
Taking GPU Programming Models to Task for
Performance Portability

Anonymous Author(s)

Abstract—Portability is critical to ensuring high productiv-
ity in developing and maintaining scientific software as the
diversity in on-node hardware architectures increases. While
several programming models provide portability for diverse GPU
systems, they don’t make any guarantees about performance
portability. In this work, we explore several programming models
– CUDA, HIP, Kokkos, RAJA, OpenMP, OpenACC, and SYCL,
to assess the consistency of their performance across NVIDIA
and AMD GPUs. We use five proxy applications from different
scientific domains, create implementations where missing, and
use them to present a comprehensive comparative evaluation of
the programming models. We provide a Spack scripting-based
methodology to ensure reproducibility of experiments conducted
in this work. Finally, we attempt to answer the question – to
what extent does each programming model provide performance
portability for heterogeneous systems in real-world usage?

Index Terms—performance portability, heterogeneous systems,
programming models

I. INTRODUCTION

Heterogeneous CPU-GPU architectures have come to dom-
inate the design of high performance computing (HPC) sys-
tems. Nine of the top ten systems in the June 2024 TOP500
list, and ∼39% of the systems on the complete list, employ co-
processors or accelerators [1]. Further, a diverse set of specific
architectures are in use, supplied by a range of vendors, as
the current top ten includes GPUs from AMD, NVIDIA,
and Intel. A similarly-diverse range of programming models
has emerged, which aim to allow application developers to
write their code once and run it on any system. Programming
models such as OpenMP [2], RAJA [3], and Kokkos [4]
act as portability layers, bridging the gap between high-level
implementation of an algorithm and low-level execution on
a given target architecture. Yet running scientific applications
efficiently on HPC systems requires more than just functional
portability, which refers to program correctness. Codes must
also perform well on a range of target systems, ideally without
incurring the technical debt of system-specific implementa-
tions. This is often referred to as performance portability.

Application developers would benefit from a deeper under-
standing of the performance portability provided by different
programming models on modern GPU systems before porting
their application to a particular model. Choosing a program-
ming model for porting a CPU-only application to GPUs is
a major commitment, requiring significant time for developer
training and programming. If a programming model delivers
unacceptable performance, then that investment is wasted.

Nevertheless, each programming model’s effectiveness at
enabling performance portability, as well as the definition

of performance portability itself, remain open questions. Al-
though developers’ experiences comparing the performance
portability of several models on a single application are
valuable, we have observed that open-source applications or
even proxy applications implemented in a several different
programming models are uncommon and difficult to find. Fur-
ther, a single smaller application or benchmark implemented
in most programming models is unlikely to be representative
of the diverse and complex production applications typically
run on HPC systems. Finally, conducting exhaustive combi-
natorial studies of programming model, compiler, system, and
application combinations is a significant undertaking, as each
programming model usually requires unique combinations of
compilers flags and libraries for any given system.

In this paper, we provide a comprehensive empirical study
of the performance portability of several programming models
on GPU-based leadership-class supercomputers. We use a
variety of proxy applications that are representative of produc-
tion codes, and using them, we enable realistic comparisons
of the performance portability of GPU kernels written in
several programming models across different architectures. We
study five proxy applications from different scientific domains,
create implementations where missing, and comprehensively
evaluate differences between these programming models.

We present a Spack-based [5] environment and scripting
system to significantly lower the barrier for performance
portability studies. This system encapsulates our methodology
for systematically building, running and benchmarking a suite
of applications in several programming models, in a manner
which can be adapted for future studies. Our comparative
evaluation of model performance includes specific insights
into why certain programming models perform well or poorly
for particular applications on different target systems. To our
knowledge, this is one of the most comprehensive performance
portability studies to date, in terms of the breadth of program-
ming models and applications studied and the detail provided
in the analysis of results.

To summarize, our contributions include the following:
• We evaluate the performance portability enabled by seven

different programming models using a diverse set of
five proxy applications benchmarked across NVIDIA and
AMD GPUs in production supercomputers.

• We create several additional implementations of existing
proxy applications in new programming models to ensure
full coverage of programming models across applications.

• We describe a methodology employing Spack scripting
and environment tools [5] to easily manage the process

of building and running all 7 × 5 = 35 versions across
four supercomputing systems, each with unique software
stacks. We provide this software to the community in or-
der to substantially reduce the effort required to reproduce
or extend our study.

