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ABSTRACT
Governments and businesses increasingly rely on data ana-
lytics and machine learning (ML) for improving their com-
petitive edge in areas such as consumer satisfaction, threat
intelligence, decision making, and product efficiency. How-
ever, by cleverly corrupting a subset of data used as input
to a target’s ML algorithms, an adversary can perturb out-
comes and compromise the effectiveness of ML technology.
While prior work in the field of adversarial machine learn-
ing has studied the impact of input manipulation on correct
ML algorithms, we consider the exploitation of bugs in ML
implementations. In this paper, we characterize the attack
surface of ML programs, and we show that malicious inputs
exploiting implementation bugs enable strictly more pow-
erful attacks than the classic adversarial machine learning
techniques. We propose a semi-automated technique, called
guided fuzzing, for exploring this attack surface and for dis-
covering exploitable bugs in machine learning programs, in
order to demonstrate the magnitude of this threat. As a re-
sult of our work, we responsibly disclosed five vulnerabilities,
established three new CVE-IDs, and illuminated a common
insecure practice across many machine learning systems. Fi-
nally, we outline several research directions for further un-
derstanding and mitigating this threat.

Keywords
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1. INTRODUCTION
Governments and businesses increasingly employ data ana-
lytics to improve their competitive edge. For example, the
United States Environmental Protection Agency has out-
lined its vision for leveraging machine learning (ML) to im-
prove their everyday operations [12]. IBM offers businesses
a platform for conducting sentiment analysis to gauge their
effectiveness within a target audience [15]. OpenDNS uses
ML to automate protection against known and emerging

threats [25]. Machine learning allows these organizations to
extrapolate trends from massive data sets, of often uncertain
provenance.

However, ingesting unfiltered, public information into data
analytic engines also introduces a threat, as miscreants can
corrupt eventual inputs to ML algorithms to bias their out-
puts. Cretu et al. [7] discussed the importance of “cast-
ing out demons,” or sanitizing the training datasets for safe
machine learning ingestion. Research on adversarial ma-
chine learning [16, 19, 1, 3] has explored various attacks
against ML algorithms, with a focus on skewing their out-
puts through malicious perturbations to the input data.

In this paper, we discuss another attack vector: ML algo-
rithm implementations. Like all software, ML algorithm im-
plementations have bugs and some of these bugs could affect
learning tasks. Thus, attacks can construct malicious inputs
to ML algorithm implementations that exploit these bugs.
Indeed, such attacks can be more powerful than traditional
adversarial machine learning techniques. For example, a
memory corruption vulnerability could allow an adversary
to corrupt the entire feature matrix, not just the entries
that correspond to adversary-controlled inputs. More gen-
erally, bugs in the cost function, minimization algorithm,
model representation, prediction or clustering steps, could
allow an adversary to arbitrarily skew learning outcomes, to
initiate a denial of service attack or to cause model diver-
gence.

While considerable efforts have beed devoted to discover-
ing software vulnerabilities and mitigating the impact of ex-
ploits, these generally focus on bugs that allow the adversary
to subvert the targeted system, e.g. by executing arbitrary
code or by achieving privilege escalation. In contrast, adver-
saries attacking an ML system are interested in bugs that
allow them to induce mispredictions, misclustering, or to
suppress outputs. Such logic bugs are difficult to discover
using existing tools.

As a first step toward understanding and mitigating this
threat, we characterize the attack surface of ML programs,
which derives from a general architecture that many ML al-
gorithms share, and we identify decision points whose out-
come we may corrupt. We discuss how bugs around those de-
cision points could be exploited and the potential outcomes
of these exploits. We also propose a semi-automated tech-
nique called guided fuzzing for finding and exploiting ML
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implementation bugs. We wrap important decision points
from the ML architecture with instrumented code to convert
a logical failure of the algorithm (e.g. misprediction) into a
crash that can be detected by a fuzzing tool [20], which gen-
erates test cases and records program exceptions on these
inputs. We then apply a coverage-based fuzzing tool, Amer-
ican Fuzzy Lop [36], to summon demons, i.e. to automat-
ically discover inputs that mislead the ML algorithms by
exploiting bugs in their implementation.

