Supervised learning as a tool for metagame analysis

Rob Argue
University of Maryland
Department of Computer Science
rargue@cs.umd.edu

1 Abstract

I explore the possibility of using supervised learning
as a tool for analyzing metagames. In particular I
look at a data set for Natural Selection 2 build 229.
The first goal of the article is to predict the outcome
of individual matches based on a set of features of
the round which capture the strategies being used.
Using an averaged perceptron, I predict the outcome
of a round with 85.42% accuracy. The second goal
is to attempt to use machine learning to analyze the
balance of different strategies in the metagame. Bal-
ance in this context is taken to mean a similarity in
the prevalence of parallel strategies. I use a random
forest of decision trees to extract the most impor-
tant feature that determines the outcome of the game
over a subset of all features. This exposes player to-
tal resources and player skill as the most important
features, which was to be expected, and shows an im-
balance in one of the strategies in the game which
was largely considered to be imbalanced by the com-
munity in build 229. These methods are effective in
both predicting outcomes and identifying potential
balance issues, and provide a tool for the automated
analysis of metagames.

2 Introduction

2.1 Background

An important part of game design is understanding
games from a strategic level. For the purposes of this
article, I define strategy to mean the particular set
of actions a player or team uses during one round
(instance of the game). The set of all strategies is
thus the set of all possible actions available. Note
that not all actions may necessarily be available to a
player at the same time, i.e., one action may preclude
another or have a prerequisite action. I refer to a
set of strategies for which one strategy precludes all

others as parallel strategies, and refer to a series of
actions which are ordered by prerequisites as linear
strategies. In this context, an asymmetric game is
defined as one in which all players/teams do not have
the same set of available actions for any given round.
Metagaming means any strategic decisions which are
made outside of the game, and the metagame of a
game is defined as the collection of strategies used by
all players at a particular point in time. Thus the
study of metagames is the study of the utilization of
strategies by players across a game as a whole and
how that changes over time.

2.2 Problem

Game balance is an important topic in the success
of a game, and it is especially crucial for multiplayer
games. Without balance being maintained to within
a reasonable degree, players will lose interest in a
game and cease to play it. Balance here is defined as
the equal effectiveness of all parallel strategies within
a metagame. It is important to note that there are
two main consequences of an imbalance in a game: if
one strategy is more effective, it can lead to an over-
abundance of that strategy in the metagame, or in
the case of an asymmetric game, imbalance can lead
to one player having an innate advantage in any given
round.

It is easy to identify a game as unbalanced. such
games have a lopsided win ratio between strategies, or
a disproportionately high percentage of the metagame
using a single strategy or small subset of strategies.
The difficult part of balancing comes in trying to un-
derstand why a particular strategy is more success-
ful or prevelant, and how that imbalance can be ad-
dressed. A further complication arises in games in
which the overall strategy can be decomposed into a
set of substrategies since a single substrategy may be
causing the imbalance.

I propose using supervised learning as a tool to ana-

Page 1



lye metagames with the intent of a) being able to pre-
dict the outcome of games based on the the strategies
employed by both teams, and b) being able to extract
information on strategies that may be unbalanced in
a given metagame. In particular, I use perceptrons
and a random forest as supervised classifiers.

2.3 Perceptrons

The perceptron (Rosenblatt, 1958) is a linear classi-
fier which take a weighted sum of multiple inputs, and
passes them through a threshold function to produce
an output signal. It has been shown to be an effective
means of classifying data that is linearly separable.
To improve how well the perceptron generalizes, it
can be extended into a voted perceptron (Freund and
Shapire, 1999). A voted perceptron tracks the num-
ber of correct classifications each set of weights gets
correct, and uses that information to assign each set
of weights a number of votes for prediction. This can
be sped up by instead using an averaged perceptron,
which keeps an average weight vector rather than all
previous weight vectors and their votes.

Additionally, the perceptron can be extended to
handle non-linear decision surfaces by including prod-
ucts of the inputs. The kernel trick (Aizerman et. al.,
1964) allows polynomial expansions of the inputs to
be used with only a constant factor penalty to the
runtime.