• We conduct a thorough analysis of the reasons for key
outliers in the performance portability cases studied, and
describe and test optimizations that improve performance
portability in some cases.

II. BACKGROUND ON PORTABLE PROGRAMMING MODELS

In this section we provide relevant background information
on the various programming models we evaluate. Table I
displays key information about each programming model. HIP
and CUDA act as our baselines in this study, as they are the
native programming model for AMD and NVIDIA devices,
respectively. Below, we describe the key characteristics of each
category of programming model.

TABLE I
SUMMARY OF PROGRAMMING MODELS USED IN THIS STUDY. VENDOR

SUPPORT MAY BE SUBJECT TO CHANGE IN THE FUTURE.

Prog. Model Category GPU Vendors Supported

CUDA Language extension NVIDIA
HIP Language extension NVIDIA, AMD
SYCL Language extension NVIDIA, AMD, Intel
Kokkos C++ abstraction lib. NVIDIA, AMD, Intel
RAJA C++ abstraction lib. NVIDIA, AMD, Intel
OpenMP Directive-based NVIDIA, AMD, Intel
OpenACC Directive-based NVIDIA, AMD

A. Language extensions

SYCL, HIP, and CUDA are language extensions, which add
features to the base language (C++, C, and/or Fortran) for
programming GPUs. SYCL and HIP are open standards, while
CUDA is proprietary. The language extensions we consider
are more verbose than the other programming models. Users
call runtime functions to manage memory and write functions
that they then invoke as kernels to offload execution. SYCL
provides multiple methods of memory management, including
the explicit USM (unified shared memory) API, which uses
CUDA or HIP style runtime calls to move and allocate data,
or the buffer/accessor API, which is more implicit, allowing
the compiler and runtime to schedule data movement but does
not allow explicit access to valid device pointers.

B. C++ abstraction libraries

Kokkos and RAJA are C++ abstraction libraries. These are
template-based C++ libraries that provide high-level functions
and data types. Users write their code directly employing these
data types and typically structure GPU code as lambdas to
pass into library function calls. The library translates the user
code to a device backend such as CUDA, HIP, or OpenMP
at compile-time or runtime. Note that Kokkos provides both
memory and compute abstractions, while RAJA provides com-
pute abstractions and users must employ the related Umpire
or CHAI libraries to abstract memory management.

C. Directive-based models

OpenMP and OpenACC are directive-based models. They
provide compiler directives, or pragmas, to parallelize or
offload code. They are typically standard specifications im-
plemented by a compiler front-end and a runtime library to
implement parallel or offloaded execution that abstracts the
underlying hardware architecture. Directive-based models are
usually less verbose and less intrusive, as users can often an-
notate existing code with minimal refactoring. This facilitates
incremental development. These models provide clauses and
standalone directives to schedule data movement, which are
then carried out by the compiler and device runtime.

III. RELATED WORK

Several studies on programming language extensions, mod-
els, and libraries have been designed to assist developers
achieve performance portability [2]–[4], [6], [7]. Addition-
ally, several studies have assessed the portability of certain
frameworks. We categorize the related work on empirical per-
formance portability studies into three groups: metric studies,
application or programming model studies, and broader studies
that are not scoped to a particular model or app. In this section,
we provide an overview of recent work in each category.

A. Studies of performance portability metrics

Pennycook et al. propose the metric PP for performance
portability, defining it as the harmonic mean of the per-
formance efficiencies of an application across different sys-
tems [8]–[12]. Daniel et al. propose an alternative metric, PD,
which accounts for problem size, and Marowka compares PP
with PP, a similar metric that uses the arithmetic mean instead
of the harmonic mean [13]–[15].

B. Studies examining the portability of individual application
categories or programming models

A number of studies evaluate performance portability in
specific applications with multiple programming models or a
single programming model model [6], [16]–[28]. For instance,
Dufek et al. compare Kokkos and SYCL for the Milc-Dslash
benchmark, while Rangel et al. examine the portability of
CRK-HACC in SYCL [21], [24]. Other studies investigate
performance portability across applications using specific pro-
gramming models. Brunst et al. benchmark the 2021 SPEChpc
suite, which contains nine mini applications in OpenMP and
OpenACC, on Intel CPUs and NVIDIA and AMD GPUs [26].
Kuncham et al. evaluate the relative performance of SYCL and
CUDA on the NVIDIA V100 using BabelStream, Mixbench,
and Tiled Matrix-Multiplication [27].

