
A Survey of Access Control Policies

Amanda Crowell
University of Maryland

acrowell@cs.umd.edu

ABSTRACT
Modern operating systems each have different implementa-
tions of access controls and use different policies for deter-
mining the access that subjects may have on objects. This
paper reviews the three main types of access control policies:
discretionary, mandatory, and role-based. It then describes
how Windows and various Unix systems implement their
chosen access control policies. Finally, it discusses some
common mistakes that application programmers make when
enforcing access control in their applications and gives some
general guidance to reduce the occurrence of mistakes.

1. INTRODUCTION
Modern operating systems use different mechanisms for pro-
viding access control. These mechanisms are designed to
meet security policies that vary in the way access decisions
are made. In all the systems, there are two major compo-
nents: the subjects who take actions and the objects they
take actions on. Access control policies specify the condi-
tions under which a subject is allowed to take an action on an
object. Discretionary policies make decisions based on the
rights that each object specifies for each subject. Manda-
tory polices make decisions based on the security levels of
the subject and object. Role-based policies make decisions
based on the roles that subjects have in the system and
which roles are allowed to access which objects.

With so many options for implementing access controls, ap-
plication developers must have a thorough understanding of
their target system’s implementation so that they can de-
velop secure systems. The Windows access control system
is largely a discretionary system, with some mechanisms for
mimicking roles. The basic Unix protections are also discre-
tionary, but are limited to only representing three levels of
access: one for the object owner, one for the owner’s group,
and one for everyone else. Extensions to this basic con-
trol have been implemented, including POSIX.1e, Data and
Type Enforcement (DTE), and Security Enhanced Linux
(SELinux), all of which focus on adding mandatory mecha-

nisms to the standard checks.

The Common Weakness Enumeration (CWE) describes sev-
eral mistakes that application developers have made in re-
gard to access control. Often, developers do not give the
application objects the appropriate rights to begin with (i.e.
they specify more rights than are necessary) and do not
modify rights throughout the application’s lifetime. Since
spawned processes typically take on the rights of the spawn-
ing process, rights might be passed on to the spawned pro-
cess that were unintentional. In response to these mistakes,
some researchers have developed guidelines for using access
controls appropriately. These include: (a) understanding
what information is available to the system and how it can
be used to make decisions, (b) determining exactly which
rights are absolutely necessary and only allow those and
(c) understand how ACLs are managed, apply to privileged
users, and handle contradictory rights.

2. OVERVIEW OF ACCESS CONTROL
Access control in operating systems and applications deter-
mines how data and resources on systems can be accessed
and by whom. The implementation of access control varies
from simple to extremely complex. In addition, access con-
trol mechanisms are only effective when they are configured
and used properly. Therefore, application developers and
system administrators must have a thorough understanding
of how the access control works in their systems so that data
and resources are protected.

2.1 Components
Sandhu and Samarati [17] and Harrison et al [11] present
the main components of an access control mechanism, and
this section will present their descriptions. The two main
players in a system are subjects and objects. A subject is an
action component. It can either be a user, process, thread,
or program that wishes to take certain actions in a system.
An object is the target of certain actions by subjects. Ob-
jects are typically defined as being items in the system that
a user can explicitly modify, create, and use. Some exam-
ples include files, printers, and even other subjects. Actions
that a subject can perform in a system such as shutting it
down and changing the system time are considered sepa-
rately, since they are not actions to objects. However, the
system itself could be considered an object and access con-
trol must restrict a subject’s ability to perform these tasks
as they would with objects.



Subject actions are defined by access rights that specify for
each object the actions that a subject may perform. The
most basic rights are read, write, execute, and own, with
different types of objects having different types of rights.
For example, text files can be read from and written to,
but cannot be executed while program files can. Subject
ownership of an object means that the subject should be
able to control what other subjects may do with that object.
In general, a system’s safety is defined as its ability to help
the user protect their objects from misuse at all times. The
user should be able to specify who and what is able to access
their data and the system should enforce their controls.

For a given system, an access matrix conceptually represents
all the access rights in the system by having a row for every
subject and a column for every object. The rights that a
subject S has for a particular object O are placed in the
cell of the matrix represented by [S,O]. Because a matrix
would have such large storage requirements, in actual im-
plementations of access controls either just the rows or just
the columns are used to represent rights.

The row view of the matrix forms a capability list that shows
for every subject S the rights they have for every object O in
the system. In contrast, the column view of the matrix forms
an access list that shows for every object O the subjects S
who have access rights to it. The capability list makes it easy
to determine all the accesses a particular subject has in a
system but at the same time makes it difficult to determine,
for any one object, all the subjects who have access. The
access list has the opposite effect: it is easy to determine the
subjects who can access an object, but not easy to determine
all the objects a particular subject can access.

Regardless of the view of the access matrix chosen, the rights
in a system are stored in an authorization database. While
this database could be stored in a separate location, most
often it is stored with the objects. A reference monitor uses
this database to determine, for each attempted access by a
subject, if the subject has the necessary rights to access the
object. The authorization database and reference monitor
are mechanisms of access control, and vary from system to
system depending on the hardware and software available.

A system’s configuration consists of the triple (S,O, P ) where
S and O are the subjects and objects in the system, respec-
tively, and P is the conceptual access matrix. A command
can leak rights in a configuration if, when it is run, it mod-
ifies a right in a cell of the matrix. For a single system with
a single subject, the method of configuring the system is not
all that important. However, as the number of subjects and
objects grows, the configuration becomes much more com-
plicated. In this scenario, a security administrator is needed
to maintain the state of the authorization database. The
administrator uses the policies, or high-level guidelines de-
fined by the organization, company, etc, to control access
decisions.

2.2 Access Policies
Three main types of access control policies have been ex-
plored in literature: discretionary, mandatory, and role-
based. This section will give an overview of these policies
as presented by Sandhu and Samarati [17].