2.4 Random forest

Random forests (Breiman, 2001) are an ensemble
method for classification which uses the mode re-
sponse over a large number of decision trees to classify
an input. Each tree is created over a random subset
of the features. Random forests differ from other en-
semble tree methods such as bagging (Breiman, 1996)
in that they use a subset of features to construct each
tree rather than a subset of the data. Random forests
have been shown to have accuracy comparable to
other popular supervised learning algorithms, while
remaining more resilient to the presence of noise.

2.5 Data

I have chosen to use Natural Selection 2 (NS2) as a
case study for this article. This game allows a combi-
nation of individual skill and team strategy, is asym-
metric, has a set of well-known strategies that break
into substrategies (in this case, single decisions), and
has a known imbalance. In particular, I consider build
229 of NS2, where one particular strategy is cited by

Fig. 1: NS2 commander interface *

players as being the reason one team has a large ad-
vantage.

2.5.1 Natural Selection 2

Natural Selection 2 (NS2) is an asymmetric first-
person shooter (FPS) / real-time strategy (RTS) hy-
brid game. Two teams, aliens and marines, are tasked
with eliminating the opposing team’s base. Each
team’s size can vary, but rounds are most commonly
played with 3 to 12 players per team. Each team
has a commander who plays the game as a top-down
RTS, while the rest of the team controls individual
units and plays the game as an FPS. Teams can place
resource towers (RTs) on resource nodes to collect re-
sources, which are in turn used to purchase upgrades.
Resources go to two pools: team resources (T-res)
and personal resources (P-res), which are used by
the commander and players respectively. T-res can
be spent to place structures and purchase upgrades
for the entire team, either automatically applying the
upgrade to the players, or unlocking things for play-
ers to buy. P-res can be used to purchase upgrades
for an individual player, some of which can also be
purchased for a player by the commander using T-
res. Some upgrades are limited to a team controlling
a number of tech points, which can be captured by
purchasing and building a command station for the
marines or a hive for the aliens.

Winning a round comes down to a combination of
individual player skill and overall strategy. I use kill-
to-death ratio (KDR) as an approximation of player
skill, which is generally agreed to be the case on a
large scale. Strategy breaks down into two major
areas: upgrades and map control. Upgrades are sim-
ply the upgrades that are purchased by the comman-
der and the time at which they are purchased (from
which upgrade order can be extracted). Map control

1Retrieved April 28, 2014 from
http://unknownworlds.com/ns2/media/

Page 2



%’ Prototype Lab
LTS

pry

S Whip

shift
y

Natural Selection 2 ver1.0 Alien Techtree

Fig. 3: Alien tech tree 2

is harder to define, but includes which rooms are con-
trolled by which team and which locations are being
pushed and/or defended. Rooms can have strategic
value from their position on the map, and from the
resource nodes and tech points they contain.

In NS2 the teams have parallel strategies available,
i.e., their choices of actions (insofar as this article is
concerned) are mutually exclusive. Each team has a
varying amount of parallel and linear strategies. The
marine team has a mostly linear strategy, with a few
parallel branches (Fig. 2), while the alien team has
a mostly parallel strategy (Fig. 1) with three major
branches (shift, shade, and crag).

2.5.2 Data Set

The data I use for this article is a SQL database dump
collected by NS2 Stats (NS2stats, 2012). I limit the
data to NS2 build 229, because that was the most

2Retrieved April 28, 2014 from
http://forums.unknownworlds.com/discussion/122833/techtree

interesting build available in terms of balance due to
the alien’s crag branch being overly effective. I fur-
ther limit the data to rounds between 1 minute and 2
hours in order to eliminate non-games and provide a
maximum value for time. The time limitation is im-
portant so that there would not be an artificially large
bias on events that did not occur, as their time of oc-
currence is set to the maximum time value. From this
I use a training set consisting of about 2500 rounds
and a test set consisting of a out 700 rounds. I use
C+# and the LinQ library to extract features from
the database and store them in a CSV file for use in
machine learning algorithms. The particular set of
features I use for this article are round length, total
KDR for each team, marine-to-alien T-res gathered
ratio, marine-to-alien T-res used ratio, and the ini-
tial purchase time of structures and upgrades. I omit
all alien structures except the hive, as they are either
directly tied to an upgrade and thus redundant, or
fall into the category of structures used for map con-
trol which is beyond the scope of this article. Likewise
sentries and sentry batteries are omitted from the ma-
rine team. All buildings and upgrades not purchased
are set to the maximum time value.

