
A Survey of Algorithms for Capacitated k-median Problems

Khoa Trinh

University of Maryland, College Park, MD 20742
Email: khoa@cs.umd.edu

Abstract

k-median is a classic optimization problem which has been studied extensively in the last few
decades. The current best known approximation ratio for this problem is (2.675 + ε). A more gener-
alized version of this problem also considers the capacities of the given facilities. That is, each facility
cannot serve more clients than its own capacity. Unfortunately, there is no known constant-factor ap-
proximation algorithm for this problem. We survey some state-of-the-art techniques to approximate
the Capacitated k-median problem that may violate the hard constraint by a factor of (1 + ε). Note
that the natural LP relaxation for this problem is still unbounded even when we are allowed to violate
the cardinality constraint by a factor of 2− ε. The new improvements come from several techniques
to strengthen the LP as well as a novel clustering algorithm.

1 Introduction
In k-median problem, we have a set of facilities F , a set of clients C, a symmetric distance metric d on
F ∪ C, and a number k. The goal is to open at most k facilities so that the total connection cost from
each client to the closest, open facility is minimized. This problem is known to be NP-hard. The current
best known approximation algorithm for k-median is a (2.675 + ε)-approximation algorithm [2]. In the
capacitated version, each facility i ∈ F also has a capacity ui > 0. We need to make sure that facility i
only serves at most ui clients in our solution.

One of the reasons making this problem difficult to obtain a constant approximation ratio is that its
natural linear program relaxation has unbounded gap. Most of the previous algorithms for capacitated
k-median either violate the capacity constraint or the cardinality constraint. For example, Byrka et. al.
give anO(1/ε2)-approximation algorithm by violating the capacity constraint by a factor of (2+ε) in [1].

In this survey, we will discuss two new results by Shi Li on Capacitated k-median (CKM) problems.
In Section 2, we review an old result for the Minimum Knapsack problem and introduce the idea of
Relaxed Separation Oracle by Carr et. al. [3]. This technique allows us to round a fractional solution into
an integral one even when there is no efficient separation oracle for the LP. In Section 3, we discuss Shi
Li’s O(exp(1/ε2))-approximation algorithm for the Hard Uniform Capacitated k-median while opening
at most (1 + ε)k facilities [5]. In Section 4, we discuss an improved algorithm by Shi Li which has an
approximation ratio of O

(
1
ε2

log 1
ε

)
[4]. The drawback is that this algorithm may need to open 2 copies

of a facility.
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2 Relaxed Separation Oracle

2.1 Minimum Knapsack Problem
Given a set I of items and a demand D. Each item i ∈ I has size si ≥ 0 and value vi ≥ 0. The problem
is to choose a subset X of I such that the total value of items in X is at least the demand D and the total
size is minimized. The LP relaxation of the problem is as follows.

minimize c(x) =
∑
i∈I

sixi

subject to
∑
i∈I

vixi ≥ D

xi ≥ 0

2.2 Knapsack Cover Inequalities
Let x be any feasible, integral solution and A be any subset of I . We observe that if the items in A are
given for free, the remaining chosen items in I \ A should be still feasible on the residual instance with
demand D − v(A). In other words, we have the following valid inequality∑

i∈I\A

vixi =
∑
i∈I

vixi −
∑
i∈A

vixi

≥ D −
∑
i∈A

vixi

≥ D − v(A).

We can strengthen this inequality by assuming that the value of each item is no more than the (residual)
demand: ∑

i∈I\A

min{vi, D − v(A)}xi ≥ D − v(A).

Now, we have a strengthened LP relaxation:

minimize c(x) =
∑
i∈I

sixi

subject to
∑
i∈I\A

min{vi, D − v(A)}xi ≥ D − v(A) ,∀A ⊆ I, v(A) ≤ D

xi ≥ 0

2.3 2-approximation Algorithm
Let x be a fractional solution to the strengthened LP with cost c(x). We will round x to an integral
solution whose cost is at most 2c(x). Let A = {i : 1/2 ≤ xi ≤ 1}. We will take all items in A. If
v(A) ≥ D, then we are done. Note that the cost of choosing items in A is at most 2c(x). Assume that
v(A) ≤ D. Then ∑

i∈I\A

min{vi, D − v(A)}xi ≥ D − v(A).
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Consider the residual instance I \ A. Recall that xi < 1/2 for all i ∈ I \ A. Sort these items in the
decreasing order of new value:

min{v1, D − v(A)} ≥ min{v2, D − v(A)} ≥ · · · ≥ min{vk, D − v(A)}.

Let r be the (minimum) integer such that rxi is also integral ∀i ∈ I \ A.

• We create r empty buckets B1, . . . , Br and distribute the items into these buckets as follows. We
create r(2x1) copies of item 1 and put these copies into the first r(2x1) buckets, then put r(2x2)
copies of item 2 into the next r(2x2) buckets (modulo r) and so on.

• Then the algorithm will just return the following set

arg min
Bj∪A

∑
i∈Bj∪A

si.

Note that

• Since r(2xi) < r, no bucket contains duplicate items.

• Let vA(Bj) =
∑

i∈Bj min{vi, D − v(A)}. By ordering, we have

vA(B1) ≥ vA(B2) ≥ . . . ≥ vA(Br).

Moreover, the difference vA(B1)−vA(Br) is at mostD−v(A) (the worst case is whenB1 contains
one more item than Br). We claim that

vA(Br) ≥ D − v(A).

Otherwise, we have

vA(B1) ≤ vA(Br) +D − v(A) < 2(D − v(A)),

which implies that ∑
vA(Bi) < 2r(D − v(A)).

This is a contradiction because∑
vA(Bi) = r

∑
i∈I\A

min{vi, D − v(A)}(2xi) ≥ 2r(D − v(A)).

• Thus, all the sets B1 ∪ A, . . . , Br ∪ A are feasible, integral solutions. Also,

r∑
i=1

x(Bi ∪ A)

r
≤ 2x.

Therefore, the minimum cost of these sets is bounded by 2c(x).
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2.4 Intuition
Consider the set A of items with “high” opening: xi ≥ 1/2. It is quite “easy” to choose these items since
the cost of choosing all items in A is at most twice the fractional cost. The question is what to do with
the remaining items in I \ A?

Now consider the residual instance I \ A and let x′ be x when restricted on this new instance. Since
we already choose A, we want to satisfy the new demand D′ = D − v(A). WLOG, assume that item i
in the new instance has value v′i = min{vi, D′}. Indeed, we cannot freely take items in I \A because the
opening can be close to 0 and we would not be able to bound the cost. Instead, we rely on the fact that∑

i∈I\A

v′ix
′
i ≥ D′.

In other words, x′ is a feasible, fractional solution to the new Minimum Knapsack instance. But why is
it easier to round x′? Observe that the “opening” x′i < 1/2 for all i. It is quite natural to scale up such
a solution with small openings: let x̂ = 2x′ and note that x̂ is still feasible because x̂i ≤ 1, however, we
have ∑

i∈I\A

v′ix̂i ≥ 2D′.

Now it is clear that rounding x̂ should be easier. This is because of the factor 2 of D′. In this new
instance, given the fractional, feasible solution x̂, we are allowed to violate the demand constraint by a
factor of 2 during the rounding algorithm.

The rest can be done by using a bucketing algorithm. Let r be the (minimum) integer such that rx̂i is
also integral. Create r empty buckets B1, . . . , Br. Sort all items in decreasing order of values: v′1 ≥ v′2 ≥
. . . ≥ v′k. Then put rx̂1 items 1 into the first rx̂1 buckets, rx̂2 items 2 into the next rx̂2 buckets (modulo
r) and so on. Finally, return the bucket with the minimum cost.

• Since rx̂i ≤ r, no bucket contains duplicate items,

• It is easy to see that v′(B1) ≥ . . . ≥ v′(Br). We claim that v′(Br) ≥ D′ and hence, all buckets are
feasible. Note that the difference v′(B1)− v′(Br) ≤ v′1 ≤ D′ because B1 may contain at most one
more item than Br. If v′(Br) < D′ then v′(B1) < 2D′ and

r∑
i=1

v′(Bi) < 2rD′.

This is a contradiction because
r∑
i=1

v′(Bi) =
∑
i∈I\A

v′irx̂i ≥ 2rD′.