While these studies provide useful information to developers
working on similar applications or those interested in specific
programming models, making more general statements about
programming models themselves requires a more comprehen-
sive evaluation of a diverse set of case studies.

C. Broader performance portability studies

Deakin et al. present performance portability studies of
five programming models across a wide range of hardware
architectures, using BabelStream, TeaLeaf, CloverLeaf, Neu-
tral, and MiniFMM [29], [30]. More recent papers by Deakin
et al. focus on more specific problems such as reductions
and GPU to CPU portability [31], [32]. Lin et al. evaluate
implementations of C++17 StdPar against five models on
AMD devices [33]. While these studies provide performance
portability comparisons across systems, applications, and mod-
els, they do not include RAJA and sometimes omit HIP
and OpenACC. Furthermore, they do not provide extensive
analysis of the reasons for performance differences between
programming models or ways to address differences.

Several other studies are similar in scope but different in
focus. Kwack et al. evaluate portability development experi-
ences for three full applications and three proxy applications
across GPUs from multiple vendors [34]. Harrell et al. study
performance portability alongside developer productivity [35].
However, in these studies each application is only ported to a
single portable programming model. This makes it difficult to
draw conclusions about each programming model’s relative
suitability to particular applications. Koskela et al. provide
six principles for reproducible portability benchmarking, along
with a demonstration of these principles in a Spack+Reframe
CI infrastructure for a study of BabelStream on some CPU
architectures and an NVIDIA V100 [36].

Studies on various aspects of performance portability
abound, but all are limited in at least one manner. Some are
limited to a single application or benchmark, preventing com-
parisons of programming models across applications. Others
are focused on a single programming model, disallowing com-
parisons between different programming models. Our work
aims to provide a comprehensive analysis of performance
portability across multiple applications and libraries, each
implemented in several different programming models and
executed on production supercomputers. Additionally, unlike
prior work, we conduct a detailed investigation of the per-
formance of the most notable outliers we identify among our
results, providing users with a better understanding of how
application characteristics impact the performance portability
of each model as well as potential workarounds to avoid
portability pitfalls. Finally, prior studies do not provide a
comprehensive description of the build and run infrastructure
used to collect their results, leaving the task of consistently
building applications on a wide range of systems with complex
library and compiler flag dependencies to the reader. Our
study is the first to apply the principles of reproducible
benchmarking [36] in a comprehensive study of performance-
portable programming models.

IV. METHODOLOGY FOR EVALUATING PERFORMANCE
PORTABILITY ON GPU PLATFORMS

In this section, we describe our approach to comprehen-
sively compare programming models that provide portability

on GPU systems. We also justify for our choices of program-
ming models, proxy applications, systems, and metrics.

A. Choice of programming models

Our goal in this work is to empirically compare the perfor-
mance portability provided by popular programming models.
In Section II, we describe three categories of programming
models with a few examples in each category. We identified
those representative models by surveying a broad range of
proxy applications in order to determine how common existing
implementations in each model were. We surveyed a variety
of sources for proxy applications, including the ECP Proxy
Apps suite [37], the NERSC Proxy suite [38] and the Mantevo
Applications Suite [39]. Armed with that knowledge, we have
decided to focus on CUDA, HIP, SYCL, Kokkos, RAJA,
OpenACC, and OpenMP, as they were most commonly found
in the proxy applications we surveyed. Together, these models
cover the three categories of models mentioned earlier.

B. Choice of proxy applications

Based on the survey of proxy applications mentioned
above, we identify five applications that represent the range
of typical scientific computing workloads on GPU clusters.
These include a pure memory bandwidth benchmark as well
as four other proxy applications. They range from highly
compute-intensive (miniBUDE) to highly memory-intensive
(BabelStream), and also include one representative from each
of the three large proxy application suites we surveyed. The
scientific domains covered by them include hydrodynam-
ics (CloverLeaf), molecular dynamics (miniBUDE), nuclear
physics (XSBench), and particle physics (su3 bench), and
computational methods include structured grid (CloverLeaf
and su3 bench), dense linear algebra (su3 bench), n-body
(miniBUDE) and Monte Carlo (XSBench) methods.

