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Abstract

Diffusion models have revolutionized text-to-image (T2I) generation with their
ability to generate a wide variety of high-quality images. While T2I diffusion
models are capable of fine-tuned control, text alone cannot capture task-specific
requirements, prompting many studies on how to generate images based on user-
provided input examples. This paper surveys the field of personalizable T2I
diffusion models, covering both existing advancements and directions for future
work. We begin with an overview of the theoretical basis of diffusion models and
methods for conditioning image generation based on novel concepts. We then
provide a detailed survey of advancements, organized into the following categories
of conditions: generic concepts, people, interactions, and layouts. Finally, we
discuss outstanding problems with existing models and future directions for work.

1 Introduction

In recent years, diffusion models have revolutionized the field of image generation [1]. Due to their
stability and quality [2], they have displaced Generative Adversarial Networks (GANs) [3] as the
prevailing base architecture in state-of-the-art image generation. While transformer-based methods
such as Muse [4] are a promising new architecture with efficiency advantages, we will consider them
out of scope for this paper. Text to image (T2I) diffusion models tackle the task of image generation
from text prompts, a common use case with applications in digital art, video generation, and image
editing.

As text is limited in the level of detail that it can provide, various methods have been introduced
to control the generated output, such as custom subjects, styles, spatial layouts, and other concepts.
This is imperative in applications where a unique concept has either not been captured during the
training process due to not being seen before or cannot be described completely by text. Common
examples include image generation with a specific person, object, style, action, or spatial layout
[5][6][7][8][9][10]. In this survey, we will focus on the subdomain of controllable T2I diffusion
models focusing on customizable text to image generation. Prior surveys have covered diffusion
models as a whole [11][12][13], diffusion models for vision [14], video generation diffusion models
[15], reinforcement learning diffusion models [16], and diffusion models for image editing [17].
Cao et al [5] survey controllable T2I diffusion models as a whole with a focus on summarizing the
contributions of existing papers. In contrast, this paper focuses on a subcategory of controllable T2I
models and provides analysis of the outstanding problems in the domain, highlighting avenues for
future research.
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2 Background

2.1 Denoising Diffusion Probabilistic Models

Diffusion models, or Denoising Diffusion Probabilistic Models (DDPMs), are parameterized Markov
chains which are trained to iteratively reverse a noise-adding process which iteratively destroys a
signal[1]. By doing so, diffusion models learn a mapping from Gaussian noise to a target distribution.
Image generation models utilize this to map random noise samples to realistic image distributions
captured by large, internet-scale training datasets.

2.2 Theory

First, we will begin with the noising diffusion process. Given samples x0 from a data distribution
described by the probability density function q(x0), gaussian noise is incrementally added over T
iterations until the signal is completely destroyed and only noise remains. This is called the forward
process.

Each step of the forward noising process can be described by the following conditional probability.
The variance hyperparameters of the added noise are βt.

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

Accumulated over T timesteps, this is equivalent to:

q(x1:T |x0) =
T
∏

t=1

q(xt, xt−1) (2)

In order to sample the desired distribution, the reverse process is approximated by a deep neural
network, often based on UNet. Given a noise sample xT the DDPM parameterizes each step as the
following normal distribution, where θ denotes values predicted by the model.

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (3)

Given the sample xt at time t, the neural network then predicts the noise ϵθ that needs to be added
to xt to recover xt−1. After T iterations, the model is able to recover x0 from the noise sample xT .
During training, all xt are obtained from the corresponding training image x0 through the forward
diffusion process. To generate novel images, the noise vector xT is sampled from the Gaussian
distribution and passed through the reverse process to generate a new image. The goal is to obtain a
new sample from the training distribution of real images by using our DDPM as a mapping.

2.3 Controlling Diffusion Models

The generated images can be controlled to follow text conditions and custom conditions. From a score-
based perspective[5][18][19], a approximation sθ for the following score function is incorporated
into µθ.

∇xt
log (pt(x)p

w

t (x|ctext, ccond)) (4)

µθ(xt, t) =
1√
αt

xt −
1− αt√

ᾱt

sθ(xt, t) (5)

where w is the weight of the conditioning, while ctext is the text condition and ccond is the new
condition that a given model is adding.

Given these conditions, we now predict our noise based on a sum weighted by w of noise predicted
with and without conditions ctext and ccond.

ϵ(xt, ctext, ccond, t) = (1− w)ϵ̄(xt, ϕ, t) + wϵ̄(xt, ctext, ccond, t) (6)

The following three sections describe methods of predicting ϵ̄(xt, ctext, ccond, t).
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2.3.1 Fine-tuning Methods

In tuning-based methods, models are fine-tuned for a specific condition on small training sets of
examples. Instead of providing the condition as an input, the condition is instead baked into the
model itself, turning ϵ̄(xt, ctext, ccond, t) into a prediction of ϵ̄(xt, ctext, t) instead.