We utilize this technique to discover attacks against
OpenCV [4] and Malheur [31], two open source ML imple-
mentations. As an example, we started fuzzing with a seed
image that was recognized as having a face by OpenCV.
We added a logic branch that crashed on non-recognition.
Guided fuzzing then proceeded to generate a mutant input
that was clearly still a face, and yet was not recognized.
This exploit relies on a bug in the rendering library used
by OpenCV, which allows for incorrect rendering of input
images. In total, we found seven bugs: three in OpenCV,
two in Malheur, one in Scikit-Learn, and one in libarchive

(used by Malheur). Of these, three were assigned a CVE-ID;
only one was not exploitable.

In summary, this paper makes three contributions. First,
we explore the attack surface of ML implementations, as
compared to ML algorithms, highlighting potential attack
vectors and impact on various components within these sys-
tems. Second, we introduce a novel technique for exploiting
ML bugs to corrupt classification outcomes and the data pro-
vided to ML systems from benign sources. This technique is
possible through guided fuzzing, which expands upon exist-
ing fuzzing techniques for discovering bugs in software ap-
plications. Finally, we discover several new ML implementa-
tion bugs in important open-source software; our work has
led to these bugs being patched.

2. PROBLEM STATEMENT
We consider an exploit a piece of code aiming to subvert
the intended functionality of software. Limiting our scope
to machine learning, an exploit would be designed with the
goal of corrupting the outputs of programs or to inhibit their
operation. Such exploitable bugs may be present either in
the core implementation of the ML algorithm or in libraries
used for feature extraction or model representation.

In terms of impact, we distinguish between four possible out-
comes of successful exploits. First, an exploit that causes
specific instances to be assigned an incorrect label achieves
mispredictions. More generally, we use the term divergence
to refer to attacks that succeeded in skewing the predictive
model away from an otherwise converged state. Similarly,
an exploit targeting a clustering algorithm may cause inputs
to be placed in different clusters, resulting in misclustering.
Because machine learning systems are often utilized as black
boxes, it may be difficult to detect that the system has been
compromised by using one of these exploits, as they typically
have no other side effects besides skewing the learned model
and cause the ML system to fail silently. Finally, an exploit
may also result in denial of service, e.g. by stopping data
ingestion prematurely or by crashing the application to pre-
vent it from providing any output. While easier to detect,
such exploits may render the system temporarily unusable.

In this paper, we address the problem of discovering ex-
ploitable vulnerabilities in machine learning implementa-
tions. The goals of our work are: (i) to provide a gen-
eral ML architectural description, discussing possible attack
vectors and their impact on different system components;
(ii) to develop a semi-automated technique for discovering
ML vulnerabilities by exploring this attack surface; and (iii)
to demonstrate the magnitude of this threat by discussing
several real vulnerabilities we discovered in popular ML sys-
tems.

Non-goals: We do not address limitations of machine learn-
ing algorithms (the area of study in adversarial machine
learning). Instead, we aim to unearth implementation bugs
as an orthogonal attack vector against ML systems. Addi-
tionally, we do not aim to develop a fully automated tech-
nique for identifying these bugs. Instead, by relying on
guided code instrumentation and program output manip-
ulation, we are able to bootstrap existing fuzzing tools in
order to discover bugs.

2.1 Threat Model
We consider an adversary who aims to subvert the execution
of machine learning algorithms by exploiting bugs in algo-
rithm implementations. We assume that the adversary has
access to the program’s source code. We also assume that
the adversary controls some of the program’s inputs, but
is unable to prevent benign users from providing additional
inputs. These assumptions are realistic in many settings;
for example, the machine learning techniques proposed for
malware classification or clustering [33, 28, 10, 31] operate
on inputs that come from many sources, including possible
adversaries. Additionally, much ML software is open source,
e.g., OpenCV [4] and Scikit-Learn [27].

In searching for exploitable bugs, the adversary does not
pursue the usual goals of vulnerability exploitation, e.g.,
gaining control over remote hosts, achieving privilege es-
calation, escaping sandboxes, etc. Instead, the adversary’s
goal is to corrupt the outputs of machine learning programs
using silent failures.