CloverLeaf, miniBUDE, and XSBench are missing imple-
mentations in some programming models compared in this
work. So, we develop these missing implementations to obtain
full coverage of the space of application and model combi-
nations. Table II summarizes the key details of each proxy
application, and identifies the implementations that were either
created or modified by us for this study. Here, modifications
refers to small changes to the memory management library
or style to ensure portability and consistency of gathering
execution times across implementations. Below, we describe
in brief the five proxy applications that we use in this study:

BabelStream is a memory bandwidth benchmark with five
kernels: copy, add, mul, triad, and dot [22]. The
dot kernel includes a reduction operation, known to be a
challenging operation for some programming models [40].

XSBench [41] is a proxy for OpenMC, a Monte Carlo
transport code [42]. XSBench runs one kernel, OpenMC’s
macroscopic cross-section lookup kernel, with a large number
of lookups. We use the event-based transport method with a
hash-based grid as it is preferred for GPUs.

TABLE II
SUMMARY OF PROXY APPLICATIONS AND BENCHMARKS USED IN THIS STUDY AS WELL AS WHICH PROGRAMMING MODEL PORTS AND SPACK PACKAGES

ARE UPDATED OR CREATED BY THE AUTHORS. HERE, E = ALREADY EXISTS, M = MODIFIED BY US, C = CREATED BY US.

Proxy Application Scientific Domain Method(s) Suite CUDA
HIP SYCL

Kok
ko

s

RAJA
Ope

nM
P

Ope
nA

CC

Spa
ck

Pkg
.

BabelStream N/A Bandwidth benchmark N/A E E E E M E E M
XSBench Nuclear physics Monte Carlo ECP E E M C C E C M
CloverLeaf Hydrodynamics Structured grid Mantevo E E M E C E C M

su3 bench Particle physics Structured grid,
dense lin. alg. NERSC E E E E C E E C

miniBUDE Molecular dynamics N-body N/A E E M E M E E C

TABLE III
ARCHITECTURAL DETAILS OF THE SYSTEMS USED IN THIS PAPER.

System CPU Architecture CPU Cores/node CPU Memory (GB) GPU Model GPU Memory (GB) Hosting Facility

Summit IBM POWER9 44 512 NVIDIA V100 32* OLCF (ORNL)
Perlmutter AMD EPYC 7763 64 256 NVIDIA A100 40 NERSC (LBL)
Corona AMD EPYC 7401 48 256 AMD MI50 32 LC (LLNL)
Frontier AMD EPYC 7713 64 512 AMD MI250X 64† OLCF (ORNL)

* We use the high-memory GPUs on Summit.
† This is for one GCD of an MI250X on Frontier.

CloverLeaf is a 2D structured compressible Euler equa-
tion solver, with 14 kernels [43]. The advec_mom,
advec_cell, PdV, and calc_dt kernels are typically the
most time-intensive, and calc_dt contains a reduction.

su3 bench [44] is a proxy application for MILC, a lattice
quantum chromodynamics code [45]. It implements the SU(3)
matrix-matrix multiply routine in its lone kernel.

miniBUDE is a proxy for Bristol University Docking Engine
(BUDE), a molecular dynamics code which simulates molecu-
lar docking for drug discovery [46]. miniBUDE computes the
energy field for a single configuration of a protein repeatedly.

C. Choice of systems

Evaluating performance portability requires selecting a
range of systems with diverse architectures. One of the main
goals of this study is to evaluate performance portability
on production GPU-based supercomputers, given the rising
prominence of GPUs in new systems [1]. We select four
different supercomputers for our experiments: Summit and
Frontier at ORNL, Perlmutter at NERSC, and Corona at LLNL
(architectural details in Table III). These systems cover the
majority of the GPU architectures in the top ten systems.
Frontier and Summit are in the top ten, and Perlmutter is in
the top fifteen. Additionally, we include Corona (AMD MI50)
to provide additional context with older AMD hardware. Note
that, for Frontier’s MI250X GPUs, we run on one Graphics
Compute Die (GCD) but refer to the GCD as a GPU in
consistency with the system’s documentation1.

1https://docs.olcf.ornl.gov/systems/frontier user guide.html#
frontier-compute-nodes.