• Finally, observe that x̂ is a convex combination of these r integral solutions:

x̂ =
r∑
i=1

x(Bi)

r
,

which implies that the minimum cost can be bounded by c(x̂) ≤ 2c(x′).
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2.5 Framework: Relaxed Separation Oracle
Now the question is “how to solve the strengthened LP relaxation”. The given LP has exponential number
of constraints and it is not clear if there is an efficient separation oracle for this LP. Interestingly, in the
above algorithm, it suffices for x to satisfy the Knapsack Cover Inequality on a single set A.

In fact, all we need is a relaxed separation oracle: given a fractional solution x, it will

• either point out a violated constraint,

• or round x into an integral solution x̂ where c(x) ≤ αc(x̂) for some constant α.

The framework works as follows. First, we guess the true optimal LP value, say OPT . Then, in the
ellipsoid method,

• if c(x) > OPT , return this violated constraint,

• else if we can round x into x̂ so that c(x̂) ≤ αc(x), return x̂,

• else return some violated constraint that does not allow us to round x.

3 Uniform Hard Capacitated k-median Problem
In this section, we consider Shi Li’s algorithm to approximate the Uniform Hard Capacitated k-median
using (1 + ε)k facilities. In this problem, all facilities have the same capacity u > 0, and we are only
allowed to open at most k facilities (at most one at each location). The natural LP relaxation for the
problem is

minimize
∑
i∈F

∑
j∈C

d(i, j)xij

subject to
∑
i∈F

xij = 1 ,∀j ∈ C∑
i∈F

yi ≤ k

xij ≤ yi ,∀i ∈ F , j ∈ C∑
j∈C

xij ≤ uyi ,∀i ∈ F

0 ≤ xij, yi ≤ 1.

3.1 Reduction to soft capacitated k-median problem with F = C
It turns out that if there is an α-approximation algorithm for the uniform soft capacitated k-median with
F = C, then there is a (1 + 4α)-approximation algorithm for the uniform hard capacitated k-median. To
see this, consider any hard capacitated instance (k,F , C) and fix a α-approximate solution C ′ for the soft
capacitated instance (k, C, C). Let OPTsoft, OPThard be the optimal costs of the soft and hard instances,
respectively. Note that OPTsoft ≤ 2OPThard because, given any solution to the hard (k,F , C) instance,
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we create a feasible solution of the soft (k, C, C) instance by moving the facility i to the nearest client j
that it is serving. The cost of this solution can be at most twice the original cost.

Now we construct the following bipartite graph G = (C ′ ∪ F , E) as follows:

• letM be the minimum cost matching of the bipartite graph on (C ∪ F) where the cost of the edge
(j, i) : j ∈ C, i ∈ F is equal to the distance d(i, j), subject to the constraint that each client is
matched exactly one time and each facility can be matched with at most u clients,

• recall that C ′ is the set of open facilities in the α-approximate solution (there can be multiple open
facilities at a location but |C ′| ≤ k). We consider the matchingM′ between C ′ and C, where each
client is matched with the open facilities that serves it in the solution.

• finally, we combineM andM′ to get G: there is an edge (j, i) in G, where j ∈ C ′ and i ∈ F iff
there exists a client k ∈ C such that k is matched with with i inM and with j inM′. We assign
the cost d(i, k) + d(k, j) to this edge.

Note that G may can contain multi-edges, and |E| = |C|. (We can think of each edge as client.) Also,
by construction, the degree of all vertices is at most G. Now we will transform this bipartite graph so
that the number of matched vertices in F is at most k. This can be done as follows:

• while there exists even cycles, decompose it into 2 disjoint, equal sets of odd and even edges.
Remove the set of edges with larger cost and double multiplicities of edges in the other set,

• now consider any connected component which is a tree. If the tree contain any 2 vertices i1, i2 ∈ F
such that their degrees are strictly less than u, again, we decompose the even path from i1 to i2 and
apply the above process. We repeat this process until no changes can be made.

• finally, G will only trees where each tree may contain at most one vertex only the right with degree
less than u.

It is clear that this transformation does not increase the cost and each facility can only be matched at
most u times. We claim that the number of matched facilities in F is now at most k and we can take this
as a feasible solution. To see this, consider any tree T with at least one edge. Assume that T has e edges.
By the above property, we have

(|T ∩ F| − 1)u < e ≤ |T ∩ C ′|u,

which implies
|T ∩ F| ≤ |T ∩ C ′|.

The claim follows by taking the sum over all trees and notice that |C ′| ≤ k. How about the connection
cost of this solution? Note that the degree of vertices in C ′ is still preserved. It means that, for each client
k, we can serve it via the route: k → assigned facility in C ′ → some matched facility in F . Indeed, the
total cost is at most

cost(C ′) + cost(G) ≤ cost(C ′) + cost(M) + cost(M′)

= 2cost(C ′) + cost(M)

≤ 2αOPTsoft +OPThard

≤ 4αOPThard +OPThard = (1 + 4α)OPThard.
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3.2 A simple 6-approximation which opens 2k facilities
We first apply the standard filtering algorithm on C as follows. Let ` > 1 be a parameter to be determined.
Initially, C ′ := ∅. We consider clients in increasing order of its fractional connection cost. For each
client j in this order, we add j into C ′ and remove j and all all other clients k such that d(j, k) ≤
2`max{Cj, Ck}. We then assign facilities inF to the closest cluster center in C ′, breaking ties arbitrarily.
Let Fj denote the set of facilities assigned to j ∈ C ′.

Claim 1. The set C ′ of cluster centers satisfies the following properties:

• for any j, j′ ∈ C ′, d(j, j′) ≥ 2`max{Cj, Ck},

• y(Fj) ≥ 1− 1/` for all j ∈ C ′.

Algorithm 1 Simple rounding algorithm

1: αj ← 0 for all j ∈ C ′
2: for j ∈ C do
3: for i ∈ F : xij > 0 do
4: k ← the cluster center of i (i.e. i ∈ Fk)
5: αk ← αk + xij
6: end for
7: end for
8: for j ∈ C ′ do
9: open dαj/ue facilities at location j

10: end for
11: find the minimum matching between the set of open facilities and all clients, where each client is

matched once and each facility is matched at most u times.
12: return the min-cost matching

Idea: Let us imagine that each client in C has a unit of demand and we want to transfer the demand into
some open facility. Then the connection cost will be equal to “moving cost” that is required to transfer
all demands to the open facilities in our solution. In the following algorithm, we first move all demands
from clients j to its serving facilities i in the LP solution. Obviously, this would cost OPTf . Then, the
demand from each facility i will be sent to its cluster center. Finally, we divide the amount of demands
at a center by u to obtain the number of facilities to be open at this site. Observe that the total demand at
a cluster center can be bounded by the volume of that cluster. Moreover, by construction, the volume of
any cluster is at least 1/2, and we only loose a factor of at most 2 in the size of the solution.

Analysis: We claim that such a matching exists due to the integrality of matching polytope. Consider
the fractional matching x′ on C ′∪C by setting x′ij = xFi,j , for all i ∈ C ′, j ∈ C. The cost of x′ (also called
the moving cost as we move xFi,j units of demand from j to i) is equal to

∑
j∈C
∑

i∈C′ d(i, j)xFi,C which
will be analyzed in a moment. Note that the total flow out of each client is exactly 1 and the total flow
into each facility j is exactly αj . By opening dαj/ue facilities at site j, we guarantee that the amount of
incoming flow of j can be as large as dαj/ue · u > αj . Thus, one can round x′ into an integral matching
where each client is matched at most once and each facility is matched at most u times.
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We first bound the total connection cost. By integrality of b-matching polytope, the connection cost is at
most ∑

j∈C

∑
k∈C′

d(j, k)
∑
i∈Fk

xij ≤
∑
j∈C

∑
k∈C′

∑
i∈Fk

xij(d(i, j) + d(i, k))

≤
∑
j∈C

∑
k∈C′

∑
i∈Fk

xij(d(i, j) + d(i, i′))

≤
∑
j∈C

∑
k∈C′

∑
i∈Fk

xij(2d(i, j) + d(i′, j))

≤
∑
j∈C

∑
k∈C′

∑
i∈Fk

xij(2d(i, j) + 2`Cj)

= 2OPTf + 2`
∑
j∈C

Cj
∑
k∈C′

∑
i∈Fk

xij

= 2OPTf + 2`OPTf = 2(`+ 1)OPTf ,

where i′ is the cluster center of j. Moreover, for each bundle Fj , by LP constraints and construction, we
open at most ⌈∑

j∈C
∑

i∈Fj xij

u

⌉
≤ dy(Fj)e

facilities at j. Since

max
j∈C′
dy(Fj)e
y(Fj)

≤ max
y≥1−1/`

dye
y
≤ 2,

if we set ` = 2. Then the number of open facilities is at most 2
∑

j∈C′ y(Fj) ≤ 2k. Increasing ` does not
improve the factor of 2 because limε→0

d1+εe
1+ε

= 2.