2.2.1 Discretionary
Discretionary Access Controls (DAC) control access to ob-
jects based solely on the subject’s identity and the rights
specified for that identity on each object. In this type of
system, an access control list would be used, as described
before, which would specify, for each object, which subjects
are allowed to access it and how. In such a system, the de-
fault level of access is NONE, so that access is prohibited
unless it is explicitly defined. However, this system has a
weakness in that it does not control the dissemination of in-
formation once it has been accessed. A subject could release
information to other subjects who have not been authorized
to receive it. They would do this by reading information
from a file that the third party doesn’t have access to and
writing that information into a file the third party does have
access to.

Consider a system with two users, Alice and Bob, and three
objects, file1, file2 and process1. In a DAC system, each
object would specify the rights that Alice and Bob have for
them. So the ACLs for these objects might look like the
following:

file1 deny Alice read,write
allow Everyone read,write

file2 allow Everyone read,write
process1 deny Bob execute

allow Alice execute

Table 1: Example DAC List Entries

These rights can be interpreted as follows. For file1, ev-
eryone is allowed to read and write to the file except for
Alice. For file2, everyone in the system is allowed to read
and write to the file. Finally, for process1, Bob will not be
allowed to execute the file while Alice will. If another user
is added to the system, since a right is not expressly given
for everyone else, the new user would get the default access,
as is defined as by the system.

2.2.2 Mandatory
Unlike discretionary access control where the owner defines
the access, Mandatory Access Control (MAC) is defined by
the system policy. In a MAC system, subjects and objects
are classified as having a certain security level. For an ob-
ject, the security level represents the sensitivity of the infor-
mation that it holds and the amount of damage that would
result if the information was disclosed. For a subject, the
security level represents the level of trust in the subject that
it will not disclose information unless authorized. When ac-
cess control decisions have to be made, the security levels of
the subject(s) and object(s) in question are compared, and
if the relationship between them meets the requirements of
the system, then the access is granted. The following basic
principles are required to hold in such a system:

• Read Down A subject’s security level must be at least
as high as the security level of the object it wishes to
read. This requirement prevents a user from reading
information for which it has not been trusted.



• Write Up A subject can only write to objects whose
security levels are at the same level or higher. This
requirement prevents a user from leaking information
from high to low security levels.

With these basic principles, MAC is able control the dissem-
ination of information once it has been accessed. A subject
who has access to a file would not be able to write informa-
tion to a file at a lower security level, so they can not give the
information to a third party subject without the necessary
security level to read the original file. MAC was created with
the military in mind to protect information at various hier-
archical classifications and with orthogonal compartments.
Hierarchical levels include UNCLASSIFIED, CONFIDEN-
TIAL, SECRET, and TOP SECRET and orthogonal com-
partments could include Personally Identifiable Information
(PII). However, a system that truly followed these require-
ments would be extremely rigid and difficult to both imple-
ment and use.

Again, consider the system with users Alice and Bob and
the same three objects as before. In this system, the hierar-
chical and orthogonal security levels are the ones listed for
multi level security (MLS) as defined for government classi-
fications above. These hierarchical levels are, in order from
lowest security level to highest: unclassified U , confidential
C, secret S, and top secret TS and an orthogonal level is
personally identifiable information PII. In this system, each
subject and object has a security level, and the next table
shows an example configuration.

Alice S, PII
Bob C
file1 U,PII
file2 TS

process1 TS

Table 2: Example MAC Entries

In this system, Alice can read file1 but Bob and Process1
cannot since they do not have the necessary compartment.
Alice and Bob can only write to file2. Process1 can read
and write to file2.

2.2.3 Role-Based
In Role-Based Access Control (RBAC), subjects are assigned
to roles that line up with roles that users hold in real life.
A role could represent a set of actions and responsibilities
that a subject has in their job. As an example, consider four
types of subjects: students, teachers, principals and janitors
in a school system. The student has the least amount of
access and is limited to his/her desk in his classroom. The
teacher has more access, including his/her desk, students’
desks, his classroom, and the teacher’s lounge. The prin-
cipal has the most access, and has access to his/her desk,
students’ desks, teachers’ desks, all classrooms, as well as
the teacher’s lounge. The janitor has orthogonal (but differ-
ent) access than the principal in that he/she has access to
all the physical rooms in the school but not to the desks. In
a RBAC system, three roles would be created that represent
these levels of access. Then, subjects in the system would be

placed in their appropriate roles and each object authorizes
access based on these roles.

This type of system has many benefits. Management of
authorizations is simplified since it is broken into the two
separate tasks of assigning rights to roles, then assigning
subjects to roles. It also allows for hierarchical roles to be
created, which can be seen in the example above. Once the
student role is defined, the teacher role can be defined to be
the student role plus the extra rights granted to teachers.
Similarly, for the principal, the role can be defined to be the
combination of the student and teacher roles, along with the
extra rights granted to the teachers. This further simplifies
management. In addition, this system would allow subjects
to follow the principle of least privilege which states that
subjects should only use the least amount of access/privilege
necessary to complete a task. In RBAC, a user could take on
the lowest role that has the necessary accesses to complete a
task, and only go to higher roles when absolutely necessary.

As an example, consider the system from the previous sec-
tions with the addition of two roles: teacher and student.
Access rights in this system would look like the following:

Alice teacher
Bob student
file1 teacher, student : read, write
file2 teacher: read, write

process1 teacher, student : execute

Table 3: Example RBAC Entries

In this example, file1 allows both the teacher and student
roles to read and write to it, while file2 only allows the
teacher role access. Also, both roles are able to execute
process1.

3. ACCESS CONTROL IN MODERN OPER-
ATING SYSTEMS

While the basic functionality of access control is well de-
fined, it can be implemented in many different ways. Each
operating system on the market today has different imple-
mentations, and this section will describe some of the differ-
ences.

3.1 Microsoft Windows
Microsoft first created NT to be comparable to Unix sys-
tems, and NT was the first 32 bit operating system they
created [5]. Each major release of NT usually indicates
significant changes in features and functionality of the OS
product. This section will explore how the access control
mechanisms evolved through each version of NT1.

3.1.1 Windows NT
All versions of Windows use the discretionary method of ac-
cess control, in the form of discretionary access control lists
(DACLs) which are stored for each object in the system. A

1Windows NT is the product name for the operating sys-
tem released using NT version 4.0. Subsequent OS releases
were newer versions of NT (5.0+) and were given different
product names.