D. Measurement and evaluation strategy
In this study, we modify applications where needed to

consider both the efficiency of GPU kernel(s) and that of
data movement between host and device needed to run the
application. However, as will be discussed in Sec. VII, the
impact of data movement on overall performance is minimal
for these applications and not presented in detail. We add a
runtime option to all the applications to specify a number
of warmup iterations at the start of the simulation which
we exclude from timing. XSBench normally runs only for
only a single iteration, so we add a loop that repeatedly
runs the kernel a user-specified number of times to ensure
consistency across applications. As will be mentioned in
Sec. VI, variability across runs is low, with runs of a given
setup differing by at most 3.3%.

Having determined how to consistently define performance
for each application, we can also derive additional higher-level
metrics about performance portability for each combination of
application and programming model. In this work, we use PP
with application efficiency proposed by Pennycook et al. [8].
PP is defined, for some application a, problem p, set of systems

H , and measure of application efficiency e, as:

PP(a , p , H) =


| H |∑

i∈ H

1

ei(a , p)

if i is supported

∀i ∈ H

0 otherwise.

set of systems

problem

application

This is the harmonic mean of the efficiencies of an applica-
tion running the same input problem across a set of systems.

The application efficiency ei(a, p) of an application a solving
problem p is the ratio tmin

t , where t is the runtime of a solving
p on the particular hardware i, and tmin is the best observed
runtime across all variants of a solving p on i. PP ranges from
0 to 1, where 1.0 is perfect portability in which the application
runs at the best observed performance on all systems.

E. Automation and reproducibility strategy

In our experiments, we ensure that compilers, dependency
versions, and flags are used consistently across applications
and systems. We accomplish this with Spack [5], a popular
HPC package manager. We create a single Spack environment
file for each system which specifies the exact compiler, appli-
cation, and library dependency versions along with any needed
flags. As listed in Table II, we have created or updated Spack
package files for each proxy app, and these updates will be
provided to the community. Our Spack environments for this
project can be easily adapted to any new system, allowing
for easy reproduction of our experiments, and significantly
reducing the extremely time-consuming effort of building
every combination of application and programming model.

We further employ Spack’s Python scripting tools2 to de-
velop robust automation for our experiments — we can create
jobs with a single-line invocation leveraging Spack’s spec
syntax to adjust which application, models, or compilers are
used, and save profile data to disk to be directly read by
our plotting scripts. These scripts and environments will be
published to allow the community to use our portability study
methodology. These infrastructural contributions dramatically
reduce the effort required to reproduce our results and create
new studies of portable programming models.

V. PORTING TO NEW PROGRAMMING MODELS

The proxy applications we choose have implementations in
most of the evaluated programming models. In these existing
ports, we make minor modifications to consistently align tim-
ing measurements across different programming models. We
also update the RAJA ports of BabelStream and miniBUDE
to use Umpire for portable memory allocations.

When creating new ports, we apply the same level of effort
for all of them in order to avoid granting an unfair advantage
to any particular implementation arising from excess optimiza-
tion. We spend similar amounts of time implementing each
new port, and keep the structure of the code between new and
existing ports as similar as possible. Further, we specifically do
not tune kernel grid size, block size, and shared memory per
block. For programming models that require the user to specify
these values (CUDA, HIP, RAJA, SYCL), we use the default
values provided by the respective proxy application develop-
ers. For programming models that can select their own default
parameter values (OpenMP, OpenACC, Kokkos), we allow the
model to do so if compatible with the existing application
code. Our results reflect “out of the box” performance that a
user would encounter with minimal porting effort.

2https://spack-tutorial.readthedocs.io/en/latest/tutorial spack scripting.html

In the following subsections, we discuss our experiences
working with the programming models as applicable. Table II
summarizes our development efforts. We plan to merge these
contributions to their respective upstream repositories.

A. Porting to Kokkos

Porting the XSBench code to Kokkos requires converting
the existing for loop to be a lambda function passed into
a Kokkos::parallel_for call and converting the data
structures to be used in Kokkos calls to Kokkos:Views.
For example, XSBench’s SimulationData struct contains
several dynamic arrays which need to be Views in order to
work on the GPU. In this situation, there are two options
available to a developer: 1) rewrite all of the application code
to use Views from the beginning, including any CPU-side
setup or initialization; or 2) avoid rewriting the any setup
code by constructing Views out of pointers to any ordinary
C++ arrays after initialization but before copying them to the
device and launching kernels.