From a spectrum-of-control perspective, arbitrary code exe-
cution exploits represent the strongest means for achieving
the adversary’s goal, as such an exploit permits an adversary
to manipulate all aspects of the target system. However, the
adversary may achieve her goals with less powerful exploits,
e.g., targeting memory corruption bugs that allow modifying
data in memory but do not enable code execution or bugs
that trigger loss of precision in floating point computations.
Denial of service attacks represent the weakest control of
targeted systems and may be conducted by inducing early
termination of the ML processing. In some settings, the
weaker attacks may be more attractive as they could allow
the adversary to remain stealthy and bypass defense mech-
anisms.

3. ATTACKING ML IMPLEMENTATIONS
To begin exploring the vulnerabilities of machine learning
applications, we must first understand their attack surface.
Enumerating the components of ML applications that an at-
tacker may target allows us to reason about where the bugs
may be and what impact they may have. We then build on
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Figure 1: General architecture of ML systems.

this understanding and expand upon existing fuzzing tech-
niques to create exploits for these bugs to induce misclassifi-
cations (false negatives or false positives), incorrect cluster-
ing results, and denial of service.

3.1 Machine Learning Architecture
Machine learning algorithms vary in structure and design.
The two main categories of learning algorithms are super-
vised and unsupervised. In supervised learning, the algo-
rithm receives a set of labeled examples and computes a
predictive model that fits the training examples. The predic-
tive model is then used to classify new, unlabeled samples.
In contrast, unsupervised learning relies solely on unlabeled
examples with the goal of finding clusters of similar sam-
ples. While there may not be a generic representation that
fits all algorithms, the most popular supervised techniques
are variations of iterative minimization algorithms[13]. For
unsupervised learning, clustering is one of the most preva-
lent classes of algorithms. Figure 1 presents the general flow
of a learning algorithm, highlighting the key particularities
of each phase. In this setting, the input samples are trans-
formed into a feature matrix representation that serves as
the input to the classifier. A common, but optional, practice
is to normalize the features prior to feeding them to the al-
gorithm. This involves feature scaling and standardization.
In the training phase, the (normalized) features are applied
onto the current model in order to obtain the perceived pre-
diction. The predictions are compared to the actual class
labels using a cost function. The cost function output quan-
tifies the distance between the current model and the ground
truth. The model is then updated to reduce the cost through
a minimization algorithm. This iterative process is repeated
until the model becomes a sufficiently accurate representa-
tion of the ground truth. Upon convergence, the model is
used to predict new class labels. In the testing phase, the
unlabeled samples are transformed using the same feature
extraction and normalization processes. The predicted class
labels are obtained using the prediction function over the
trained model. In clustering, the algorithm first performs

feature extraction and normalization. Using a distance met-
ric, the algorithm groups the samples into clusters that re-
flect the similarity between them.

3.2 From Architecture to Attack Surface
We now discuss how attacks on each component in Figure 1
may impact the overall functioning of the system. Table 1
summarizes the vectors and impact of attacks against the
system components. A successful attack against one com-
ponent may have ripple effects to others, either directly by
transferring corrupted outputs to inputs, or indirectly via
in-memory data structure corruption.

Feature extraction. Feature extraction is the backbone for
the integrity of the system. Every attack from an external
source must exploit vulnerabilities in this component as it
is the sole communication port between the internal com-
ponents and the external environment. An attack targeting
the feature extraction component results in a corruption of
the information passed downstream.

Within the feature extraction component itself, an attack
can target the input parsing algorithms and/or the integrity
checks performed on the feature representation. As shown
in Section 4, such an exploit could result in memory corrup-
tion, arbitrary code execution, DoS or divergence. It is not
always straightforward to define what is allowable input, or
an allowable representation thereof. For example, in an im-
age classification setting, a reasonable assumption would be
to consider any renderable image as legitimate inputs. How-
ever, as detailed in Section 4.1, we found that most images
that cause crashes in the OpenCV library are actually valid
from a rendering perspective.