DACL consists of access control entries (ACEs) that spec-
ify the levels of access that users have on the object. In
Windows NT, there are two types of ACEs: access-allowed
and access-denied. The ACE has three parts: a field speci-
fying which type of ACE it is, a field with a security identi-
fier (SID) that represents a user, and a 16-bit access mask
that specifies the rights. The DACL, along with the owner,
group, and auditing information, make up an object’s se-
curity descriptor. Some access right inheritance occurs au-
tomatically. For example, when an object is created in a
container such as a folder, some of the entries from the con-
tainer’s ACE are inherited into the newly created object.
Figure 1 shows an ACE in NT. [8, 19, 4]

Figure 1: Access Control Entries in Windows NT

As mentioned previously, the subjects in Windows are iden-
tified by a variable length security identifier. Subjects in
Windows can be users or groups of users. The information
about a subject’s identities and privileges is encapsulated in
an access token that is created at logon time. This access
token is used by the Security Reference Monitor (SRM), a
kernel component that is responsible for making access de-
cisions. An application requesting access to an object on
behalf of a subject will call the AccessCheck function, which
takes as input the user’s access token, the requested level of
access, and the object’s DACL. The AccessCheck function
evaluates each ACE in the order they appear, comparing the
SIDs in the ACEs to the subject’s access token. All denying
ACEs appear at the beginning of the ACL, and once a right
has been denied it cannot be granted, even if an allow ACE
occurs later in the ACL. [19, 4]

Figure 2 shows an example of an access check in Windows.
Both Thread A and Thread B are requesting full access
(read, write, and execute) to the object. Thread A is de-
nied access because it contains the user ”Andrew,” who has
been denied access by ACE1. ACE2 and 3 are not evaluated
since deny ACEs take precedence over allow ACEs. Thread
B is granted access since ACE1 doesn’t apply, ACE2 grants
write access, and ACE3 grants read and execute access.

The subject’s access token is generated by the Local Security
Authority (LSA). This process (lsass.exe) is highly privileged
and runs on each individual system. The following describes
the function of the LSA and how access tokens are used:

1. User logs in. The LSA performs the authentication of
the user by verifying the supplied password is correct.

Figure 2: Example of Access Checks in Windows [4]

2. After authentication is complete, the LSA creates a
logon session for the user and the access token.

3. The logon process then creates the main Windows shell
(explorer.exe). The access token for the user is at-
tached to this shell.

4. From this point on, any time that a new process is
started, the user’s access token gets inherited from this
main Windows shell into the new process. Once a pro-
cess has an access token, it cannot be replaced. How-
ever, threads may have different access tokens than
their parent processes, which enables programs to ex-
ecute certain functionality with different identities.

In addition to access rights to objects, user accounts (and
user access tokens) can have privileges. Privileges are 64-
bit numbers that specify access rights for actions that do
not map to a specific object. They can be used to grant
administrative access to large sets of objects (like system
drivers) and to grant execution of operations like shutting
down the system or changing the system clock. [19, 4]

Windows NT includes some built in accounts and account
groups to help simplify the administration of machines. The
Administrator account is a user accessible account that has
full privilege and access rights to the system. Users can use
this account to manage the other accounts and groups of
the system. The Local System account also has complete
privilege and access rights to the system. The user mode
components of the operating system run under this account.

3.1.2 Windows XP / Windows 2000 / Windows Server
2003

These Windows OS versions are all based on NT version
5. Windows 2000 is 5.0, Windows XP is 5.1 or 5.2, and
Windows Server 2003 is 5.2. Since all these systems are
based on NT version 5.0, they are very similar in the way
they perform access control.

Swift et al [19] describe some of the limitations of the ac-
cess control mechanisms in Windows NT (version 4.0). One
limitation is that only 16 bits are used for the access masks
that specify rights in the ACEs. Because of this, only 16



access types can be specified. A second limitation is that
the inheritance of access rights is not fine-grained enough
to distinguish between different types of objects with differ-
ent types of access. A third limitation is that when making
access control changes to a tree of objects, the merging of
objects with differing and already existing ACLs is ambigu-
ous. The effect of the second and third limitations is that
the result of merging and inheritance is not deterministic,
and administrators (and users) might not understand how
to use these functions appropriately to achieve the desired
access rights on objects. A final limitation is that the only
way to restrict rights of processes is to disable privileges
individually, which is difficult to manage.

To alleviate these issues, NT version 5.X changes several
aspects of the access control infrastructure. The first major
change is to the ACEs to allow the ACE to track what type
of object it is referring to. To do this, two fields were added
to ACEs: ObjectType, which identifies the type of the object,
and InheritedObjectType, which is used during inheritance
and specifies which types of objects will inherit the ACE.
Also, application developers have the option of creating their
own object types and properties in addition to those that
are included with the operating system. This feature allows
for more customized access control. The result of adding
personalized objects is the addition of new ACE types. With
this addition, the following types of ACEs exist: generic
access allowed and denied from NT 4.0, object-specific access
allowed and denied which contain the additional information
about the type of object as described above, and various
callback types for use in COM systems. Figure 3 shows the
structure of a generic ACE for built-in objects and Figure 4
shows an ACE for personalized object types. [6, 19, 16].