3.3 Integrality gap of the natural LP relaxation
Consider the following instance: k = u + 1,F = C, and |F| = |C| = n = u(u + 1). (Each facility has
capacity u.) The clients are partitioned into u groups of size u + 1. The distance between any 2 clients
is 0 if they are in the same group and 1 otherwise.

uu groups; each has u + 1u + 1 facilities; 
k = u(u + 1)k = u(u + 1)

yi = 1/uyi = 1/u

xij = 1/(u + 1)xij = 1/(u + 1)

Then
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• The cost of any integral solution is greater than 1 even when we are allowed to open 2k − 3 =
2(u + 1) − 3 = 2u − 1 facilities. Indeed, there are u groups, and we cannot afford to open 2
facilities in all groups.

• On the other hand, the fractional cost is exactly 0. This can be achieved by setting yi = 1/u for all
i and xij = 1/(u + 1) for all i, j within the same group. Indeed, the number of open facilities is
n/u = u+ 1 = k. Each client can connect to itself and other u clients in the group (each with the
extent 1/(u+ 1)).

3.4 Strengthening the natural LP with Rectangle Constraints
In the above bad instance, the LP solution will open (1/u)(u + 1) = 1 + 1/u facilities for each group
and use these to serve all u + 1 facilities in the group. The consequence is that no client would need to
connect to some facility outside, causing the LP value to be equal to zero. Can we somehow rule out this
possibility? Indeed, any integral would open either one or two facilities per group:

• 1 facility can serve u facilities in the group,

• 2 facilities can serve u+ 1 facilities in the group (not 2u).

While it is not possible to avoid opening a fractional number of facilities per group, we can still add some
linear constraint to rule out the above event. In particular, we can use linear interpolation on the number
of facilities in [1, 2] to get the number of clients which can be served. For example, with y ∈ [1, 2]
open facilities, we require that only u + y − 1 clients in the group can be served (and other clients have
to connect to outside facilities, hence making the LP value greater than zero). Indeed, this constraint
suffices to get rid of the bad instance as only u+ 1 + 1/u− 1 = u+ 1/u clients in a group are served by
1 + 1/u facilities.

Generally, let f(p, q) be the maximum number of clients in a group of size p can be served by opening q
facilities. If p, q ∈ Z+, we have f(p, q) = min{p, qu}. How can we extend this function for q ∈ R+. As
discussed above, assuming q ∈ R+, we define f(p, q) as follows:

• If q ≤ bp/uc then f(p, q) = min{p, qu} = qu,

• If q ≥ dp/ue then f(p, q) = min{p, qu} = p,

• For q ∈ [bp/uc, dp/ue], we use linear interpolation to connect two integer points (bp/uc, ubp/uc)
and (dp/ue, p):

f(p, q) = udp/ue+ u(p/u− dp/ue)(q − dp/ue).
We rewrite the LP as follows.

minimize
∑
i∈F

∑
j∈C

d(i, j)xij

subject to
∑
i∈F

xij = 1 ,∀j ∈ C∑
i∈F

yi ≤ k

xB,J ≤ f(|J |, yB) , ∀B ⊆ F ,J ⊆ C
0 ≤ xij, yi ≤ 1.
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3.5 High-level ideas
In the normal k-median problem, we can simply assign a client to the nearest open facility. However, in
this capacitated version, clients are required to be carefully assigned to some facility without violating
the capacity constraint. In other words, the assignment variables xij are also important in this problem.
The above 6-approximation algorithm suggests a good strategy: for each client j, move all the demands
xij to the cluster center of i. We can think of the result of this process as a fractional matching where
the total weight of incidence edges of a client is exactly one. The integrality of any matching polytope
implies that there is a integral solution whose cost is at most the current fractional cost.

Recall that the LP constraint guarantees a bound on the number of open facilities. For each j ∈ C ′,
let αj be the total mass that have been moved to j in the above process and scaled down by u. Let
βj := y(Fj) be the (fractional) number of open facilities inside the ball Fj . By construction and the fact
that

∑
j∈C′ xij ≤ uyi ∀i ∈ F , we have αj ≤ βj .

From now on, we shall call αj the demand of j and βj the supply of j. Indeed, we have
∑

j βj ≤ k. In
the simple 6-approximation algorithm, we open dαje facilities at each location j and show that∑

j∈C′
dαje ≤ 2

∑
j∈C′

βj ≤ 2k,

when ` = 2. How can we improve the factor of 2? In fact, if dαje ≈ βj or αj < bβjc then we do not lose
much when opening dαje facilities. Otherwise, dαje/βj is large and we have to move the demand from
j to some other cluster center. This is our strategy: to move the demand from bad cluster centers j to
some nearby cluster centers. The challenging part of this process is that we have to bound the connection
cost as moving amount f of demand from j to k would incur a cost of (uf)d(j, k). One natural idea is
to partition C ′ into groups of nearby centers so that the cost of moving the demand among centers within
a group is not too large. Because of some technical issues, we would need to bound the cost of moving
demand from a subset of centers to some outside centers.

Generally, when shall we move the demand from a set A of cluster centers to other centers in C ′ \A and
how can we bound the incurring cost? Let S :=

⋃
j∈A Fj be the set of facilities claimed by centers in A.

Define
y′S :=

∑
i∈S,j∈C

xij
u
,

and
yS :=

∑
i∈S

yi.

Recall that we have the demand-supply constraint: y′S ≤ yS . Indeed, there is no need to transfer demand
from A if either y′S ≤ bySc or dySe − yS is small. For example, if dySe − yS ≤ 1/` then

dy′Se
yS
≤ dySe

yS
≤ 1 +

1

yS`
≤ 1 +

1

`(1− 1/`)
,

since yS ≥ 1− 1/`.
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Therefore, the two main conditions on transferring the demand from A to C ′ \ A are (1) y′S ≥ bySc and
(2) dySe− yS is large, say dySe− yS ≥ 1/`. If these conditions are satisfied, then we have the following
bound derived from the Rectangle Constraints:

u(y′S − by′Sc)d(A, C ′ \ A) ≤ 1

dySe − yS
(4DS + (4`+ 2)D′S)

≤ O(`)(DS +D′S)

where

• d(A, C ′ \ A) = minj∈A,k∈C′\A d(j, k) is distance to the nearest facility outside A,

• DS =
∑

i∈S
∑

j∈C xijd(i, j) and D′S =
∑

i∈S
∑

j∈C xijCj ,

• the LHS u(y′S − by′Sc)d(A, C ′ \ A) is simply the cost of moving the excessive amount of demand
(y′S − by′Sc) from A to the closest center in C ′ \ A,

• if we take sum of the RHS over disjoint sets of facilities, we get DF = D′F = OPTf .

To this end, Shi Li suggests the use of neighborhood trees. Basically, we partition C ′ into several almost
disjoint sets. The vertices inside each set form a rooted tree with certain properties. Focus on a tree
T = (V,E) with root r. Initially, each cluster center j ∈ V has demand αj = y′Fj and supply βj = yFj .
We shall redistribute the demand and supply within T such that

• αj ≤ βj ∀j, at any time during the process,

• the total demand and supply are not changed,

• dαje ≤ βj + 1/` ∀j 6= r.

Note that while we may redistribute the supply within T , this is for the analysis only and does not incur
any cost. After the moving process, we simply open dαje facilities at location j as before. It is easy to
see that the last property suffices to bound the number of open facilities to within (1 + ε)k. Note that
βV ≥ |V |(1− 1/`) > (|V | − 1)(1− 1/`). The number of open facilities in T is∑

j∈V

dαje ≤
∑

j∈V,j 6=r

(βj + 1/`) + αr + 1

≤
∑

j∈V,j 6=r

(βj + 1/`) + βr + 1

≤ βV + 1 + (|V | − 1)/`

≤ βV + 1 +
βV
`− 1

= βV

(
1 + 1/βV +

1

`− 1

)
.

The term 1/βV can be ignored if we choose |V | large enough. In fact, we will create the tree T with at
least ` vertices so that 1/βV ≤ 1

(`−1)(1−1/`)
.

Now we have all the main ingredients. How can we combine all these ideas to achieve the above goal
while still being able to bound the cost? Shi Li suggests a clever recursive moving process. The edges of
T is sorted and carefully grouped into sets E1, E2, . . . , Eh such that
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• the edges in group Ei is shorter than or equal to edges in Ei+1,

• for any group Ei, the difference between the longest and shortest edges is bounded:

emax
emin

≤ exp(O(|V |)).