Prediction. Attacks are also possible against the prediction
component, directly influencing the labels predicted by the
algorithm. This could occur in both the training and the
testing stages. For example, the attack could exploit bugs
related to floating point overflow, floating point underflow,
or the use of not-a-number (NaN) values. ML implementa-
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Component Exploitation Techniques Impact

Feature extraction Insufficient integrity checks
Misprediction, Memory corruption, Code execution,

Divergence, DoS
Prediction Overflow, Underflow, NaN, Loss of Precision Misprediction, Divergence

Cost Function Overflow, Underflow, NaN, Loss of Precision Misprediction, DoS, Divergence
Minimization Algorithm Overflow, Underflow, NaN, Loss of Precision Misprediction, DoS, Divergence
Model Representation Loss of Precision Misprediction, Divergence

Clustering Overflow, Underflow, NaN, Loss of Precision Misclustering

Table 1: Attack surface of ML algorithms.

tions typically compute logarithms and square roots. This
makes them particularly susceptible to bugs caused by NaNs
(potentially the result of an overflow or insufficient consis-
tency checks). The effects of a NaN propagate throughout
the remainder of the computation and can result in a denial
of service or model divergence.

Cost function and minimization algorithm. The cost
function computation and the minimization algorithm are
iteratively applied in the training phase. A bug could result
in incorrect cost estimates or model updates that cause the
model to diverge from the optimal value. Additionally, a
denial of service could be obtained if the model update does
not trigger the termination condition in the iterative algo-
rithm. If the cost function consistently results in a NaN for
the training examples, the minimization algorithm stagnates
indefinitely without updating the model.

Model representation. The model representation could
cause a model divergence through loss of precision. Since
the training and the testing phases of algorithms are typi-
cally performed separately, the model has to be stored and
transferred from the one to the other. As discussed in Sec-
tion 4, casting between float and long types can skew the
model away, resulting in inaccurate predictions for the un-
labeled samples.

Clustering. In clustering, the algorithm itself or the dis-
tance metric can be manipulated using the same attack vec-
tors as for the supervised learning. This could result in a
denial of service or misclustering. In complete misclustering,
the clusters are completely misrepresented, while in selective
misclustering the attack might result in a particular sample
being placed in a different cluster.

3.3 Discovery Methods
Fuzzing [20] is a popular method for bug discovery. A
fuzzing tool tests a program using randomly generated in-
puts, which are often invalid or unexpected by the imple-
mentation, and records program exceptions or failures. In
security, fuzzing has been employed to identify crashes that
are indicative of memory safety errors in application. This
technique has obvious applications to discovering one class
of bug in machine learning systems—crashes—but can we
use fuzzing to find bugs that silently corrupt the system’s
outputs? In this section, we use OpenCV as a running ex-
ample while describing our bug discovery methodology.

Our use case is, in one sense, a natural fit for general pur-
pose fuzzing because we can have a single program that runs
on some input (i.e. an image) to produce some output (i.e.
a text classification of that image). However, we have to en-

sure that we separate and identify both bug types of inter-
est: crashes and silent corruption. To do this we introduce
a technique we call guided fuzzing.

We use American Fuzzy Lop (AFL) [36] to instrument and
fuzz-test machine learning programs. AFL was designed and
is commonly used for finding crashes due to parsing failures,
so the AFL loop involves running an application on multiple
inputs and creating a report if an input causes a crash. AFL
utilizes a genetic algorithm to generate inputs while maxi-
mizing the code coverage and has heuristics to discriminate
between unique crashes and duplicates. We want to capital-
ize on AFL’s ability to maximize code coverage while also
finding crashing inputs.

A guided fuzzing workflow begins with a test case with a
known outcome; for example, when analyzing OpenCV, we
start with an image that contains a human face. The three
outputs from the program under test might be: crash, neg-
ative prediction, (e.g. no face found) or positive prediction
(e.g. face found). The default behavior with the initial test
case is to find a face. Our fuzzing should mutate the image
to change the output of the program under test to negative
prediction while avoiding crash.

When we are searching for such logical failures, In this case,
we do not care about inputs that produce crashes when
OpenCV attempts to parse the image (although there is a
disturbingly large number of these inputs). The first part of
our guided fuzzing technique brackets the parsing regions of
the program in a handler for the SIGSEV signal. The handler
simply exit’s the program when a segmentation violation
occurs. This prevents the crash and obscures it from AFL,
which then believes that the application exited normally.

We then re-enable crashes in the application and check the
outcome of important decision points in the ML algorithm.
For example, we check the result of the face detection step,
which corresponds to the outcome of the prediction phase
from Figure 1. If the system failed to find a face, we induce
a crash by manually dereferencing an invalid pointer. In
this way, AFL recognizes when it has changed the output of
the program to no face found without any change to AFL
itself. Similarly, we can instrument the outputs of each of
the components described in Section 3.2, to check for the
presence of exploitable ML bugs.