Figure 3: Generic ACE in Windows 2000

Figure 4: Object-specific ACE in Windows 2000

The second major change to ACEs is explicitly specifying
how ACEs are inherited, both at object creation and through-
out the object’s lifetime. As mentioned before, in NT the
inheritance specification ability was extremely limited and
resulted in ambiguous inheritance. In NT 5.X, directory
ACEs that should be inherited by objects created inside the
directory are marked with the OBJECT INHERIT prop-
erty. Similarly, directories that are created inside a directory
(or container) will inherit the parent’s directory ACEs that
have the CONTAINER INHERIT property set. Figure 5
shows how ACEs are inherited in various scenarios of object
creation. In Figure 5(a), the caller, Alice in this case, cre-
ates an object (file) and provides a security descriptor (SD).
The new object will use the SD given and merge any inher-
itable ACEs from the container (directory in which the file
was created) into the DACL in the SD. In Figure 5(b), Alice
does not provide a SD, so the file just inherits ACEs from
the directory to fill the DACL in its SD. In Figure 5(c), Alice
does not provide a SD and there are no inheritable ACEs in
the directory, so the file gets the default DACL provided by
the system. And finally, in Figure 5(d) the system does not
have a default DACL. So since Alice did not provide one and
nothing was inherited, the file gets no DACL. This means
that all users will have full access to the file. [16]

(a) Security Descriptor Given

(b) No Security Descriptor Given

(c) No Security Descriptor Given, No Inheri-
table ACEs

(d) No Security Descriptor Given, No Inheri-
table ACEs, No Default DACL

Figure 5: ACE Inheritance in Windows 2000



Rights can be changed once an object or container has been
created. One way that rights can change is by changing the
rights on a directory and specifying that the rights should
be propagated throughout all the objects and subdirectories.
When this happens, the rights should be changed in a deter-
ministic fashion unlike in NT 4.0. It is especially important
that locally specified ACEs, for example those that protect
objects with private information, do not get overridden with
ACEs from higher up in the hierarchy. To fix these issues,
each ACE is annotated with a flag specifying whether or not
it was inherited. Before ACEs are reapplied to a directory,
the ACEs on objects that were inherited are removed so that
local ACEs are not overwritten. In addition, all local ACEs
are placed first in the DACL so that they will override any
inherited ones. [16]

Two algorithms can be used to determine what level of ac-
cess a subject will be granted to an object. The first algo-
rithm calculates the maximum allowed access that the object
has been given for the subject when the subject wishes to
have the maximum access. It works as follows:

• If the object has no DACL, then all subjects have all
access.

• If the subject/caller has the take-ownership privilege
or is the owner, then algorithm grants the write owner
access and read control/write-DACL accesses, respec-
tively.

• When a deny ACE is encountered for the subject/-
caller, the right is removed from the access mask that is
being computed. Likewise, if an allow ACE is encoun-
tered and it has not been denied, the right is added to
the access mask.

• Finally, the access mask is returned.

The second algorithm is used to check if a specific access is
allowed. The algorithm works as follows:

• Again, if the object has no DACL, then the subject is
granted access.

• Again, if the subject has take-ownership privilege or
is the owner, the system grants access as in the first
algorithm. This time, this access is used to compare
to the requested rights to the ACEs in the DACL.

• Then, each ACE in the DACL is examined from first
to last. An ACE is only processed if the SID in it
matches the SID in the subject’s access token and it
is not marked as an inherit-only ACE. If an access
allowed ACE is encountered matching the rights re-
quested, then they are granted; if all requested rights
have been granted then the access check is complete
and the algorithm returns. If an access deny ACE is
encountered that matches a requested access, then the
access is denied. If the end of the DACL has been
reached and access has not been granted, then access
is denied. [16]

All of these changes regarding ACEs, special objects, and in-
heritance are part of the Active Directory service and func-
tions. The goal of Active directory is to simplify the manage-
ment of subject and objects throughout a domain (network)
of computers. It allows domain administrators to manage all
the users, groups, and object accesses from a central loca-
tion and ensures that all the management settings get prop-
agated to all computers in the domain. Some accounts are
included with pre-specified levels of access that help mini-
mize the amount of work administrators must do. Some of
these accounts are as follows:

• Local System The most privileged account that all the
user mode components of the kernel run in and has
complete access to all the resources of the machine.

• Local Service/Network Service Does not have complete
access to the machine’s resources and is used to run the
parts of the OS that do not need the complete access
of Local System.

• Administrator This is the most privileged account that
a user can actually log in to. From this account users
can manage all accounts, including Local System, Lo-
cal Service, and Network Service.

In addition, there are some default groups with specified
meanings and rights that administrators can easily use and
add users to. These groups include Administrators, Authen-
ticated Users, Everyone, Server Operators, Power Users,
and Network Configuration Operators. System administra-
tors must decide which users get placed in which groups and
in addition which groups are allowed to access which objects.
Users in the Administrators group will have unlimited ac-
cess to the entire system, so admission to this group should
be strictly managed. The Server Operators, Power Users,
and Network Configuration Operator groups will by default
have access to the objects necessary to perform their roles, so
users should only be placed in this group if they are trusted
to perform these functions. Every user on the system gets
placed in the Everyone group so administrators and normal
users should be careful when specifying that the Everyone
group has access[19, 8].

NT version 5.X introduced restricted contexts, in addition
to changing the ACEs and object inheritance, which allow
the administrator to specify restrictions that will force a
program to run in a limited capacity. The administrator can
create an access token with disabled groups and privileges,
as well as restricted security identifiers. They can then run
the program with that restricted SID. [16]

3.1.3 Windows Server 2008 / Windows Vista
Windows Server 2008 and Windows Vista, and even Win-
dows 7 and Server 2008 R2, are all based on Windows NT
version 6. Server 2008 and Vista are 6.0, and 7 and Server
2008 R2 are both 6.1. The basic access control mechanisms
were updated from NT 5.X, but in between 6.0 and 6.1 the
only real changes are in more high level protection mecha-
nisms and functionality.

The biggest addition to access control mechanisms in Win-
dow NT 6.X was the idea of integrity levels of processes and



objects. It became important to be able to differentiate be-
tween a user and a process that user wants to run, especially
when a process has been downloaded from the Internet and
should not be fully trusted. Processes have an integrity level
associated with them that is stored in the process token.
Processes typically run with the rights of the user and could
have access to the user’s data. With integrity levels, user
and system data can be marked with one integrity level and
untrusted or high risk code (such as an Internet browser) can
run at a lower integrity level. Integrity checks are performed
in addition to normal access checks that prevent the lower
integrity level process from crossing an integrity boundary,
or modifying the user data at higher integrity levels.

