa.case B X (B2 of
{false} x By — {false};
{true} x By — Bo

However, there is one more question remains unan-
swered, that is how do we construct such a delicate type
in a language where there is no way to explicitly define a
type? The structure of the case expression could be thought
of as an implementation of the method overloading feature
prevalent in many imperative languages. For example, to
produce a function signature shown above, we can have this
specific function definition:

f(b) {
if (b) { return b; }
else { return b; }

£(1) { 1[0]; return []; }

This style of notation can even work for method overloads
with different arity. Suppose f has the following overload
signatures:

i: (X, Y)=> 2
f22A—>Z2

The combined method signature f would be:

f V71, To.case 11 X 1o of
XxY — Zy;
AX@—>Z2

Since each method overload itself can be considered an
independent function, thus type inference algorithm can be
applied to the parameters to infer their types.

This feature, however, is not currently incorporated into
the language due to the drastic change in type representa-
tion. In addition, although this style of pattern matching
can be applied to types dependent on constant values, there
has not been a suitable notation to match unions of integer
ranges.

6. Conclusion

This language shows that type inference, being one of the
many merits of a fully statically typed language, can be gen-
eralized into a variant of success typing such that, not only

the typing rules remain congruent and parallel to the suc-
cess typing of immutable terms in a functional language,
but also enables dynamic-typing-like behaviors yet still stat-
ically provable. Furthermore, the type inference algorithm
even allows for totally omitting type signatures. One po-
tential application for this type system might be parsing
volatile yet structured enough markdown or configuration
files, while still providing necessary type safety compare to
dynamic languages.

References

[1] Alexander Aiken, Edward L Wimmers, and TK Lakshman.
Soft typing with conditional types. In Proceedings of the 21st
ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 163-173, 1994. 2

[2] Robert Cartwright and Mike Fagan. Soft typing. In Proceed-
ings of the ACM SIGPLAN 1991 conference on Programming
language design and implementation, pages 278-292, 1991.
1

[3] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi.
Typing local control and state using flow analysis. In Pro-
gramming Languages and Systems: 20th European Sympo-
sium on Programming, ESOP 2011, Held as Part of the
Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2011, Saarbriicken, Germany, March 26-April
3, 2011. Proceedings 20, pages 256-275. Springer, 2011. 2

[4] Robert Jakob and Peter Thiemann. A falsification view of suc-
cess typing. In NASA Formal Methods: 7th International Sym-
posium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015,
Proceedings 7, pages 234-247. Springer, 2015. 1

[5] Liyi Li, Yiyun Liu, Deena Postol, Leonidas Lampropoulos,
David Van Horn, and Michael Hicks. A formal model of
checked c. In 2022 IEEE 35th Computer Security Founda-
tions Symposium (CSF), pages 49-63. IEEE, 2022. 5

[6] Tobias Lindahl and Konstantinos Sagonas. Practical type in-
ference based on success typings. In Proceedings of the Sth
ACM SIGPLAN international conference on Principles and
practice of declarative programming, pages 167-178, 2006.
1,2,6

	. Introduction
	. Related Works
	. Success Typing
	. Conditional Typing

	. Language and Typing Rules
	. Programming Language Syntax
	. Type
	. Success Typing and mutable variable
	. Bounded Array
	. Flow-sensitive Typing

	. Algorithm
	. Parametrized Type and Method Overload
	. Conclusion