Then the tree is further partitioned into many level-sets as follows. Let E≤i =
⋃
j≤iEj . Each subtree of

T induced by edges in E≤i is called a level-i set. Indeed, the (only) level-h set is exactly T . Note that
these level-sets form a laminar family. As mentioned, the redistribution process is done in a recursive
manner: when processing some level-i set A, all of its level-(i − 1) subsets are already processed. A
level-(i− 1) set A′ ⊆ A is processed if either

• all centers j ∈ A′ satisfy: dαje ≤ βj + 1/` (this is our ultimate goal),

• indeed, the mentioned condition cannot be always achieved. But if this cannot be done, by induc-
tive hypothesis, we can redistribute the demand and supply in such a way that αj = βj ∈ Z for all
j except a bad center v, for which αv < βv (and maybe dαve > βv + 1/`).

Main idea: Now when processingA, we would consider all of its level-(i−1) subsetsA′. IfA′ satisfies
the first condition, there is no need to move any mass out of A′. Otherwise, there is one vertex v such
that dαve > βv − 1/` and all other vertices have balanced demand and supply. We shall round both αv
and βv down to bαvc. In other words, we collect an amount αv − bαvc = y′S − by′Sc of demand from
A, where S is the facilities claimed by centers in A′, and move it to A \ A′ in the attempt of making A
balanced. Finally, we can bound the moving cost:

• The moving distance is indeed at most the sum of all edges in A. Let emin be the shortest edge in
Ei then emax ≤ exp(O(|V |))emin. Thus, the total distance can be bounded by

exp(O(|V |))emin.

• The neighborhood tree has another useful property that

emin ≤ 2d(A′, C ′ \ A′),

• Recall that we want to move y′S −by′Sc demand out ofA′. Also, the fact that dαve > βv + 1/` and
all other vertices are balanced imply that

dySe − yS ≥ dy′Se − yS = dαve − βv > 1/`

Thus, we can apply the Rectangle Bound on the moving distance:

cost ≤ exp(O(|V |)) · ((y′S − by′Sc)u) · emin
≤ exp(O(|V |)) · ((y′S − by′Sc)u) · d(A′, C ′ \ A′)
≤ exp(O(|V |))(DS +D′S).

• Recall that by taking the sum of DS or D′S on disjoint sets S, we get OPTf .

• Our final ingredient is to choose V carefully so that |V | ≤ `2 so that we only lose a factor of
O(exp(`2)).

12



3.6 Neighborhood Trees and Geometric Grouping
In this section, we will discuss how to build neighborhood trees. Recall that our goal is to partition C ′
into trees and, for a fixed tree T = (V,E), the edges of T are sorted and grouped into E1, . . . , Eh such
that

• ` ≤ |V | ≤ `2,

• for any group Ei: emax/emin ≤ exp(O(|V |)), where emax, emin are the lengths of the longest and
shortest edges in Ei, respectively,

• let E≤i = E1 ∪ . . . ∪ Ei and A ⊆ V be any maximal subtree using edges in E≤i, we want

d(A, C ′ \ A) ≥ min
e∈Ei+1

e/2.

One way to achieve the third property is to construct neighborhood trees such that for any non-root vertex
v, we have

d(v, p(v)) = min d(v, C ′ \ Λ(v)),

where p(v) is the parent of v and Λ is the set of vertices of the subtree rooted at v. We will see how to
exploit this later. Now we show how to partition C ′ into neighborhood trees such that the size of each
tree is in [`, `2]. The algorithm is as follows:

• initially, each node is considered a tree. While there exists a tree T rooted at v with size less than
`, let r = arg minr∈C′\Λ(v) d(v, r) and then “hang” T onto r. It is easy to check that all trees are
neighborhood trees with size at least ` after this step.

• next, we need to break some large trees whose size exceeds `2. Fix any large tree T = (V,E)
where |V | > `2. Recall that, initially, T only contains the root r. Then T is growing gradually
by absorbing smaller trees (of size less than `). Let us shrink such a tree into a supernode for a
moment and let the size of a supernode be the size of the original tree. Now T is composed of
supernodes. We find a deepest supernode r such that the size of the subtree rooted at r is at least
`(`− 1), i.e. the sizes of subtrees of its children are less than `(`− 1).

Now the total number of (original) nodes in the subtree of r but not belonging to the supernode r
is at least `(` − 1) − (` − 1) = (` − 1)2. These nodes will be hanged into at most ` − 1 nodes
in r. Thus, there exists a node v ∈ r such that the total number of nodes hanged into v is at
least (` − 1)2/(` − 1) = ` − 1. Let children of v be v1, . . . , vt. Then we greedily build a tree T ′

consisting of v and some subtrees rooted at v1, v2, . . . , vm such that T ′ has at least ` nodes and at
most `2 nodes. This can be done due to the fact that the size of subtree of v is at least (`−1)+1 = `
and the size of v1, . . . , vt is less than `(`− 1).

We break T into T ′ and T \ T ′. It can be checked easily that both trees are still neighborhood tree.
By repeating the process, the final trees will have size in [`, `2].

Now fix any tree T = (V,E) with root r. Assuming for the moment that we have a partition E =
E1 ∪ . . . ∪ Eh, we will use the definition of neighbor trees to derive the third property: d(A, C ′ \ A) ≥
mine∈Ei+1

e/2 for any maximal connected component induced byE≤i. There is a technical problem here:
if A contains the root then we do not know how to lower-bound d(A, C ′ \ A). This is because we have
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broken large trees and the distance from the root to its previous parent could be very small compared
to distance between vertices within the subtree. Thus, we have to add another constraint that the root
r /∈ A. See the following figure for notations.

In this figure, blue edges are in E≤i. Let L =
∑

e∈E≤i e be the total length of edges in E≤i. Let v be the
root of the subtree induced by A. Note that C ′ \ A = (C ′ \Λ(v))∪ (Λ(v) \ A). Let emin be the length of
the shortest edge in Ei+1. Consider the following two cases:

• Assume d(x, x′) = d(A, C ′ \ Λ(v)). Then we have

emin ≤ d(v, p(v)) ≤ d(v, x′)

≤ d(v, x) + d(x, x′)

≤ L+ d(x, x′).

• Assume d(y, y′) = d(A,Λ(v) \A). Let z be the highest vertex such that the path from y′ to z only
uses edges in Ei+1. We have

emin ≤ d(z, v)

≤ d(v, y) + d(y, y′) + d(y′, z)

≤ L+ d(y, y′).

Thus, we have proved that
d(A, C ′ \ A) ≥ emin −

∑
e∈E≤i

e.
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Therefore, to get d(A, C ′ \A) ≥ emin/2 , it suffices to require that emin ≥ 2
∑

e∈E≤i e. This suggests the
following geometric grouping scheme:

• sort all edges e1 ≤ e2 ≤ . . . ≤ e|V |−1 and initialize E1 = ∅, j = 1, and h = 1,

• for each ej , if ej < 2(e1 + . . . + ej−1) then Eh ← Eh ∪ {ej}. Else, we create a new level-set
Eh+1 ← {ej} and increase h← h+ 1.

Finally, we prove that, in any group Ei, emax/emin ≤ exp(O(|V |)). Assume Ei contains the following
edges:

emin ≤ e′1 ≤ e′2 ≤ . . . ≤ e′t = emax.

Let L =
∑

e∈E≤i−1
e. Then, by construction, we have emin ≥ 2L and

e′1 ≤ 2(L+ emin) ≤ 3emin.

We prove by induction that e′j ≤ 3j · emin as follows.

e′j ≤ 2(L+ emin + e′1 + . . .+ e′j−1)

≤ 3emin + 2 · 31 · emin + . . .+ 2 · 3j−1 · emin
≤ 2emin(1/2 + 1 + 31 + . . .+ 3j−1)

=

(
1 + 2

3j − 1

3− 1

)
emin = 3j · emin.

Since Ei contains at most |V | − 1 edges, emax = exp(O(|V |))emin.
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3.7 Rounding Rectangle LP solution
Focus on any neighborhood tree T = (V,E). As discussed before, we want to move the demands and
supplies among vertices of T . Note that moving supplies does not incur any cost. Our goal is to make
these vertices balanced, i.e. dαje ≤ βj + 1/` for as many j ∈ V as possible. In fact, we may afford to
have a constant number of unbalanced vertices.