With these new integrity check mechanisms, Windows was
able to implement features like User Account Control (UAC)
and Protected Mode Internet Explorer (PMIE). UAC warns
users (by a popup) when they are executing programs/pro-
cesses that try to cross integrity boundaries. PMIE warns
users when webpages try to install or run programs outside
of the protected Internet Explorer process. Five integrity
levels were introduced and given defined uses. Table 4 de-
scribes these levels. [7, 15]

0 untrusted most limited and blocks most write
access

1 low used by PMIE and blocks write ac-
cess to most objects on the system

2 medium basic integrity level used by normal
applications launched when UAC is
enabled

3 high used by administrative applications
when UAC is enabled or used by
normal applications when UAC is
disabled and user is administrator

4 system used by services and other system-
level applications

Table 4: Integrity levels introduced in Windows Vis-
ta/Server 2008

Integrity levels have inheritance rules similar to object ACE
inheritance. In general, a process will inherit the integrity
level of the process that spawned it (its parent). However, if
the integrity level of the file object of the executable image
and the parent’s integrity level differ, the child will inherit
the lowest integrity. In addition, parent processes can spec-
ify explicit integrity levels that their children will run. [15]

Objects have an integrity level defined in their security de-
scriptor called a mandatory label. If an integrity level is
not specified for an object, and the object is created by a
low or untrusted integrity level process, then it will inherit
an integrity level equal to the level of the process. If it
was created by a medium or higher process, it will be given
an integrity level of medium. When integrity level checks
are performed, some policies are followed to protect objects.
One policy is the no write up policy, which means that a
lower integrity process cannot change a higher integrity ob-
ject. Another policy is the no read up policy that is imposed
on process objects and keeps a lower integrity process from
reading objects at a higher integrity level. Figure 6 shows

Figure 6: Medium and Low integrity Level Process
Access to Other Processes and Objects [15]

some of the relationships between process and objects with
medium and low integrity levels. This integrity check occurs
before the discretionary access checks that were described in
Section 3.1.2. [15]

3.2 Unix
Unix operating systems, including Ubuntu, RedHat, and So-
laris, have very basic access control mechanisms. Each file
object in the system has a trio of permissions defined by
three classes of users: the owner of the file, the group the
owner belongs to, and everyone else in the system. Each file
has three types of rights: read (r), write (w), and execute
(x), and these rights are separately defined for each class
of users. The result is that each object has three triplets
representing the rights (rwxrwxrwx) for that object. The
first triplet represents the owner’s rights, the second repre-
sents the group’s rights, and the third represents the rights
of everyone else. This set of rights is often referred to as
the owner-group-world permission for the file. If a right is
granted to a class of users, the bit representing the right is
1. However, if the right is not granted, then the bit is 0. For
example, consider the permissions rwxr-xr-x. In this exam-
ple the owner has read, write, and execute rights, and the
group and everyone else has read and execute rights only.
[2]

Bishop points out that with only three sets of permissions,
this method of access control loses granularity[2]. He gives
an example of a system with five users where the owner of
a file wants to give each user a different set of rights to the
file. There is no way to accomplish this using the basic Unix
permissions as the user can only have three possibilities for
the other users: in his group, not in his group, and everyone
else.

Loscocco and Smalley [13] and Mayer et al [14] also point out
some limitations of this simple discretionary access control
policy. In general, the big issue is that a DAC model does not
differentiate between human users and computer programs.
So if a user starts a process, that process will run with all



the rights of the user whether it should be trusted to or not.
Therefore, the DAC policy ignores other security-relevant
information that could be used to make better access de-
cisions. Some examples of these advanced decision making
schemes include: taking the role of the user into account
when deciding access, using the trust level of the program
to assign varying levels of access, and changing access based
on the sensitivity and/or integrity of the data.

3.2.1 Modifications
Because of these limitations, much work has been done to
augment the basic Unix access model with more advanced
access models, particularlymandatory and role-based mech-
anisms. Since the Linux kernel is open source, researchers
and developers are able to modify it to meet their needs.
Several different approaches were explored, including the
POSIX.1e, Domain and Type Enforcement (DTE), and Se-
curity Enhanced Linux (SELinux) implementations. These
implementations were enhanced with the development of the
Linux Security Model, which sets up the framework for in-
teracting with the kernel to make access decisions. This
section will discuss these approaches in more detail.

POSIX.1e.
POSIX.1e [9] was an attempt to add many extensions to
the POSIX.1 family of standards, including adding access
control lists, audit mechanisms, capabilities, mandatory ac-
cess control, and information labeling. While the items were
not actually standardized, the work towards the standard-
ization was released to the public, and several mechanisms
have been implemented by Unix systems. The ACL is one
item that was heavily adopted and implemented in many
systems. Specific implementation in the various systems is
not discussed since it varies from system to system.

POSIX.1e adds an extended ACL to what it calls the mini-
mal ACL, or the standard file mode permission bits as de-
scribed above (owner-group-world). In this extended model,
the group class is allowed to contain ACL entries with dif-
ferent permission sets. In other words, the ACL can contain
entries for other users and groups and get around the limi-
tations described before of not being able to represent more
than three types of users. Since the group class now rep-
resents other relationships in addition to the owning group
permissions, the meaning of the group triplet in the owner-
group-world permission label is changed to represent an up-
per bound on the permissions that any entry in the group
class can obtain. In addition to modifying the file system
object ACL, another ACL is defined: default. A default
ACL is defined for a directory and specifies the permissions
that files will inherit if they are created in that directory.

Access checks are performed whenever a process tries to ac-
cess an object and occurs in two steps. The first step looks
for the ACL entry that most closely matches the process.
The second step determines if the matching entry has the
necessary privileges for the access. ACL entries are exam-
ined in order of most restrictive to least restrictive, starting
with the owner, then to named users, then to groups, then
everyone else. While only a single entry will determine if ac-
cess is granted, if a process is a member of multiple groups,
each group entry will be examined. If even one of them con-

tains the appropriate permissions, then the access will be
granted.