4. RESULTS
We search for exploitable ML bugs in the OpenCV [4] com-
puter vision library and in the Malheur [31] library for an-
alyzing and clustering malware behavior. We select these
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libraries because they are open source and they are widely
adopted.

OpenCV provides its users with a common framework for
computer vision applications and can process still imagery,
live streaming video, and previously recorded video clips.
For example, businesses can use computer vision and ma-
chine learning to reinforce physical security systems [32]. In
such a scenario, an adversary may wish to thwart physical
security through attacking the machine learning application
itself.

Malheur is a security tool that performs analysis on malware
reports that were recorded within sandboxed environments.
Malheur can cluster the reports to determine which samples
likely belong to the same malware family; these malware
reports can be raw text files or compressed file archives.
Malheur relies on libarchive to extract the malware re-
ports from the file archives. An adversary that desires to
delay analysis of their malware may target Malheur through
crafted file archives and corrupt in-memory data. Data cor-
ruption will cause misclustering and allow the adversary to
accomplish their goal.

As a result of our research, we responsibly disclosed five vul-
nerabilities (to which three were assigned CVE-IDs). The
libarchive and Malheur system maintainers patched two
of the vulnerabilities; as of January 27, 2016, the OpenCV
maintainers acknowledged three vulnerabilities and would
address the issues in future releases. These vulnerabilities
still exist in the current version of OpenCV. Table 2 sum-
marizes the vulnerabilities we found and their impact.

4.1 Discovery Results

OpenCV. We discovered bugs in OpenCV’s image process-
ing library, and we identified various conditions under which
a valid JPG would cause an algorithm to terminate. Two
vulnerabilities (CVE-2016-1516 and CVE-2016-1517) exist
in the feature extraction / selection portion of the ML attack
surface in Figure 1 and cause memory corruption when free-
ing a matrix allocated for image processing. In both CVEs,
heap corruptions overflow fields in the matrix object and al-
low illegal access to memory locations when matrix objects
are deallocated. Many examples exist in which an adversary
can exploit similar vulnerabilities in image processing code
and achieve remote code execution on a victim’s system [14,
8, 21]. Our third vulnerability exists in OpenCV’s custom
image rendering library. Its improper handling of file arti-
facts and partial rendering of particular JPG images prevent
consistent image classification.

During the guided fuzzing phase, these vulnerabilities and
inconsistencies served as the basis for crafting legitimate in-
put images that evade facial recognition detection. When
used as-is, these images induce denial-of-service (DoS)
crashes against OpenCV. DoS crashes in such an applica-
tion require an administrator or operator to manually in-
tervene to bring the system back online. Proof-of-concept
SQL injection attacks already exist against video monitor-
ing software that law enforcement organizations use to read
license plates and issuing fines [24]; one can understand the
ramifications of a DoS attack against similar applications

or even autonomous driving vehicles using similar computer
vision software.

A potentially viable defense against these crash-inducing im-
ages starts with first filtering input based on a render-check
using the Python Image Library (PIL) [6] and the code snip-
pet in Listing 1:

Listing 1: Image render-check using PIL
from PIL import Image
def i s image ok ( f i l ename ) :

try :
Image . open( f i l ename ) . load ( )
return True

except :
return False

Of the 3197 images we found that induce crashes in
OpenCV, PIL only allows 7 images to bypass this filter,
resulting in a 0.0022% false negative rate. Yahoo! Flickr’s
proprietary image rendering solution allows 6 crash-inducing
images through. These crash-inducing images are publicly
available for viewing.1

Malheur. We discovered a critical bug within libarchive

as used by Malheur. This vulnerability was issued CVE-
2016-1541 [9] and was patched in libarchive 3.2.0 on
May 1, 2016. This vulnerability affected every version of
Linux and OS X, given that libarchive is pre-packaged in
these operating systems for handling various file archives.
This vulnerability would allow an attacker to achieve arbi-
trary code execution by exploiting the inconsistent handling
of .tar.gz compressed archives. This vulnerability occurs
within the feature extraction block within Figure 1, given
that the function inherently relies upon libarchive for at-
taining data. Once an attacker achieves arbitrary code exe-
cution, they have unlimited influence over the classification
of the ML application. This bug could trigger another bug
in Malheur’s feature matrix extraction/selection and was
patched on March 6, 2016 [30]. Section 4.2 explores the
impact of corrupting the feature matrix in greater depth.