Fix any level-i set A. Recall that a level-(i− 1) set A′ ⊆ A is processed if either

• all centers j ∈ A′ satisfy: dαje ≤ βj + 1/` (this is our ultimate goal),

• or, αj = βj ∈ Z for all j except a bad center v, for which αv < βv (and maybe dαve > βv + 1/`).

If r ∈ A then we cannot afford to move demands out of A because we have no bound on d(A, C ′ \ A).
In this case, we will try to make all j 6= r balanced instead. If r /∈ A, we want A to have one of the
above two properties as well. To process A, we focus on the level-(i− 1) subsets of A. The first step is
to collect demands and supplies from these subsets. Initialize Sdemand ← 0, Ssupply ← 0. For each subset
A′ ⊂ A of level i− 1:

1. We first collect supply from all vertices j ∈ A′ or j ∈ A such that dαje < βj:

Ssupply ← Ssupply + βj − dαje

βj ← dαje

2. Then if there is a bad center v and dαve > βv + 1/`, then we collect its demand and supply:

Sdemand ← Sdemand + αv − bαvc

Ssupply ← Ssupply + βv − bαvc
αv ← bαvc, βv ← bαvc

After this step, we have (1) Sdemand ≤ Ssupply and (2) βj ≤ dαje ≤ βj + 1/`. If A contains the root
r, then we simply move the collected demand and supply into r and we are done. (Note that if A′ ⊂ A
contains the root, then there is no need to move collect demands and supplies from A′.)

Assume that r /∈ A. Then we will try to make as many αj = βj ∈ Z as possible by redistributing the
collected Sdemand and Ssupply. This can be done by first increasing some fractional αj until it is equal to
βj . Then we increase both αj, βj until both of them are integral. Note that we maintain the inequality
Sdemand ≤ Ssupply at the end of the process. If this can be done successfully, then we move the remaining
demand and supply to some arbitrary vertex and the second property is satisfied. Otherwise, we get stuck
because we ran out of demand during the process (Sdemand = 0) first. If this is the case, we still maintain
the property βj ≤ dαje ≤ βj + 1/` for all j. Finally, moving the remaining Ssupply to any vertex does
not violate this property either.

How to bound the moving cost? One important thing is that we only collect demand from bad / unbal-
anced centers and each level-i − 1 set A′ only contains at most one such bad center. By the algorithm,
we only move at most α(A′)− bα(A′)c = y′S − bySc units of demand out of A′.
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4 Non-uniform Soft Capacitated k-median Problem
Now we consider the non-uniform capacitated k-median problem, in which each facility i has a capacity
ui > 0. As the capacities are different, the hard CKM problem is not equivalent to the soft version with
F = C anymore. It is still an open question whether we can approximate hard CKM problem by opening
(1 + ε)k facilities within some constant factor. In this section, we will discuss Shi Li’s new algorithm
which opens at most (1+ ε)k facilities (at most 2 facilities per location) and gives an approximation ratio
of O

(
1
ε2

log 1
ε

)
. For simplicity, given a soft CKM instance, we make k copies of each facility so that the

indicator yi ∈ [0, 1] for all i in the LP relaxation:

minimize
∑
i∈F

∑
j∈C

d(i, j)xij

subject to
∑
i∈F

xij = 1 ,∀j ∈ C∑
i∈F

yi ≤ k

xij ≤ yi ,∀i ∈ F , j ∈ C∑
j∈C

xij ≤ uiyi , ∀i ∈ F

0 ≤ xij, yi ≤ 1.

4.1 A simple (4, 11)-approximation algorithm
Again, we first filter the set C of clients to get C ′ containing cluster centers with radius 4 max{Cj, Cj′}.
We also move the demands to cluster centers as in the (2, 6)-approximation algorithm for the soft CKM
problem with F = C. Then each center j ∈ C ′ has xFj ,C units of demand. The moving cost up to this
point is at most 6OPTf . However, we cannot open any facility at this site because j may not be in F .

Now the trick is to move the demand xFj ,C from each cluster center j back to facilities in Fj . Let αi
be the amount of demand to be moved into facility i. We use the following LP as a guide to reroute
demands:

minimize
∑
i∈Fj

αid(i, j)

subject to
∑
i∈Fj

αi = xFj ,C∑
i∈Fj

αi/ui ≤ y(Fj)

αi ∈ [0, ui] , ∀i ∈ Fj

Let α∗ be any vertex solution of this LP. It is easy to see that α∗ has at most 2 fractional values. Note
that objective function of the LP gives us the moving cost. Moreover, it is easy to check that setting
αi = xi,C , ∀i ∈ Fj yields a feasible solution. Thus, the moving cost of α∗ is at most

∑
i∈Fj xi,Cd(i, j).
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Summing this upper-bound over all cluster centers gives 5OPTf :∑
j∈C′

∑
i∈Fj

xi,Cd(i, j) =
∑
j∈C′

∑
i∈Fj

∑
k∈C

xikd(i, j)

≤
∑
j∈C′

∑
i∈Fj

∑
k∈C

xik(d(i, k) + 4Ck)

=
∑
i∈F

∑
k∈C

xikd(i, k) + 4
∑
i∈F

∑
k∈C

xikCk = 5OPTf ,

where, in the second inequality, we use the fact that d(i, j) ≤ d(i, q) ≤ d(i, k) + d(k, q) ≤ d(i, k) + 4Ck
with q being the cluster center of k. Thus, the total moving cost is at most 11OPTf .

As before, we open dα∗i /uie facilities at each site i. Again, the first constraint guarantees that one can
round the corresponding fractional matching without any loss. Bounding the number of open facilities
in Fj is now easy due to the fact that α∗ is almost integral:∑

i∈Fj

dα∗i /uie ≤ by(Fj)c+ 2.

Since

by(Fj)c+ 2

y(Fj)
≤ max

y≥1/2

byc+ 2

y
= 4,

for all j, we open at most 4k facilities in total.

4.2 High-level ideas
In the previous section, we describe a (4, 11)-approximation algorithm. Basically, there are three main
steps. First, the original demands are moved from clients to facilities. The moving cost in this step is
obviously equal to OPTf . Next, the demands from all facilities are moved to the corresponding, closest
cluster centers. Finally, for each cluster, we redistribute the demands back to facilities inside that cluster
by using an LP as a guidance. Moreover, this LP has “almost” integral vertex solutions which allows us
to open at most 2 more facilities per cluster. The total moving costs in both second and third steps are at
most 5OPTf via simple distance bounds. We loose a factor of 4 in the number of open facilities because
the opening volume of each cluster can be as small as 1/2. How can we reduce this factor to (1 + ε)?

Observe that if we can somehow get a set of cluster centers with volume at least 1/ε, then the idea
of using an LP to redistribute the demands within this set while opening some small extra number of
facilities, say c, works fine in this case. To be more precise, we will first move all demands from cluster
centers in this set to some specific center j∗ and then redistribute the demands from j∗ to facilities
claimed by some cluster center in this set. Note that the ratio of open facilities is now bounded by
maxy≥1/ε(byc + c)/y ≤ (1 + cε). The main difficulty is to bound the connection cost. In the (4, 11)-
approximation, it is relatively easy to bound the cost when moving demands within a single cluster.
However, in the approach, we may have to move the demands from one cluster center to another. How
can we bound this cost?
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Let us consider a simplified case where we want to move all demands out of a group J of cluster centers.
Recall that F (J) =

⋃
j∈J Fj and xF (J),C is the total demand to be moved out of J . For simplicity,

we further assume that the centers in J are close to each other and these distances can be bounded by
d(J, C ′ \ J) so that the moving cost in this case can be bounded by

B = O(1)× d(J, C ′ \ J)× xF (J),C.

We want to upper-bound this in terms of OPTf . Unfortunately, there is no easy answer for this and the
following quantity will be useful:

π(J) :=
∑
j∈C

xF (J),j(1− xF (J),j).