Domain and Type Enforcement (DTE).
The goal of Domain and Type Enforcement [10] is to pro-
tect a system from attackers who subvert processes with
superuser access by using mandatory access controls in addi-
tion to the standard UNIX controls. Processes are grouped
into domains, and files are grouped into types. Domains
can have the right to send signals and to transition into
other domains. The rights to types include read, write, exe-
cute, create, and directory descend. Access decisions restrict
domains to access only objects they have been specifically
granted permission and also restrict domains from transi-
tioning into other domains without explicit permission. A
process can switch domains by executing a file that is an
entry point to the other domain. Three types of domain
transitions are described in Table 5.

auto the process is automatically
switched to Domain B

exec Domain A can choose to switch to
Domain B

none Domain A cannot transition to Do-
main B

Table 5: Domain Transitions in DTE

If domain A has auto transition access to domain B, then
when they execute the entry point for domain B they will
automatically be transitioned into domain B. If domain A
has exec transition access to domain B, then it can choose
if it will switch to domain B. However, if domain A has
the none transition access to domain B, then domain A can
never transition to domain B and executing the entry point
will not do anything.

DTE was implemented as a prototype in the 2.3.28 Linux
kernel. The type information for objects is attached to the
virtual file system inodes, while the domain information is
attached to the process descriptor structs. A DTE policy file
(/etc/dte.conf) contains the information about the types
and domains as specified by policy administrators and is
read at boot time to create the structs for each domain and
an array containing all the types. A domain structure con-
tains the types it is allowed to access, the transitions it can
make to domains, its signal access to other domains, and
its entry points. A file inode contains three pointers into
the array of types: the etype, which specifies the type of the
object, the rtype, which specifies the type of the current di-
rectory and its children, and the utype, which specifies the
type of the object’s children. An object’s type will be the
value of the etype if it has been previously determined. If
the type has not yet been determined, then there are two
options: either a rule exists in the policy that specifies the
rtype for the directory or the type is inherited from the ob-
ject’s parent’s utype. An access check is performed whenever
a process performs an open system call. The modified kernel
checks the domain structure for the current process to deter-
mine if the domain is allowed to access the type of the file.
If DTE grants access, then the standard UNIX permissions



are checked.

Evolution of SELinux.
SELinux stems from an initiative by the National Security
Agency (NSA) to implement a mandatory access control sys-
tem that does not suffer from the limitations that accompa-
nies these systems (rigid and difficult to implement). With
the Secure Computing Corporation (SCC), NSA sought to
design a system that would be flexible enough to be used
with any security policy and would be acceptable for main-
stream operating systems. After the architecture was de-
veloped and prototypes were tested, NSA and SCC worked
with the University of Utah’s Flux research group to develop
the Flask architecture. This architecture was implemented
in the university’s Fluke operating system and used to un-
derstand and develop better support for dynamic security
policies. [13]

Eventually, NSA integrated the Flask architecture into the
Linux kernel and released it for use and research. Once
SELinux had been presented, the consensus was that the
Linux kernel needed to have a general and abstract mecha-
nism for which access policies could be implemented. This
need started the Linux Security Model (LSM) Project, which
developed a kernel patch and module loading capabilities
that developers can use to develop their own security poli-
cies. The model provides the basic mechanisms for attaching
security fields to kernel objects and mediating access to the
kernel objects, but leaves it to the policy developers to de-
fine the labels for the objects as well as what checks are
performed when mediating access to objects. The LSM al-
lows SELinux to be more easily integrated into the Linux
kernel since it abstracts away the low level details. In ad-
dition, POSIX.1e and DTE have been modified to use the
LSM in their current implementations. [20, 13]

The descriptions of SELinux and the Flask architecture are
closely related. SELinux can be thought of as an exam-
ple security policy using the Flask architecture. This sec-
tion will follow the format of Smalley and Losocco [13] and
present the general Flask architecture along with the spe-
cific SELinux implementation, but using the implementa-
tion for the LSM [18], not the original SELinux hand-made
patches. The SELinux security policy is a mandatory access
control policy that combines the ideas of type enforcement,
role based access control and multi-level security (optional).
It is also shipped and “on” by default in the Fedora and Red
Hat operating systems.

Description of Flask/SELinux.
As mentioned previously, the Flask architecture provides the
necessary mechanisms to develop an access control policy
without tying the architecture to any one policy structure.
Similar to other MAC systems, the objective is to label ev-
ery subject and object and to mediate access from subjects
have to objects and between themselves by comparing val-
ues in the labels. Flask achieves flexibility in the system by
separating the portion of the system that contains the pol-
icy logic for labeling objects and determining access from
the portion of the system that provides enforcement mech-
anisms. This idea carried over into the implementation of

the LSM, as described before. The logic-containing portion
is referred to as the security server, and it is by using this
component that policy makers can specify the access con-
trols for the system. The enforcement mechanism portion is
referred to as the object manager(s) whose job is to correctly
label and protect access to all the objects in the system.

Flask has two policy-independent data types that are used
by the system to label subjects and objects. The security
context is a variable length string representing the label of
the entity while the security identifier (SID) is an integer
that the security server maps to a security context. In
SELinux, a security context contains a user identity, role
(only for processes), type, and MLS level (if implemented).
A SID is only provided if the combination of identity, role,
type and level is valid for the system (user:role:type). An
example security context is

system_u:system_r:httpd_exec_t.
This means that the system ’user’ has the root role and can
run the files of type httpd exec t. The LSM only has a single
void* security field in the kernel data structures for the ker-
nel objects, and since SELinux needs two (security context
and SID), it stores the information in a dynamically gener-
ated structure for each kernel object. The SELinux policy
consits of rules that define types and transitions, and spec-
ify what domains are able perform which actions. An exam-
ple access rule is: “allow sshd_t sshd_exec_t:file {read

execute entrypoint};”. This rule says that the sshd_t do-
main can read, execute, and be entered via a file with the
sshd_exec_type. The other policy rules follow similar for-
mat.

The LSM inserts hooks into important kernel functions that
manage objects so that labels can be applied and access per-
missions can be checked. The hooks implement the concep-
tual Flask object managers, and whenever an object man-
ager needs a label for an object, the security server is checked
to determine what the label should be. For processes in
Flask, the label generally depends on the label of the cur-
rent process and the label of the program’s executable. For
files in Flask, the label generally depends on the label of the
current process, the parent directory’s label, and the type
of file that is being created. For SELinux, a new process
will have a role and domain (type) based on the role and
domain of the parent process as well as the type of the pro-
gram. Additionally, a file will have a type specified based
on properties of the process and type of program and can
use specified types based on the domain of the process, the
type of the parent directory, and the kind of file.