We opted for the second of these methods to minimize
changes to this existing application code. Listing 1 provides
an example of this approach as we implemented it. In sum-
mary, we construct an unmanaged View in the HostSpace
called u_cocns using the heap memory of the SD.concs
array, construct a new View in the device space called
SD.d_concs, and finally deep_copy the unmanaged host
View to the new device View. While Kokkos requires devel-
opers to use its memory abstraction, the View, in order to
make use of its portable kernel abstraction, we demonstrate
how an application developer looking to work incrementally
can minimize changes to application code while gaining the
portability benefits of Kokkos.

1 View<double*, LayoutLeft, HostSpace,
2 MemoryTraits<Unmanaged>>
3 u_concs(SD.concs, SD.length_concs);
4 SD.d_concs = new View<double*>("d_concs",
5 SD.length_concs);
6 deep_copy(*SD.d_concs, u_concs);

Listing 1. Example of converting a C++ dynamic array to a device View for
incremental development, where SD is a struct containing XSBench simulation
data.

B. Porting to RAJA

In contrast to Kokkos, the RAJA portability ecosystem uses
multiple libraries to provide portability. Briefly, the RAJA
library itself provides C++ lambda-capturing to allow develop-
ers to express portable computation. For memory management,
the developer can either write or use a custom portable
memory management library, or use the related Umpire [47]
library, which provides portable memory allocation primitives
and memory pools. This separation of concerns in the RAJA
ecosystem provides greater capability for incremental porting
of an existing codebase (i.e., portable compute first, then
portable data structures), avoiding more extensive refactoring.

In our case, we opt to take advantage of Umpire for
CloverLeaf and XSBench, which both have extensive existing
code for managing and initializing data structures. However,

TABLE IV
COMPILERS AND VERSIONS USED FOR BUILDING DIFFERENT PROGRAMMING MODEL IMPLEMENTATIONS ON EACH SYSTEM.

Prog. Model Summit Perlmutter Corona Frontier

CUDA GCC 12.2.0 GCC 12.2.0 N/A N/A
HIP N/A N/A ROCmCC 5.7.0 ROCmCC 5.7.0
SYCL* DPC++ 2024.01.20 DPC++ 2024.01.20 DPC++ 2024.01.20 DPC++ 2024.01.20
Kokkos GCC 12.2.0 GCC 12.2.0 ROCmCC 5.7.0 ROCmCC 5.7.0
RAJA GCC 12.2.0 GCC 12.2.0 ROCmCC 5.7.0 ROCmCC 5.7.0
OpenMP† NVHPC 24.1 NVHPC 24.1 LLVM 17.0.6 LLVM 17.0.6
OpenACC NVHPC 24.1 NVHPC 24.1 Clacc 2023-08-15 Clacc 2023-08-15

* We use AdaptiveCpp 23.10.0 for SYCL CloverLeaf due to performance improvement.
† We use ROCmCC 5.7.0 for OpenMP su3 bench on AMD GPUs due to performance improvement.

we encounter several challenges building the RAJA applica-
tions. Relying on multiple independent libraries increases the
expertise required and frequency of errors in setting up build
systems, a process that is already complicated for a single
library containing device kernels. Package managers such as
Spack [5] can mitigate these problems for end users, although
this solution pushes the responsibility of ensuring the libraries
build and install correctly onto the package maintainers.

C. Porting to OpenACC

OpenMP ports already exist for all applications, so creating
similar OpenACC ports where needed just requires a one-
to-one conversion of the relevant OpenMP pragmas to Ope-
nACC. For example, omp target teams distribute
parallel for becomes acc parallel loop. This
rote method makes our experience with porting XSBench and
CloverLeaf from OpenMP to OpenACC very productive. In
contrast to Kokkos and RAJA, working with existing data
structures is highly transparent in OpenACC, so long as the
structures are plain old data (POD) and do not contain pointers
to CPU memory internally. In those more advanced cases,
which we do not encounter in this work, users must write more
complex directives to handle such data structures, convert them
to simpler formats, or use automatically managed memory if
provided by the GPU device [?].

VI. EXPERIMENTAL SETUP

In this section, we describe the setup for the experiments
conducted in this work. We run all the applications on all four
systems selected (listed in Table III).

Table IV lists the compilers used with each programming
model alongside their versions. We use GCC 12.2.0 as the host
compiler on NVIDIA systems and ROCmCC 5.7.0 on AMD.
We use CUDA version 12.2 on NVIDIA systems, and HIP
5.7.0 on AMD systems, as well as Kokkos version 4.2.00 and
RAJA v2023.06.1. OpenACC, OpenMP, and SYCL all have
different implementations provided by multiple compilers on
the systems where we perform our experiments. We test all
the available compilers for these models3 and choose the best-
performing compiler for each application, model, and system.