4.2 Guided Fuzzing Results

OpenCV. An attacker can exploit OpenCV’s inconsistent
rendering of images to induce silent failures and thwart fa-
cial detection within the prediction block of the ML attack
surface in Figure 1. To begin, AFL utilizes a seed image with
a shoulder-up picture of a person. The source code snippet
that performs facial recognition2 is a prime candidate for
injecting the the logic branch (Listing 2) which allows us
to induce a crash when the picture of the face is no longer
detected.

Listing 2: Logic branch injection for facial detection
i f ( f a c e s . s i z e ( ) == 0) {
1https://www.flickr.com/gp/138669175@N07/L53K8e
2https://github.com/Itseez/opencv/blob/master/samples/
cpp/facedetect.cpp#L202
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Vulnerability Application CVE-ID Exploited Impact
Heap Corruption OpenCV CVE-2016-1516 X Arbitrary code execution via double free
Inconsistent ren-
dering

OpenCV n/a X Partial rendering of JPG files affects classi-
fication results

Heap Corruption OpenCV CVE-2016-1517 X Denial of service attack via corrupt chunks
and segfault

Heap Corruption Malheur via
libarchive

CVE-2016-1541 X Arbitrary code execution on all Linux and
OS X systems via corrupted archive

Heap Corruption Malheur GitHub patch X Memory corruption via unsafe bounds
checking

Loss of precision Malheur n/a Loss of precision results in mispredictions
Loss of precision Scikit-Learn n/a X Loss of precision results in model diver-

gence

Table 2: Summary of ML Hunter findings.

∗ ( ( int ∗) 0xdeadbea7 ) =
0 xdeadbeef ;

}

After 10.1 million permutations of the seed image, AFL
crafted Figure 2. This image is incorrectly rendered by
OpenCV, as seen on the left, but is clearly renderable by
Google Photos, as seen on the right. In five out of five tri-
als, this method successfully recreated photos that exercise
this rendering bug. As these images are correctly formatted
JPEG files, they bypass the PIL render-check described in
Listing 1. In contrast to existing techniques for crafting ad-
versarial samples that evade detection [34, 3, 2, 19, 1], our
attack does not depend on the learned model and succeeds
from the first attempt. This represents a new attack vector
against machine learning, illustrating how bugs in ML code
can provide a substantial advantage to the attacker.

Figure 2: OpenCV incorrectly rendering a picture.

Malheur. Building on Malheur’s inability to handle cor-
rupted archive files, discussed previously, the guided fuzzing
technique can corrupt Malheur’s feature matrix and induce
silent failures in prediction results. Thus, this vulnera-
bility impacts all aspects of clustering within the general-
ized attack surface in Figure 1; an attacked can corrupt
the in-memory data for unlabeled samples, tamper with
the in-memory feature matrix, and affect the clustering re-
sults based on degree of induced skew. The vulnerable line
of code3 uses the variable j which is dependent on user-

3https://github.com/rieck/malheur/blob/master/src/fvec.
c#L382!

provided input. Thus, guided fuzzing can craft a corrupted
archive file to traverse the heap and stomp over existing val-
ues in the feature matrix as shown in Listing 3.

Listing 3: Example of directed heap corruption
i f ( ( ( unsigned long)&t [ j −1] >
(unsigned long)&fv−>va l [ 0 ] ) &&
( ( unsigned long)&t [ j −1] <
(unsigned long )
( ( unsigned long)&fv−>va l [0 ]+
(unsigned long ) fv−>mem) ) ){

∗ ( ( int ∗) 0xdeadbea7 ) =
0 xdeadbeef ;

}

As this is a heap corruption vulnerability, we performed
our proof-of-concept (PoC) exploit with address space lay-
out randomization turned off. An attacker can couple our
PoC exploit with ASLR bypass [11] techniques using another
information disclosure exploit to find the desired offset. Ad-
ditionally, our exploit uses a file archive; the exploitation
success varies among operating systems and architectures
as expected.

Expanding upon this example, an adversary can inject ad-
ditional logic branches to control the degree in which the
corrupted file impacts the feature matrix. Given enough
time, AFL can generate inputs that increasingly skew the
clustering of benign files the adversary did not craft.