As in DTE, Flask/SELinux performs specialized access checks
in addition to and before the standard user-group-world ac-
cess checks. The Flask object managers, or hooks in LSM
terminology, are responsible for performing the checks. Fig-
ure 7 shows the LSM hook archictecture. Figure 7(a) shows
abstractly where the hooks occur in access checks and Figure
7(b) shows the kernel architecture.

To perform checks, the object managers consult the access
vector cache (AVC) which stores access decision computa-
tions that the security server has completed for further use
by the object managers. The object managers check rights
by giving the AVC a pair of labels (for the subject and ob-



(a) Abstract Overview of Hooks

(b) Kernel Architecture of Hooks

Figure 7: SELinux Hooks [20]

ject) and an object class. If the AVC has already calculated
a permission based on these attributes, it is returned. If
not, then it contacts the security server to obtain the per-
missions and stores the results for later use. The object
class is defined for type of object and each object class has
a set of permissions which are specified in a bitmap called
access vector. Each service has separate permissions defined
for each class of objects it accesses. SELinux defines many
types of permissions, including execute, transition, and en-
trypoint which are similar to the domain transitions in DTE
(a process can only transition to another SID if it has been
appropriately setup with transition and entrypoint permis-
sions). Other permissions involve signal handling, forking,
tracing, and obtaining/changing information on the process.

4. COMMON PROBLEMS AND GENERAL
BEST PRACTICES

The access control mechanisms discussed in this paper vary
from simple to extremely complex. Each system, even if they
are implementing the same types of access control (DAC or
MAC), have variances in the details of the implementations.
With all of these differences it becomes very important for
the application developers to fully understand how the ac-
cess controls on their target system(s) are implemented so

that they can be used appropriately and most effectively.
However, access controls are improperly used in systems all
the time, and improper use can cause serious harm [12].

Common Weakness Enumeration (CWE) is an effort by MITRE
Corporation to incorporate all of the research into software
weakness by different research groups into a single resource
to be used by researchers, analysis tool designers, and appli-
cation developers alike (cwe.mitre.org). The weaknesses
are grouped into common types of problems based on the
nature of the weakness. For access control, many examples
of misuse of ACLs further show the need for developers to
understand their operating environment to protect systems
from malicious actions. Some of these CWE entries from
version 1.12 will be presented.

CWE 266 contains examples of incorrect privilege assign-
ment, where a product assigns a privilege to an actor that
allows that actor have unintended ability in the system. One
example is from the Apple Mac OS X 19.3.9 system, specif-
ically the authorization services in securityd. The security
context daemon securityd maintains security contexts and
is the arbiter for all cryptographic operations and security
authorizations. The weakness is that it allows users to grant
themselves rights that should be restricted to Administra-
tors. This weakness is currently under review, meaning that
it hasn’t been accepted as an official weakness. However,
it points out a common problem with access controls. In a
stand-alone system, this might not be considered a weak-
ness and instead be considered a necessity (i.e., a user on
his/her own machine needs to have administrator rights to
be able to manage it). However, in a network of machines
where the network administrators are charged with restrict-
ing the rights of users on the local machines, this is definitely
a problem.

CWEs 250 and CWE 271 describe weakness involving exe-
cuting a process/program with unnecessary privileges (CWE
250) and not dropping or lowering privileges (CWE 250 and
CWE 271). This generally means that a program is running
with more privileges than are necessary for it to perform
its functions (i.e. it violates the principle of least privi-
lege). This violation is a common occurrence as developers
sometimes think that they need more privileges than they
really do and/or it is easier to just claim many or all priv-
ileges rather than exactly what privileges are needed [12].
One example given for CWE 250 is in the splitvt pro-
gram [1], which will split a terminal vertically into two shell
windows. It executes another program called xprop with-
out dropping the privileges, which allows local users to gain
privileges. This entry is also still under review, but a look at
the project’s page shows that it suffered from many security
holes that led to improper privileges being obtained. An ex-
ample given for CWE 271 is the ping program in iputils

as distributed on Red Hat Linux 6.2 through 7J. The pro-
gram does not drop privileges after receiving a raw socket
which leaves it exposed to bugs that could not occur at lower
privileges.

CWE 267 describes a similar issue to CWE 250. In 267,
a privilege is defined with unsafe actions meaning that a
particular privilege, role, capability, or right can perform
actions that the developer did not intend, event though it



was assigned to an entity correctly. One example is a vul-
nerability in Microsoft Internet Explorer 5.0, 5.01, and 5.5
that allows a remote attacker, via some improperly defined
right, to monitor the contents of the Windows clipboard.

CWEs 276–279 all relate to a product’s initialization and in-
heritance of permissions. CWE 276 gives examples of prod-
ucts who set incorrect permissions on their object at instal-
lation, allowing it to have more access than it should. CWE
277 describes insecure inherited permissions, where a prod-
uct insecurely defines permissions which are then inherited
to all objects that it creates. CWE 278 shows how products
can inherit insecure permissions for objects when performing
actions like copying from an archive file. CWE 279 gives ex-
amples of products that while executing, set permissions for
objects in direct contradiction to the permissions the user
had specified for the object.

These CWE entries mentioned are just a subset of all the
entries that pertain to permissions, privileges, and access
controls, and an even smaller subset of all the weakness de-
fined in CWE. However they point out several issues that
application developers should be aware of when writing ap-
plications to avoid making similar mistakes. Other sources
of information about access control program include books
on writing secure code. In his book Programming Windows
Security, Keith Brown presents the general strategies that
operating systems (not just Windows) use to perform ac-
cess checks as a function of the amount of information avail-
able [3]. The three types of information that he describes
are:

1. The authorization attributes for the principle request-
ing access

2. The intentions specified in the request

3. The security settings for the object to be accessed

Then, depending on how much of this information is avail-
able to a system, different strategies can be imposed. When
only (1) is available, an application will likely use imper-
sonation, where the client’s token is passed onto the process
that is performing the access. In this scenario, the deci-
sion is left up to the underlying system as to whether or
not the process (and therefore the user) can access the ob-
ject. When (1) and (2) are available, the application can
perform role-centric checks where the client’s token should
specify if the action is allowed for the application. If all
three are available, then the application can enforce object-
centric strategies like those in Windows, where each object
has an associated security descriptor and the privileges in
the client’s token are compared with the DACL on the ob-
ject. These strategies are not all-encompassing, but they are
at least a good starting point when thinking about how the
target system performs access controls.