Note that if F (J) is isolated, i.e. all clients are either served by J or C \ J (but not both), then π(J) = 0.
Intuitively, this measures the number of clients that are served by both J and C \ J . The quantity π(J) is
an important threshold for xF (J),j that indicates whether B can be bounded by OPTf . We can prove the
following technical bound:

d(J, C ′ \ J)π(J) = d(J, C ′ \ J)
∑
j∈C

xF (J),j(1− xF (J),j) = d(J, C ′ \ J)
∑
j∈C

xF (J),j

∑
i′∈F\F (J)

xi′j

=
∑

j∈C,i∈F(J),i′∈F\F (J)

xi,jxi′jd(J, C ′ \ J) ≤
∑

j∈C,i∈F(J),i′∈F\F (J)

xi,jxi′j(d(C ′ \ J, i′) + d(i′, J))

≤
∑

j∈C,i∈F(J),i′∈F\F (J)

xi,jxi′j(2d(i′, J))

≤ 2
∑

j∈C,i∈F(J),i′∈F\F (J)

xi,jxi′j(d(i′, j) + d(j, i) + d(i, J))

= 2
∑

j∈C,i∈F(J)

xi,j
∑

i′∈F\F (J)

xi′j(d(i′, j) + d(j, i) + d(i, J))

≤ 2
∑

j∈C,i∈F(J)

xi,j
∑
i′∈F

xi′j(d(i′, j) + d(j, i) + d(i, J))

≤ 2
∑

j∈C,i∈F(J)

xi,j
∑
i′∈F

xi′j(d(i′, j) + d(j, i) + d(i, σ(i)))

= 2
∑

j∈C,i∈F(J)

xi,j(Cj + d(j, i) + d(i, σ(i)))

≤ 2
∑

j∈C,i∈F(J)

xij(5Cj + 2d(j, i)) ≤ O(1)× (D(F (J)) +D′(F (J))).

where D(F (J)) =
∑

i∈F (J),j∈C xijCj and D′(F (J)) =
∑

i∈F (J),j∈C xijd(i, j). (Recall that the sum of
D,D′ on disjoint sets of facilities will be at most OPTf .) Now there are two cases:

• Case xF (J),C ≤ O(1)× π(J): we say that J is non-concentrated and, by the above bound, we have

B ≤ O(1)(D(F (J)) +D′(F (J))).
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• Case xF (J),C > O(1)× π(J): we say that J is concentrated. In this case, B cannot be bounded in
terms of D,D′. However, Shi Li suggests a very clever way to make J become non-concentrated.
It can be shown that, if the opening mass y(F (J)) is not too large, say O(1), then we can guess
some subset of facilities inside F (J) to be open and connect most of the clients in J to these
facilities so that the remaining demand is small, and hence can be bounded by π(J). Intuitively,
if the LP solution says that opening y(F (J)) facilities is enough, then there exists a facility set of
size by(F (J))c which serves most of the local clients locally.

In the above discussion, there are two main sub-problems we still need to solve:

• First, we need a new clustering algorithm which is able to partition the set C ′ into disjoint sets. The
first requirement is that each set T in this partition should have volume large enough, say at least
Θ(1/ε). In addition, to bound the moving cost, we further partition T into disjoint groups so that
the volume of each group is O(1). Then we will be able transfer the demands among these groups
as discussed before.

• Second, for a given non-concentrated group J ⊆ C ′ with volume small enough, we need to pre-
open some facilities in F (J) and pre-assign clients to these facilities so that (1) the remaining
demand is small enough and J becomes non-concentrated, (2) the cost of pre-assignment is not
too big, and (3) the number of pre-opened facilities is small so that we can still open some more
facilities in F (J) without exceeding the fractional value y(F (J)) by too much. This can be done
by using a configuration LP.

4.3 Preprocessing step
4.3.1 Configuration LP

As discussed above, we have to deal with some concentrated group J having a large amount of demand:
xF (J),C > O(1)× π(J). The idea is to open some small, good subset of facilities in F (J) and pre-assign
some clients in J so that the residual instance would be simplified and J would become non-concentrated.
Actually, this can be done if the total mass y(F (J)) = O(1) (in other words, the LP says that we only
need to open a few facilities in the optimal LP solution). In this paper, let us also fix any optimal integral
solution.

To this end, for each subset F ⊆ F , we define the following variables:

• let S := {S ⊆ F : |S| ≤ b} for some constant b to be determined. Let ⊥ denote “any subset of F
of size greater than b”. We also view⊥ as a set and say that i ∈⊥ for all i ∈ F . Let S̃ := S ∪{⊥}.

• for every S ∈ S̃, let zFS denote that event that, in the optimal solution, the set of open facilities in
F is exactly S,

• for every S ∈ S̃ and i ∈ F , let zFS,i denote the event that zFS = 1 and yi = 1,

• for every S ∈ S̃, i ∈ F , and j ∈ C, let zFS,i,j denote the event that zFS,i = 1 and j is connected to i
in the optimal solution.
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The following constraints will be valid:

• exactly one set S ∈ S̃ will be chosen:
∑

S∈S̃ z
F
S = 1,

• if i is open then it should belong to some set S:
∑

S∈S̃:i∈S z
F
S,i = yi for all i ∈ F ,

• if j is connected to i then zFS,i,j = 1 for one set S ∈ S̃:
∑

S∈S̃:i∈S z
F
S,i,j = xij for all i ∈ F and

j ∈ C,

• the following constraints follows by definition: 0 ≤ zFS,i,j ≤ zFS,i ≤ zFS , zFS,i = zFS (if S 6=⊥), and∑
i∈S z

F
S,i,j ≤ zFS , for all S ∈ S̃, j ∈ C,

• capacity constraints:
∑

j∈C z
F
S,i,j ≤ uiz

F
S,i for all S ∈ S̃, i ∈ S,

• if zF⊥ = 1, then more than b facilities are open in S:
∑

i∈F z
F
⊥,i ≥ bzF⊥ .

Note that the configuration LP has exponentially many variables and constraints. However, we can still
apply the Relaxed Separation Oracle because we only want the above constraints to hold for polynomially
many sets F ⊆ F . The idea is as follows:

• We first rewrite the LP so that it only contains x, y variables. For any subset F ⊆ F , the above
constraints can be rewritten as M~z ≥ b+M ′~x+M ′′~y, where M,M ′,M ′′ are some matrices, b is a
column vector, and ~x, ~y, ~z are column vectors containing x, y, z variables. Now, for a fixed solution
(~x, ~y), this inequality holds for some vecotr ~z iff for all ~g that ~gTM = 0, we have ~gT (b + M ′x +
M ′′y) ≤ 0. Thus, we can define an LP in which there is a constraint ~gT (b+M ′x+M ′′y) ≤ 0 for
each ~g such that ~gTM = 0.

• The new LP contains exponentially many x, y variables and infinite number of constraints. How-
ever, we do not really need to solve it. In fact, our algorithm will need the additional constraints to
hold for a polynomial number of subset F ∈ F . Now, for such an subset F , we can easily verify
if there exists a vector ~g such that ~gTM = 0 and ~gT (b + M ′x + M ′′y) > 0. If yes, we return
this violated constraint for the Oracle. Otherwise, we will be able to round it into a good integral
solution.

4.3.2 Pre-assignment

Lemma 1. Let ` be some constant to be determined and `′ = O(` log `) be some large enough constant.
Suppose J is any set of cluster centers such that xF (J),C > `′ × π(J) (i.e., J is non-concentrated) and
the opening volume is small enough: y(F (J)) ≤ 2`. If all the related constraints for the set F (J) in the
configuration LP are satisfiable, then we can pre-open a set S ⊆ F (J) and pre-assign a set R ⊆ C of
clients to S so that

1. each facility in S only serves at most ui clients,

2. J becomes concentrated: xF (J),C\R ≤ `′π(J),

3. After opening S, we can still afford to open some xF (J),C\R
xF (J),C

y(F (J)) facilities in F (J):

xF (J),C\R

xF (J),C
y(F (J)) + |S| ≤ (1 + 1/`)y(F (J)),
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4. the pre-assignment cost is at most `′D(F (J)).

Proof. Let zF (J) be the vector of the z’s variables related to F (J). Since we only the set F (J), we will
omit the superscript F (J) while using these variables in this proof and write F instead of F (J). Also,
this will be a probabilistic proof. Recall that

∑
S∈S̃ zS = 1. It means that we have a distribution on

subsets of size at most b. We will randomly choose a set S according to distribution and show that the
claimed properties holds with positive probability.

We have to avoid the the event ⊥ because we do not have any useful information about which facilities
should be open in this case. Let E denote the good event that S is not ⊥. By LP constraints, We have∑

S∈S

zS|S|+ bz⊥ ≤
∑
S∈S

∑
i∈S

zS,i +
∑
i∈F

z⊥,i

=
∑
S∈S̃

∑
i∈S

zS,i =
∑
i∈F

∑
S∈S̃:i∈S

zS,i =
∑
i∈F

yi = y(F ).

Thus, if we set b large enough, then E will happen with positive probability. We now condition on the
event E . Let q := Pr[E ]. Also, define wij := zS,i,j/zS for all i ∈ S and j ∈ C. By the LP constraints, it
is to check that w is a valid fractional matching between S and C. We can now do a dependent rounding
on the bipartite graph with weight w and obtains a random matching M . Let R be the the clients in C
that are matched in M . Indeed, property (1) holds since we preserve the degrees of all vertices.