3OpenMP: Clang, GCC, ROCmCC, NVHPC, CCE; OpenACC: Clacc,
GCC, NVHPC; SYCL: DPC++, AdaptiveCpp

We perform this compiler-choice tuning to reflect the fact that
applications using these programming models will likely test
their code with all working compilers, and use in practice
the best-performing option. In all models except SYCL and
OpenMP, the best-performing compiler is consistent across
applications on each system. For the SYCL port of CloverLeaf,
AdaptiveCpp is consistently superior, so we present Adap-
tiveCpp results for that application and DPC++ for all others.
For OpenMP, ROCmCC wins on AMD systems for su3 bench
and Clang wins for all other applications. Note also that we
are unable to build CloverLeaf with Clacc due to lack of
support for the host_data clause, and hence we cannot run
CloverLeaf on AMD systems with OpenACC.

We select input decks and command line inputs for each
proxy application based on recommended settings from their
respective developers. When given a choice of problem size,
we select the largest representative problem available that fits
on all tested GPUs. We also choose the number of iterations
for each application to ensure about a minute of execution
time, so as to reduce variability. Section IV-D describes how
we modify the proxy applications to ensure consistent timings.
We present the final command line arguments in Table V.

TABLE V
INPUT PARAMETERS TO THE PROXY APPLICATIONS.

Application Input parameters

BabelStream -n 1500 -w 150 -s $((1<<29))
XSBench -s large -m event -G hash -n 150 -w 15
CloverLeaf --in clover_bm64_mid.in -w 52
su3 bench -l 32 -i 100000 -w 10000

miniBUDE --deck bm2 -p 2 --wgsize 128 -i 10
--warmups 1

Note that for all cases tested the time spent in data move-
ment is negligible (less than 2%) compared to time spent
in device kernels, so our result figures present only GPU
kernel time. For all performance results presented we run
the application three times and present the average result.
Variability is low; the largest range of times recorded as a
percentage of mean runtime for a case is 3.3%, and the mean
is 0.1%. We report total runtime for BabelStream kernels rather
than memory bandwidth in order to ensure that “lower is
better” across all performance results we present. The values

10 1 101 103 105 107

Arithmetic intensity (Flop/byte)

100

101

102

103

104

105
Pe

rf
or

m
an

ce
 (

G
flo

p/
s)

DRA
M

 B
an

dw
idt

h:
15

52
.80

8
GB/

s Single: 15108.824 Gflop/s
Double: 7554.412 Gflop/s

Roofline Plot for CUDA versions (Perlmutter)

Single Precision

Double Precision

BabelStream Dot

su3_bench

XSBench

miniBUDE

CloverLeaf advec_mom

CloverLeaf calc_dt

10 1 101 103 105 107

Arithmetic intensity (Flop/byte)

100

101

102

103

104

105

Pe
rf

or
m

an
ce

 (
G

flo
p/

s)

HBM
 B

an
dw

idt
h:

13
80

.15
2

GB/
s

Single: 21784.527 Gflop/s
Double: 20916.979 Gflop/s

Roofline Plot for HIP versions (Frontier)

Single Precision

Double Precision

BabelStream Dot

su3_bench

XSBench

miniBUDE

CloverLeaf advec_mom

CloverLeaf calc_dt

Fig. 1. Roofline plot for the most time-consuming kernel in the CUDA (left) and HIP (right) versions of each application, run on Perlmutter (NVIDIA A100)
and Frontier (AMD MI250X) respectively. Red points are single precision, and blue points are double precision. For each application we plot the predominant
precision used.

collected can be converted to bandwidth (GB/s) by dividing
the total data moved by the time.

VII. RESULTS AND DISCUSSION

We first present a roofline analysis of the native port imple-
mentations of each application to understand their compute
and memory behavior. Next, we present the results of our
detailed performance comparison across programming models,
systems, and applications, first in summary and then in depth.