This particular set of features focuses on the strat-
egy in terms of the RTS side of the game and for the
most part filters out combat strategy. The reasoning
for this is that combat strategy information is not
readily available and would have to be reconstructed
from the dataset, which would be a monumental task
by itself. All information regarding map control is
omitted due to the difficulty of use. The full informa-
tion on the building and destroying of RTs is only in-
cluded vaguely implicitly in the resource features and
could be expanded upon. The number of tech points
is also only included implicitly by the upgrades lim-
ited to a certain number of tech points that are pur-
chased, however the first purchase of a second tech
point is included as a feature. Note specifically that
this completely omits any direct information about a
third hive for the aliens. Player skill is wrapped into
a single team feature, which, while very indicative of
the skill of a team, does not provide any granularity
which may be important. Further information could
be extracted regarding the spread of skill across a
team or about player skill by using information from
other rounds. I omit this additional information to
improve the robustness of the algorithms in dealing
with new players as well as player skill improving over
time.

Page 3



0.86

0.84

076} — Perceptron
— Averaged Perceptron
— Kernelized Perceptron

0.74
0

1I0 2‘0 3‘0 4‘0 50
Max Iterations

Fig. 4: Max iterations vs. perceptron accuracies on

test data

3 Experiments

3.1 Predicting round outcomes

The first step to show that machine learning is a vi-
able analysis tool for strategic content of metagames
is to demonstrate that a machine learning algorithm
can construct an accurate model of outcomes of
games based on the strategies employed. In this par-
ticular case, it should be noted that player skill also
is a large factor in the outcome, but that is due to
the nature of the game rather than a particular issue
with the methods used.

While the decision surface for this space is not lin-
ear, I make the assumption that it would be roughly
linear. This intuition comes from considering that
any one feature has a direction in which the ”good-
ness” increases monotonically. For any combination
of features, the goodness of each feature does not de-
tract from the goodness of the other features, thus
the decision surface should be linear. The decision
surface will be ”fuzzy” to an extent as well. For sim-
ilarly effective opposing strategies, either team could
win with some probability. Considering this, I start
with a perceptron as a predictor. In particular, I use
50 inputs comprising the 49 features from the data
set and a bias. For the output function I use a step
function. All weights are initialized to 0.

In order to improve generalization, an averaged
perceptron is implemented. To capture the non-linear
nature of the decision surface, I use a kernelized per-
ceptron using polynomial kernels of varying degrees.
For each type of perceptron, I test a range of max iter-
ations, with the best result for the kernel (a degree-3
polynomial) representing the kernelized perceptron.

0.82

0.811

0.80

Accuracy

0.77 -

0.76

0'750 5 10 15 20 25
Kernel Degree

Fig. 5: Kernel degree vs. kernelized perceptron
accuracy on test data

The resulting accuracies on the testing data are sum-
marized in Fig. 4 and Fig. 5. The highest accuracy of
85.42% is achieved by the averaged perceptrion with
10 iterations.

Considering that this dataset had a limited number
of features as compared to the total information avail-
able, this method preforms well. It is interesting to
note that the linear classifier performs better than the
non-linear one, which suggests that the assumption
made about the linear nature of the decision surface
is correct. The advantage to using a linear classifier
in this case, where the boundary can often be fuzzy,
is that it avoids overfitting the data. It would be in-
teresting to expand this to filter player skill out of
outcome prediction, however, the size of this data set
is too small to accurately do so for NS2, and therefore
it is left as future work.

3.2 Discovering important strategies

The next experiment is to see if machine learning
could be used to automatically discover unbalanced
strategies which are. In this context, I consider a
strategy to be unbalanced if it is disproportionately
important to the outcome of the game as compared
to other strategies. The intuition behind this is that
if all strategies are perfectly balanced then, while one
may be more effective in a particular situation, they
should be evenly distributed across the metagame.