Now fix any client j ∈ C. We have

Pr[j is matched] = Pr[j is matched ∧ E ]

=
∑
S 6=⊥

zS
∑
i∈S

wij =
∑
S 6=⊥

zS
∑
i∈S

zS,i,j/zS

=
∑

S 6=⊥,i∈S

zS,i,j =
∑
i∈F

∑
S∈S:i∈S

zS,i,j

= xF,j −
∑
i∈⊥

z⊥,i,j ≥ xF,i − z⊥ = xF,i − 1 + q.

Thus,

Pr[j is not matched|E ] = 1− Pr[j is matched|E ]

= 1− Pr[j is matched ∧ E ]

Pr[E ]

≤ 1− xF,j − 1 + q

q
=

1− xF,j
q

.

Now we can bound the remaining demand:

E[xF,C\R|E ] =
∑
j∈C

xF,j Pr[j is not matched|E ]

≤
∑
j∈C

xF,j

(
1− xF,j

q

)
=
π(J)

q
.
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Observe that the pre-assignment cost is exactly the cost of the matching M . For any i ∈ F, j ∈ C, we
have

Pr[j is matched to i] = Pr[j is matched to i ∧ E ]

=
∑
S 6=⊥

zSwij =
∑
S 6=⊥

zS,i,j ≤ xij.

Thus, we can bound the total pre-assignment cost:

E[cost of M |E ] =
∑

i∈F,j∈C

d(i, j) Pr[j is matched to i|E ]

=
∑

i∈F,j∈C

d(i, j) Pr[j is matched to i]/Pr[E ]

≤ 1

q

∑
i∈F,j∈C

d(i, j)xij = D(F )/q.

By Markov bound, we have Pr[xF,C\R|E ] ≥ 3π(J)/q] ≤ 1/3 and Pr[cost of M ≥ 3D(F )/q|E ] ≤ 1/3.
Thus, with probability at least 1/3, we can avoid these two bad events and properties (2) and (4) hold if
we set `′ > 3/q.

Now the trickiest part is to prove property (3). To do this, we may need to redefine the event E (the above
arguments still remain the same.) Suppose the above properties hold, we have

xB,C\R ≤ 3π(J)/q ≤ 3xB,C/(`
′q)

or, xB,C\R/xB,C ≤ 3/(`′q) .Thus, it suffices to show that, in this case,
3

`′q
y(F ) + |S| ≤ (1 + 1/`)y(F ).

Note that the factor (1 + 1/`) make our task easier and does not affect the analysis of the main algorithm
later. Let Y := (1 + 1/`)y(F ). Since y(F ) ≥∑S∈S zS|S|+ bz⊥, we have

y(F )/` = Y − y(F ) ≤
∑
S∈S

zS(Y − |S|) + z⊥(Y − b) =
∑
S∈S

zS(Y − |S|),

if we set b := Y ≤ 2`(1 + 1/`). Note that, by the choice of b, |S| ≤ Y . We now have a lower bound on
the weighted sum of (Y −|S|), the maximum possible number of open facilities after opening S. Indeed,
we want to lower bound this quantity.

The idea is to divide all possible values of (Y − |S|) in to different ranges, choose a particular range L,
and redefine the event E as “getting S such that Y − |S| lies in this range.” Shi Li suggests the following
geometric grouping. We assign each set S a rank: if Y − |S| ∈ [2t−1, 2t) for some integer t ≥ 1 then
rank(S) := t. Indeed, the ranks are integer numbers in [0, δ] where δ ≤ log(Y ) + 1 = O(log `) is the
maximum rank. Then, by grouping the sets S by rank, we have∑

t∈[0,δ]

2t

 ∑
S∈S:rank(S)=t

zS

 =
∑
S∈S

zS2rank(S)

≥
∑
S∈S

zS(Y − |S|)

≥ y(F )/`.
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So there must exists a rank t∗ ∈ [0, δ] such that

2t
∗

 ∑
S∈S:rank(S)=t∗

zS

 ≥ y(F )

δ`
.

Now we define the event E as “getting S such that rank(S) ∈ [2t
∗−1, 2t

∗]”. Then, we have

• the probability of E can be lower-bounded:

q = Pr[E ] =
∑

S∈S:rank(S)=t∗

zS ≥
y(F )

δ`2t∗
≥ Ω

(
1

δ`

)
= Ω

(
1

` log `

)
.

• finally,

Y − |S| ≥ 2t
∗−1 ≥ y(F )

δ`q
≥ 3y(F )

`′q
,

if we set `′ := Θ(1/q) = Θ(` log `) large enough so that `′ > 3/q and `′ ≥ δ`.

4.4 A new clustering algorithm
This algorithm is quite similar to the Kruskal’s algorithm. Recall that we want to partition the set C ′. We
first sort all edges in

(C′
2

)
in increasing order by their lengths. Initially, let J := {{j} : j ∈ C ′} and ` > 0

be an integer to be determined. We repeat the following process:

• Consider the next edge e = (u, v) such that u and v are in different connected components in J .
Let Ju and Jv denote the connected components containing u, v, respectively.

• If the opening volumes y(F (Ju)) and y(F (Jv)) are both at least `, we add a white edge between u
and v.

• If the opening volumes y(F (Ju)) and y(F (Jv)) are both less than `, we add a black edge between
u and v.

• If y(F (Ju)) < ` and y(F (Jv)) ≥ `, we add a directed, grey edge from u to v.

• Then we merge two components Ju and Jv together (i.e., remove Ju, Jv from J and add Ju ∪ Jv
into J ). We repeat this process until all vertices in C ′ are connected when treating grey edges as
undirected edges.

Now we remove all the white edges and call a maximal connected component using only black edges a
group. What we have now is a forest of directed trees with vertices in C ′. The following figure illustrates
a single directed tree.

By construction, if group J is a root of some tree, then its opening volume y(F (J)) will be at least `.
Thus, the total mass of any tree should be at least `. This is exactly what we want: we can now transfer
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groups (maximal black components)

a cluster center

root of a tree

the mass among the groups in each tree and can afford to open some extra constant number of facilities.
Unfortunately, the diameter of such a tree could be too big. Therefore, it is necessary to further break the
original trees into smaller trees so that we can bound the moving cost when transferring demands among
groups in these trees.

The decomposing process works as follows. Let us fix any original tree τ . Set Tτ := ∅. If there is no
group J in τ such that the total mass of subtrees rooted at children of J (not including the mass of J) is
at least `, then let T be this tree and we simply add it into Tτ . Now suppose such a group J exists, we
pick J as the deepest group with this property. Then the total mass at subtrees rooted at children of J
will be at most 2` (recall that the mass of any internal group is at most `). We then use a simple greedy
algorithm to choose a subset of children of J such that the total of subtrees rooted at the chosen children
is in the range [`, 2`]. Let T be the tree induced by J and these subtrees. We add T into Tτ , remove all
the chosen subtrees from τ , and repeat the process.

Properties and distance bounds: For any tree τ , the decomposing process will break τ into a collection
Tτ of trees with the following properties. Let us take any tree T ∈ Tτ . Abusing the notation, let
F (τ), F (T ) denote the set of facilities claimed by some cluster center in τ and T , respectively.

• Note that each group J will appear as an internal of some tree in Tτ at most once. Since the total
mass of internal groups of each tree (not including the last tree in the above process) is at least `,
we have

|Tτ | ≤ y(F (τ))/`+ 1.

• If T is not the last tree, then the total mass of F (T ) is at most ` + 2` = 3`. Thus, there can be
at most 3`/(1/2) = 6` cluster centers in T since the mass of a single cluster is at least 1/2. If T
is the last tree, then either the mass of the root is at most 2` or the root contains only a single big
cluster. In either cases, the total mass of the internal vertices is at most `. Thus, there are at most
max{(`+ 2`)/(1/2), `/(1/2) + 1} ≤ 6` cluster centers in this tree.

• Now suppose r is the root of T and J is an arbitrary group other than r in T . Let u, v be arbitrary
cluster centers in J and r, respectively. We want to bound the distance d(u, v).
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JJ

original tree ⌧⌧

total mass � `� `

modified tree ⌧⌧ for the next iteration

tree TT  to be added into TT

JJ

JJ

total mass 2 [`, 2`]2 [`, 2`]

the total mass of these
subtrees should be  2` 2`

◦ First, observe that the lengths of directed edges on the path from J to r are non-increasing.
Suppose J1, J2, J3 are three consecutive groups on this path: there are edges from J1 to J2

and from J2 to J3. Notice that when the algorithm add a directed edge from J1 to J2, J2 is
already a part of some connected component with total mass greater than `. Thus, this edge
should be added after the edge from J2 to J3 and hence should have greater length.