This represents a second attack vector that provides new
capabilities for adversaries. Unlike prior attacks proposed
in the adversarial machine learning literature, this attack
introduces the ability to manipulate the in-memory repre-
sentation of inputs not provided by the adversary. From
an adversarial perspective, this attack provides the oppor-
tunity to miscluster benign samples, or other malicious
samples, to obfuscate the attacker’s own malicious sample.
An adversary can achieve this by inducing false negatives
(more stealthy and desired) or false positives (junk reports).
Again, this attack requires only one malicious sample and
succeeds from the first attempt, owing to the bug. The
libarchive 3.2.0 and Malheur GitHub patch rendered this
bug unexploitable, as corrupted archives are rejected on in-
gest.
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We also discovered a bug in Malheur that we could not ex-
ploit. During feature normalization in Malheur, both func-
tions4 fvec_norm1() and fvec_norm2() return a value of
type double but it is then normalized to a float. Using
guided fuzzing, an attacker can discover instances where
type casting from double to float yields a discrepancy.

Listing 4: Example of discovering precision loss
i f ( abs ( ( double ) ( f−>va l [ i ] / s ) −
( f loat ) ( f−>va l [ i ] / s ) ) > e p s i l o n ){

∗ ( ( int ∗) 0xdeadbea7 ) = 0 xdeadbeef ;
}

The epsilon in Listing 4 represents the loss of precision
an adversary wishes to induce. In this particular instance,
guided fuzzing did not discover any value of epsilon that
caused misclustering. While our attack was unsuccessful,
this approach could be a viable attack vector elsewhere.

We discovered that such a vulnerability is present within
the Scikit-Learn machine learning library for Python and
its underlying reliance on NumPy. When defining ndar-

ray objects from Python lists without explicitly specifying
a data type, the library infers the resulting data type ac-
cording to undocumented heuristics. The NumPy arrays
are used by Scikit-learn during both training and testing of
the Linear Regression algorithm. This attack forces NumPy
to set the ndarray data type as object, which preserves the
underlying data type of each element. The Scikit-learn san-
ity checks ensure that the training and testing data types
match. Because both the training and the testing arrays
are of type object, the arrays pass the Scikit-learn checks.
Our proof-of-concept (PoC) code places Python float and
long values in the arrays before that data is ingested by
the Scikit-learn module. When the input numbers are very
large, this results in a loss of precision from casting. Specif-
ically, the PoC shows how the regression model coefficients
are drastically changed when using float instead of long in
the training dataset; this results in a diverged model and in-
accurate predictions. In absence of a fuzzing tool for python,
we discovered bug by manually inspecting the Scikit source
code, guided by the attack surface guidelines. These bugs
illustrate a third attack vector that potentially enables new
adversarial capabilities.

5. RELATED WORK
This section presents prior work on fuzzing and adversarial
machine learning. Adversarial machine learning research fo-
cuses on crafting adversarial samples. The key distinction
in our work is that we exploit bugs in machine learning code
that give the adversary an advantage in conducting these
attacks.

Insufficient input sanitization is a common cause of ex-
ploitable bugs [17]. Fuzzing is an automated technique that
allows developers to test how gracefully their application
handle various valid and invalid input [20, 23]. Fuzzers as-
sist developers with isolating potentially buggy code and can
play a critical role in identifying locations in need of input
sanitization.
4https://github.com/rieck/malheur/blob/75ffd2498e964aa
7d09782bf5a0d31afde36585f/src/fmath.c#L37

The field of adversarial machine learning has developed sev-
eral methods for attacking ML systems, typically by query-
ing ML models. Barreno et al. [1] proposed a general clas-
sification system for these attacks. Integrity attacks allow
hostile input into a system and availability attacks prevent
benign input from entering a system. Concept drift [35] is
a phenomenon that occurs within machine learning systems
as the prediction becomes less accurate over time due to un-
foreseen changes. Identifying concept drift, whether sudden
or gradual, can be difficult in the presence of noise. Ide-
ally, machine learning systems should combine robustness
to noise and sensitivity to concept drift. Adversarial drift
[19] describes intentionally induced concept drift in an ef-
fort to decrease the classification accuracy. Biggio et al. [3]
described a threat model in which an attacker desires con-
ceal malicious input in an effort to evade detection without
negatively impacting the classification of legitimate samples.
According to Biggio, an attacker may wish to inject mali-
cious input to subvert the clustering process, rendering the
resulting knowledge useless. The adversarial classifier re-
verse engineering [16] describes techniques for learning suffi-
cient information about a classifier to instrument adversarial
attacks. This information provides attackers and defenders
with an understanding of how susceptible their system is to
external adversarial influence. Newsome et al. [22] intro-
duce a delusive adversary that provides malicious input in
an attempt to obstruct the ML training phase; the attacker
assumes full control over the input and its order.