2.3.2 Embedding-based Methods

Embedding-based methods utilize encoder models to extract features from conditions and pass them
as input to ϵθ. As a result, we predict ϵ̄(xt, ctext, ccond, t) as ϵθ(xt, ctext, econd, t), where econd is
the encoding of ccond by a trained encoder E.

2.3.3 Training-free Methods

Some methods do not require training at all and instead control general by features of the existing
architecture. For example, many models utilize the cross attention layer to refocus attention maps
according to a goal layout [20][21][22]. Techniques of this type have the incredible advantage of
coming "for free" and are often usable across different base diffusion models.

3 Custom Concept Types

In this section, we will cover advancements and contributions of papers in dealing with the fol-
lowing concept types: subjects, styles, interactions, layouts, and more generalizable concepts.
Additionally, we will offer commentary on limitations of varying techniques and compare the
advantages/disadvantages of different models.

3.1 Generic Concepts

In this section, we will cover methods of capturing generic custom concepts or images. These models
are often used as the basis for other methods.

Textual Inversion[8] utilizes the pre-existing representations for text token embeddings by training
to capture concepts with a new multimodal prompt token. Rather than expanding the tokenizer’s
vocabulary, DreamBooth [7] trains to to overwrite a rare token (such as "sks") to represent an identifier
for a unique subject. In addition, a class-specific preservation loss is used to ensure that learning
a unique instance of a subject does not jeopardize the model’s ability to generate diverse images
that class. Without this learning a specific instance (such as an "sks cat") could cause the model
to generate only that instance even when the prompt is the more general "cat". Custom Diffusion
[6] greatly optimizes tuning time by updating only the most important weights. By analyzing the
rate of change of weights during training, the authors were able to identify that most of the change
during fine-tuning occurs in the cross attention layer, and propose to only update the W k and W v

parameters of that layer.

Unlike Textual Inversion, which represents images directly with a token, DreamBooth elects to
overwrite an existing token as a modifier for an existing class. While this allows for a greater degree
of specificity as it identifies what part of the image is being referred to, it limits the generality of
the model to capture unseen concepts. Custom Diffusion has both modifiers and can capture new
concepts. However, in constrast to Textual Inversion where the token directly represents the image,
Custom Diffusion includes the token as part of the text captions for the training examples. This
allows for more detailed descriptions of the custom concept and what part of the reference image it
belongs to.

Similarly to Textual Inversion, UnCLIP [23] utilizes CLIP [24] embeddings, which provide a unified
representation for images and their text captions, to generate variations of custom images with no
training. Unlike the aforementioned models, UnCLIP focuses more on creating variations of a
custom image rather than new, text-controllable images containing a subject from the reference image.
Similarly, Prompt-free Diffusion [25] aims to remove the "burden" of prompt engineering on the
user’s part by implementing a direct image to image pipeline controlled only by optional structural
guidance.
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Figure 1: Action customization using Action Disentangled Identifiers[34]. The actions/poses from
example images (left) are learned and applied to novel subjects. Figure sourced from ADI paper[34].

An paper of note is InstructPix2Pix [26]. Instead of extracting a custom concept from reference
images, InstructPix2Pix edits the (one) reference image itself following a text prompt. Amazingly, the
model is trained on a generated dataset. Given a "before" text caption, GPT-3 [27] is used to generate
editing instructions and "after" text captions, and Stable Diffusion along with Prompt2Prompt[28]
are used to generate images corresponding to the before/after text captions.

3.2 People

Like many vision and image based models, there exist several human-specific models due to how
common human-specific tasks are. For example, an emerging use case is virtual garment try-on,
where given a person and a garment, the task is to generate an image where the person is wearing that
garment in an identity preserving manner. [29][30]. Similarly, the major challenge in human-based
custom diffusion models is preserving the identity and other characteristics of the subject.

Photoverse [31] introduces a novel facial identity loss to enforce identity preservation, resulting
in a fine-tuning free model capable of generating diverse images from a single reference image.
Multiple methods such as DreamIdentity [32] and Face0 [33] utilize face-identity encoders to create
text embedding space representations for identity. These models are able to create diverse, identity-
preserving images with zero fine-tuning on reference images. DreamIdentity also implements a
novel training regime called "self-augmented editability learning" to leverage existing models’ high
performance on celebrity faces. Identity preserving images are generated with celebrity images,
which are then used to train diffusion models that generalize to unseen faces.