I use a random forest of decision trees to discover
which strategies are most important to game out-
come. In order to do so, I transform the continuous
features into categorical features with splits discov-
ered by experiment to be effective. Each feature is
given a similar number of splits (17 to 18) so the num-

Page 4



ber of possible decisions per strategy is equal. The
forest has 5000 decision stumps, each created over a
random subset of features of size 5. Then a tally is
taken over the stumps of feature names. Adding to-
gether some of the similar features (which effectively
described the same strategy) gives the following list
for the most prevalent features for the decision trees
in the forest (note that only the top 10 are shown):

Feature Count
MarineToAlienResRatio 933
KDR 856
Leap 377
BileBomb 345
Blink 302
Regeneration 235
CragHive 231
Carapace 228
Spores 208
ShadeHive 171

Table 1: Feature usage count in randomized forest

The most important feature to the outcome of a
game is the resource ratio, which is generally consid-
ered to be a strong indicator of how well a team is
doing according to the playerbase of the game. The
neat most important is KDR, which approximates
player skill. I anticipated in advance that both of
these would be the determining factors of the game,
and indeed the forest recovers this information. Also
of note is the three features from just one of the
three branches in the alien tech tree (Regeneration,
CragHive, Carapace). Considering that is a branch in
the strategy, it is expected to hold the same impor-
tance as the other two branches (Shift and Shade).
By being placed significantly higher than Shift and
Shade features, the forest shows an imbalance in the
game. This corresponds to the general player opinion
of the game that that branch was more effective than
it should have been during build 229. I note, how-
ever, that the results of the forest do not necessar-
ily indicate that this strategy is overly effective, just
that it is not of the same level of importance as the
other two branches. In addition to this, some of the
early alien lifeform abilities (Leap, BileBomb, Blink,
Spores) show up as relatively highly significant in the
metagame. These are a more linear part of the alien
strategy, however, and they cannot be compared to
any other part, and thus need to be compared to the
similar linear strategies on the marine team. The top
marine-centric feature in this list was in the 47th po-
sition, indicating that the strategies for the marines
were more balanced. Comparing the linear sets of

strategies of the two teams, it appears that the alien
upgrades are a much bigger influence on deciding the
outcome of a game, suggesting an imbalance between
teams in that regard. In that this is an asymmetrical
game, that may be an intentional design decision, but
it remains a source of imbalance that should at the
very least be considered.

4 Discussion

Supervised learning methods show promise for the
analysis of metagames. 1 demonstrate that meth-
ods can predict the outcome of a round based on
the strategies used, as well as identify problems with
the balance of a game. This should generalize to the
metagame of any game, assuming features are chosen
appropriately. This provides a useful tool for both au-
tomating the study of metagames as well as revealing
potential balance problems before they become an is-
sue.

Suggested future work in this would be to consider
a data set where player skill can be more easily fac-
tored out, allowing it to be considered entirely sepa-
rately from strategy. Another suggestion is to apply
these methods to a data set for a trading card game,
as they can have highly diverse and strategically deep
metagames.

References

(1] Frank Rosenblatt. 1958. The perceptron: A
probabilistic model for information storage and
organization in the brain. Psychological Re-
view, 65 (5), (Nov. 1958), 386-408. DOI:
http://dx.doi.org/10.1037/h0042519

[2] Yoav Freund, Robert E. Schapire. 1999. Large
Margin Classification Using the Perceptron Al-
gorithm. Machine Learning, 37 (3), (Dec. 1999),
227-296.

[3] M. A. Aizerman, E.A. Braverman, and L. Rozo-
noer. 1964. Theoretical foundations of the poten-
tial function method in pattern recognition learn-
ing. Automation and Remote Control, 25, (1964),
821-837.

[4] Leo Breiman. 2001. Random Forests. Machine
Learning, 45 (1), (Oct. 2001). 5-32. DOL
http://dx.doi.org/10.1023/A:1010933404324

[5] Leo Breiman. (1996). Bagging predictors. Ma-
chine Learning 26 (2), (Aug. 1996) 123140.

Page 5



[6] NS2 Stats. 2012. Retrieved November 2012 from
www.ns2stats.com

Page 6



	Abstract
	Introduction
	Background
	Problem
	Perceptrons
	Random forest
	Data
	Natural Selection 2
	Data Set


	Experiments
	Predicting round outcomes
	Discovering important strategies

	Discussion