Michael Howard, in his book Writing Secure Code, discusses
a general method for determine what types of ACLs are
needed for an application [12]. He is a strong advocate
for determining the least amount of privilege an applica-
tion needs and using that to create the ACL. In addition, he

advocates having an understanding of and being account-
able for every ACE in an ACL. He gives four basic steps for
determining appropriate ACLs:

• Determine the resources that will be used

• Determine the business-defined access requirements for
the resources of the application

• Determine the appropriate access control system tech-
nology that meets the needs of the access control re-
quirements

• Convert the requirements into the technology

In addition to these general guidelines, Howard also points
out some Windows-specific mistakes that programmers of-
ten make. One mistake is not getting the order of the ACEs
correct when specifying ACLs in code. When working with
the Windows GUI to specify ACL entries, the entries are
automatically placed in deny-first order so that deny takes
precedence over allow. This is not the case when specifying
ACLs through code, so developers must be sure to use the
following order: explicit deny, explicit allow, inherit deny
from parent, inherit allow from parent, inherit deny from
grandparent, inherit allow from grandparent, etc. More
importantly, developers should be aware that specifying a
NULL DACL will grant all access to all users, and NULL
DACLs should never be used in applications.

Finally, Matthew Bishop in his book The Art and Science of
Computer Security poses questions that developers should
keep in mind when using ACLs on a system [2]. These are
as follows:

• What subjects can modify ACLs? (Usually, this is the
owners of the objects)

• Do the ACLs apply to users of privilege? (Usually only
in a limited fashion)

• Are groups or wildcards allowed?

• If two ACEs are contradictory, how is the access re-
solved?

• What are the default settings if a user is not mentioned
specifically in an ACE and how/when will the settings
be changed?

5. CONCLUSION
A main line of defense against attackers are the access con-
trol mechanisms that operating systems employ. Without
a thorough understanding of how a given operating system
implements access controls, application developers might in-
advertently create vulnerabilities in their applications that
allow attackers to obtain elevated rights in the system. By
using the information in this paper regarding how operating
systems implement access controls, the common mistakes
that are made, and the general guidance for using access con-
trols in applications, application developers can make their
products more robust and protect user data.



6. ACKNOWLEDGMENTS
I would like to thank Jeff Foster and Mike Hicks for their
invaluable help in this research and reviewing the paper.

7. REFERENCES
[1] splitvt project page. Accessed from:

http://freshmeat.net/projects/splitvt/ April 25, 2011.

[2] M. A. Bishop. The Art and Science of Computer
Security. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[3] K. Brown. Programming Windows Security.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[4] M. Corp. Access control. Accessed from:
http://msdn.microsoft.com/en-
us/library/aa374860(v=VS.85).aspx April 16,
2011.

[5] M. Corp. A history of windows. Accessed from:
http://windows.microsoft.com/en-
US/windows/history April 16,
2011.

[6] M. Corp. How security descriptors and access control
lists work. Accessed from:
http://technet.microsoft.com/en-
us/library/cc781716(WS.10).aspx April 16,
2011.

[7] M. Corp. What does internet explorer protected mode
do? Accessed from:
http://windows.microsoft.com/en-US/windows-
vista/What-does-Internet-Explorer-protected-mode-do
April 16, 2011.

[8] S. Govindavajhala. Windows access control
demystified. Technical report, 2006.

[9] A. Grünbacher. Posix access control lists on linux.
2003.

[10] S. E. Hallyn and P. Kearns. Domain and type
enforcement for linux. In 4th Annual Linux Showcase
and Conference, pages 247–250, 2000.

[11] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
Protection in operating systems. Commun. ACM,
19:461–471, August 1976.

[12] M. Howard and D. E. Leblanc. Writing Secure Code.
Microsoft Press, Redmond, WA, USA, 2nd edition,
2002.

[13] P. Loscocco and S. Smalley. Integrating flexible
support for security policies into the linux operating
system. In Proceedings of the FREENIX Track: 2001
USENIX Annual Technical Conference, pages 29–42,
Berkeley, CA, USA, 2001. USENIX Association.

[14] F. Mayer, K. MacMillan, and D. Caplan. SELinux by
Example: Using Security Enhanced Linux (Prentice
Hall Open Source Software Development Series).
Prentice Hall PTR, Upper Saddle River, NJ, USA,
2006.

[15] M. Russinovich and D. A. Solomon. Windows
Internals: Including Windows Server 2008 and
Windows Vista, Fifth Edition. Microsoft Press, 5th
edition, 2009.

[16] M. E. Russinovich and D. A. Solomon. Microsoft
Windows Internals, Fourth Edition: Microsoft
Windows Server(TM) 2003, Windows XP, and

Windows 2000 (Pro-Developer). Microsoft Press,
Redmond, WA, USA, 2004.

[17] R. Sandhu and P. Samarati. Access control: principles
and practice. Communications Magazine, IEEE,
32(9):40 –48, Sept. 1994.

[18] S. Smalley, C. Vance, and W. Salamon. Implementing
selinux as a linux security module, 2002.

[19] M. M. Swift, P. Brundrett, C. Van Dyke, P. Garg,
A. Hopkins, S. Chan, M. Goertzel, and
G. Jensenworth. Improving the granularity of access
control in windows nt. In Proceedings of the sixth
ACM symposium on Access control models and
technologies, SACMAT ’01, pages 87–96, New York,
NY, USA, 2001. ACM.

[20] C. Wright, C. Cowan, and J. Morris. Linux security
modules: General security support for the linux
kernel. In In Proceedings of the 11th USENIX Security
Symposium, pages 17–31, 2002.