◦ Second, for any group J ′ on the path from J to r, the length of any black edge in this
connected component should be at most the length of any grey in-coming or out-coming
edges. This is because any undirected, black edge in J ′ should have been added before any
directed, grey edge to/from any vertex in J ′.

◦ Third, the length from J to its parent group is exactly d(J, C ′ \ J). Consider the time when
this edge is first added by the algorithm. At this time, J has been formed and no more black
edges will be included to this component. The property follows by greedy choice of the
algorithm.

◦ From these observations, the length of any single edge on the path from u to v is at most
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d(J, C ′ \ J). Since there are at most 6` cluster centers in T , we have

d(u, v) ≤ 6` · d(J, C ′ \ J).

Tree TT

JJ

root rr

uu

vv

d(J, C0 \ J)d(J, C0 \ J)

4.5 Rounding algorithm for CKM
In this section, we describe a rounding algorithm that round the LP solution into an integral one. Recall
that after the clustering step, we have a collection of edge disjoint trees Υ =

⋃
τ∈Λ Tτ where Λ is the

forest of original trees without using any white edge. Moreover, the family of non-root clusters of all
trees in Υ and the root clusters of original trees in Λ form a partition of F . As discussed before, to move
all demands out of a group J , we need to make sure that xF (J),C is bounded in terms of π(J). This can
be done via Lemma 1.

Main algorithm:

• Pre-assignment phase: for each group J which is either not a root of some original tree in Λ or
a root with total mass at most 2`, apply the algorithm in Lemma 1 to J (or return an infeasible
constraint to the Relaxed Separation Oracle if the related constraints cannot be satsfied.) Let C̃
denote the set of remaining unconnected clients.

• Rounding phase: we first move all demands from clients to facilities and then to cluster centers as
in the (4, 11)-approximation algorithm. Now we process each tree in Λ separately. For each tree
T ∈ Λ with root group r. Let V (T ) be the family of groups in T , excluding r. Also, let t denote
the number of pre-opened facilities in F (V ). Let v be some arbitrary cluster center in the root r.
We move all demands from centers in V to v. Then we move the demands from v back to facilities
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in F (V ) using the following LP as a guide.

minimize
∑

i∈F (V (T ))

αid(v, i)

subject to
∑

i∈F (V (T ))

αi
ui

+ t ≤ (1 + 1/`)y(F (V (T )))

α(F (V (T ))) = xF (V (T )),C̃

αi ∈ [0, ui] ,∀i ∈ F (V (T ))

Let α∗ be any vertex solution of this LP. We move α∗i units of demand from v to facility i. Next, if
r is also a root of some original tree in Λ, there are two cases.

◦ if r has total mass at most 2`, then r contains at most 4` cluster centers. In this case, we again
pick an arbitrary center v, move all the demands to v and then redistribute the demands from
v to facilities in F (r) by a similar LP.

◦ if r has total mass greater than 2`, the group r must contain exactly one cluster center. We
shall redistribute the demand from this center to its local facilities as in the simple approxi-
mation algorithm.

Finally, we open a facility at i if α∗i > 0.

4.6 Analysis
Bounding the number of open facilities: Fix any tree τ ∈ Υ with root r. For a tree T , let V (T ) denote
the set of non-root groups in T . Recall that the sets V (T ) for T ∈ Tτ and r are mutual disjoint and form
a partition of F (τ). Consider the iteration in which we process the tree T ∈ Tτ . It is clear that α∗ would
contain at most two fractional values. Thus, by the LP constraint, we only open∑

i∈F (V (T ))

dαi/uie+ t ≤
∑

i∈F (V (T ))

αi/ui + t+ 2 ≤ (1 + 1/`)y(F (V (T ))) + 2

facilities in F (V (T )). By similar argument, we also open at most (1+1/`)y(F (r))+2 facilities in F (r).
In total, we open at most

(1 + 1/`)y(F (τ)) + 2|Tτ | ≤ (1 + 1/`)y(F (τ)) + 2(y(F (τ))/`+ 1)

= (1 + 3/`)y(F (τ)) + 2

≤ (1 + 5/`)y(F (τ))

facilities for the tree τ . (The final inequality follows because y(F (τ)) ≥ `.) Summing this bound over
all τ ∈ Γ, the total number of open facilities is at most (1 + 5/`)y(F) = (1 + 5/`)k.

Cost analysis: It is clear that moving the demands to cluster centers would cost 5OPTf as in the simple
approximation algorithm. Now fix any tree τ ∈ Λ. We will analyze the cost of the rounding phase for
trees in Tτ . Consider the iteration in which some tree T ∈ Tτ is processed. The moving cost for this step
is exactly

∑
i∈F (V (T )) α

∗
i d(v, i).

Now observe that α :=

(
αi =

xF (Jσ(i)),C̃

xF (Jσ(i)),C
xi,C, i ∈ F (V (T ))

)
would give a feasible solution:
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• since xi,C ≤ uiyi ≤ ui and 0 ≤
xF (Jσ(i)),C̃

xF (Jσ(i)),C
≤ 1, we have αi ∈ [0, ui],

• we have

α(F (V (T ))) =
∑

J∈V (T )

∑
i∈J

xF (J),C̃

xF (J),C
xi,C

=
∑

J∈V (T )

xF (J),C̃ = xF (V (T )),C̃.

• finally, ∑
i∈F (V (T ))

αi
ui

+ t =
∑

J∈V (T )

∑
i∈F (J)

αi
ui

+ t

=
∑

J∈V (T )

∑
i∈F (J)

xF (J),C̃

xF (J),C

xi,C
ui

+ t

≤
∑

J∈V (T )

 ∑
i∈F (J)

xF (J),C̃

xF (J),C
yi + tJ


=

∑
J∈V (T )

(
xF (J),C̃

xF (J),C
y(F (J)) + tJ

)
≤

∑
J∈V (T )

(1 + 1/`)y(F (J)) = (1 + 1/`)y(F (V (T ))),

where tJ is the number of pre-opened facilities when preprocessing the group J . The final inequal-
ity follows by Lemma 1.

Now, fix any group J ∈ V (T ). We have∑
i∈F (J)

αid(v, i) =
∑
i∈F (J)

xF (J),C̃

xF (J),C
xi,Cd(v, i)

≤
∑
i∈F (J)

xF (J),C̃

xF (J),C
xi,C(d(v, σ(i)) + d(σ(i), i))

≤
∑
i∈F (J)

xi,Cd(σ(i), i) +
∑
i∈F (J)

xF (J),C̃

xF (J),C
xi,C(6`)d(J, C \ J)

=
∑
i∈F (J)

xi,Cd(σ(i), i) + (6`)xF (J),C̃d(J, C \ J).

Using a similar argument in the simple approximation algorithm, we can bound the first term:∑
i∈F (J)

xi,Cd(σ(i), i) ≤ 5(D(F (J)) +D′(F (J))).
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For the second term, note that xF (J),C̃ ≤ `′π(J) after the preprocessing step. Therefore, by the distance
bound in the previous section, we have

(6`)xF (J),C̃d(J, C \ J) ≤ (6``′)π(J)d(J, C \ J)

= O(``′)(D(F (J)) +D′(F (J))).

Now the moving cost for T can be easily bounded:∑
i∈F (V (T ))

α∗i d(v, i) ≤
∑

i∈F (V (T ))

αid(v, i)

=
∑

i∈F (V (T ))

αid(v, i)

=
∑

J∈V (T )

∑
i∈F (J)

αid(v, i)

≤ O(``′)(D(F (V (T ))) +D′(F (V (T )))).

Next, for the root group r of τ , we can use a similar argument to show that the cost of redistributing
demands in this group is at most O(``′)(D(F (r)) + D′(F (r))). Thus, by taking the sum over all tree
T ∈ τ and this bound, the moving cost when processing τ is at most

O(``′)(D(F (τ)) +D′(F (τ))).

Then, summing this bound over all τ ∈ Γ, the total connection cost is at most

O(``′)(D(F) +D′(F)) = O(``′)OPTf .

By setting ` = 5/ε, the algorithm opens (1 + ε)k facilities and the approximation ratio is O
(

1
ε2

log 1
ε

)
.
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