3.3 Interactions

Interactions describe the actions, relationships, and other modifiers of subjects in an image. Huang
et al[34] propose an inversion-based method called Action-Disentangled Identifier to learn action
identifiers. Instead of a single identifier, the authors use one identifier per cross-attention layer and
mask gradients unrelated to the action identifiers. Additionally, the authors present an action dataset
called ActionBench on which similar models can be evaluated. In InteractDiffusion [35], rather than
directly modifying the underlying model a control model is proposed which focuses on HOI (human
object interaction) tasks.

More generally, ReVersion [36] performs relation inversion on generalized relationships that take the
form of "subject 1 <relation> subject 2". The authors utilize the "preposition prior" which describes
how prepositions typically describe relationships. Since parts of speech tend to be clustered in
text-embedding space, the authors steer their relationship token towards the preposition cluster.
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Figure 2: Examples of images generated by GLIGEN. Figure sourced from GLIGEN paper[37].

3.4 Layouts

Custom layouts are a common use case in controllable diffusion models. ControlNet [9] adds spatial
controls on top of existing diffusion models by injecting zero-convolutions of a trainable copy into
the frozen model. Various controls can be used, including edges, depth, segmentation, and pose.
Similarly, GLIGEN [37] freezes model weights and injects grounding information (text prompts and
bounding boxes) into new trainable layers via a gate mechanism. In both models, freezing weights
preserves the vast knowledge obtained during the training of the base models. Afterwards, the same
authors [38] implement a personalized version of this model that also disentangles object identity
with other features such as location, which was a problem in prior models such as DreamBooth [7].

4 Open Problems

In this section, we will discuss existing problems in the field of controllable diffusion models, as well
as what techniques have been proposed to address them.

4.1 Loss of Diversity and Catastrophic Forgetting

Due to the inherently low sample size for the custom concept task, models are at risk of overfitting,
leading to loss of image diversity and forgetting of other concepts. Custom Diffusion [6] addresses
this problem by recognizing that forgotten concepts are often related to the reference images. The
authors use a regularization dataset of similar images (as defined by caption CLIP distance) during
fine-tuning time, obtained either from the LAION-5B [39] dataset or generated using similar text
prompts. Perfusion [40] utilizes a novel locking mechanism to restrict the influence of a new concept
to cross-attention keys belonging to its category. SVDiff [41] avoid overfitting by compressing the
parameter space, training only the singular values of the weight matrices.

4.2 Compositionality

A common problem with base models such as Dreambooth[7], Textual Inversion[8], and Custom
Diffusion[6] are that they struggle with compositionality. Generated images may not respect spatial
relationships ("A is on the left of B"), miscount objects, mix up colors between objects, or otherwise
confuse subject attributes. This is particularly an issue in personalizable models and even more so
when multiple personalized concepts are present. Figure 3 demonstrates how attributes between
subjects can be confused by models like DreamBooth. While the prompt specifies that there should
be both a cat and dog, only a dog is generated. Additionally, note that the attributes of the cat and dog
are confused and applied to both subjects, resulting in inconstent identity of the uniquely identified
"sks dog". While layout-based methods such as GLIGEN[37] can help to alleviate the spatial aspect
of this problem, they require extra input and do not solve all related issues. Attend-and-excite [42]
introduces Generative Semantic Nursing which more correctly bind attributes to their corresponding
subjects by "exciting" the necessary activations, ensuring that all tokens are properly included and
and result in greater textual alignment.

Attention Refocusing [22] also corrects attention maps, resulting in greater textual alignment with
in a model-agnostic, training-free way. GPT-4 is used to generate prompt-compliant layouts, and
attention of tokens are directed to focus on their corresponding bounding boxes and therefore more
correctly reflect the prompt. Prompt Aligned Personalization (PALP) [43] more specifically addresses
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Figure 3: Images generated by DreamBooth [7] with the prompt "cat next to an sks dog". Note how
the number of subjects is incorrect on the left, and how the features of the cat and dog are mixed,
with the dog dominating.

this issue for custom subject models like Dreambooth by retraining the model for a single prompt to
ensure prompt alignment using score sampling. While prompt alignment is greatly improved, training
is required for each custom subject and each new prompt and is therefore computation intensive.

5 Conclusion

In the few years since the introduction of DDPMs [1], the popularity of diffusion models for
image generation has exploded. In this paper, we have provided an overview of underlying theory,
applications, subproblems, and major developments in the field of personalizable text-to-image
diffusion models. Furthermore, we address the present issues of image diversity and compositionality
and recent papers addressing them. This survey aims to provide the reader with an understanding of
the rapidly progressing field of personalizable T2I models and inform them of potential future areas
of work.
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