In an analysis of a neural network trained for image process-
ing tasks, Szegedy et al. [34] identified that an adversary can
apply a perturbation to an image that is imperceptible to hu-
mans yet it changes the network’s prediction. Research from
Cha et al. [5] explores automated generation of such per-
turbations. Utilizing a well-formed seed input, a mutational
fuzzer iteratively manipulates the seed to achieve maximum
path traversal in a target program. This technique can iso-
late particular sets of input that cause the program to enter
a state that might be of interest for an attacker.

Cretu et al. [7] discuss the process and importance of
“casting out demons,” sanitizing ML training datasets for
anomaly detection (AD) sensors. AD systems inherently re-
ceive malicious input and anomalous events that may dras-
tically impact the system’s tuning and instrumentation. Ac-
counting for data that may negatively impact the accuracy
of the system’s classifier can enhance its overall robustness.

6. DISCUSSION AND FUTURE WORK
In this paper, we focus on attacks against machine learn-
ing systems. However, our threat model has a broader ap-
plicability. For example, nation-state adversaries might be
interested in attacking long-running simulations on super-
computers, with the aim of subtly skewing their results. In
high performance computing, outputs are generally difficult
to validate and expensive to re-compute, so it is difficult to
defend against such attacks. Other data analytics systems
may also be susceptible to such attacks.

For some of the bugs that we discovered, it is unclear who is
responsible for fixing them. Should the Malheur maintainers
have to worry about bugs in libarchive in order to preserve
the integrity of their application? Should the architects of
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OpenCV sacrifice performance for the sake of handling in-
valid input that developers did not filter? As more and more
everyday devices begin to incorporate ML processing, this
ambiguity must be explicitly resolved in order to provide
secure systems.

Section 3 describes a semi-automated approach for discover-
ing bugs in machine learning platforms through categorizing
the backtrace of crash-inducing results. Tools such as !ex-

ploitable [18] provide researchers with automated crash
analysis and the likelihood that the crash is exploitable.
Overlaying the findings from such a tool on top of our gen-
eralized attack surface could expedite the discovery phase.

Section 4 explores many techniques that, at first glance, are
only feasible because the targeted source code is publicly
available. Recently, Papernot et al. [26] proposed model
extraction attacks, by building surrogate classifiers that ap-
proximate black-box ML models. A logical next step in ex-
panding our research would be understanding the overlap
between building substitution models of proprietary classi-
fiers and unique edge cases that result in bugs in the black
box system.

An adversary discovering the possibility of “linchpin values”
that appear during feature matrix construction would be an-
other decisive shift towards an attacker’s influence on ML
systems. Linchpin values are consistent ranges of values
within a feature matrix, that when present, result in a spe-
cific classification. Ribeiro et al. [29] proposed a technique
for model explanation by building locally optimal classifiers
around points of interest. Building upon their work, re-
searchers may apply various analytic techniques to deter-
mine if there are common values or thresholds within a fea-
ture matrix that, when present, always result in a certain
classification. With this information, an attacker could use
guided fuzzing to craft arbitrary input that would guarantee
a misclassification in the targeted system.

7. CONCLUSIONS
Entities that choose to trust data from unvetted sources sub-
ject themselves to a plethora of potential attacks in which
a miscreant only requires minimal control over the entire
dataset. For an attacker that wishes to control the decision-
making process of its competitors or adversaries, this repre-
sents a powerful paradigm shift in attack vectors. We dis-
covered several vulnerabilities within OpenCV and Malheur
that allow an attacker to exploit bugs in underlying depen-
dencies and the applications themselves to gain a marked
advantage in influencing or out-right controlling the output
of ML applications.
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