A. Roofline analysis

Figure 1 provides the empirical rooflines for the NVIDIA
A100 GPU on Perlmutter and AMD MI250X GPU on Frontier.
It also plots the positions of the most time-consuming kernels
in the CUDA and HIP implementations of the five proxy
applications. For BabelStream, this is the dot kernel, and for
CloverLeaf, these are the advec_mom and calc_dt kernels.
miniBUDE, XSBench, and su3 bench contain a single compu-
tational kernel each. We plot each kernel for the predominant
floating-point precision used. We can quickly observe that all
kernels evaluated are memory-bound except for miniBUDE,
which is highly compute-bound, on both architectures. Among
the memory-bound apps, on both systems BabelStream dot
is the most memory-bound (i.e., furthest to the left). This
is expected given that BabelStream is a memory bandwidth
benchmark. CloverLeaf and su3 bench are much closer to the
knee point on both systems, while XSBench has substantially
different arithmetic intensity on both systems — 0.26 on
Perlmutter, 1.00 on Frontier. It is possible that XSBench
heavily utilizes some instruction types that are accounted
differently between NVIDIA and AMD’s counters used for
roofline plotting. All of these kernels are relatively close to
the roofline, suggesting these CUDA and HIP versions are
relatively close to optimal for the algorithms they implement.

Next, we present performance results for BabelStream dot,
XSBench, CloverLeaf, su3 bench, and miniBUDE in Figure 2.
We omit the BabelStream Copy, Add, Triad, and Mul kernels
due to the high degree of consistency across programming

models for those kernels. Each heatmap cell represents the
total GPU kernel execution time averaged over three runs
of the application, as described in Section IV. Note that
while we do measure data movement time, we do not report
it here, as it is consistently negligible (<2%) compared to
the time spent in the GPU kernels. Additionally, all values
represent the mean of three separate runs of each case, with
maximum difference between any run and the three-run mean
at 3.3%. The “Native Port” row in each plot represents CUDA
performance on Summit and Perlmutter (the NVIDIA systems)
and HIP performance on Corona and Frontier (the AMD
systems). We organize our initial insights into these results
into five observations.

B. Performance of native ports

Observation 1: On NVIDIA systems, CUDA almost always
performs at or near the best observed performance.

CUDA is the best or within 3% of the best performing
model in eight out of ten cases. For these applications, this is
a useful validation of the maturity of the CUDA baseline for
each application, and confirms our expectation that the low-
level vendor model would be the most performant and portable
across GPUs from the same vendor. In one notable exception,
for RAJA BabelStream dot on Perlmutter, we observe that
RAJA takes advantage of warp-level primitives in addition
to shared memory to perform the reduction, maximizing
utilization of hardware-specific features for such operations.

Observation 2: On AMD systems, HIP does not always
guarantee the best performance.

For most cases on AMD systems, including CloverLeaf, Ba-
belStream dot, and su3 bench on Frontier, AMD’s HIP pro-
gramming model achieves the best performance, as expected.
However, in multiple instances, HIP does not achieve the
best performance, particularly for XSBench. Using Omniperf
to profile XSBench, we observe that the HIP port achieves
lower Gflop/s and lower L1 cache bandwidth, while Kokkos
uses a larger workgroup size and arranges L1 cache read

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

C
or

on
a

(M
I5

0)
Fr

on
tie

r
(M

I2
50

X
)

Native Port

SYCL

Kokkos

RAJA

OpenMP

OpenACC

14.9 7.4 17.1 9.8

16.5 9.7 18.0 10.2

17.3 9.5 19.0 9.8

14.7 7.1 26.0 15.2

14.8 15.3 39.9 13.4

15.0 7.4 45.5 27.3

BabelStream Dot

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

C
or

on
a

(M
I5

0)
Fr

on
tie

r
(M

I2
50

X
)

98.4 33.9 70.7 65.9

93.4 35.7 68.4 57.4

99.2 33.4 66.6 50.4

108.8 34.0 70.7 66.0

99.2 34.1 71.7 50.5

103.9 34.3 71.6 50.5

XSBench

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

C
or

on
a

(M
I5

0)
Fr

on
tie

r
(M

I2
50

X
)

116.5 64.7 129.0 76.1

128.3 67.7 141.2 83.7

152.6 94.7 194.1 115.4

141.3 72.3 143.6 90.0

121.8 66.2 194.7 142.4

120.8 64.2

CloverLeaf

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

C
or

on
a

(M
I5

0)
Fr

on
tie

r
(M

I2
50

X
)

81.3 38.5 118.4 59.1

83.0 39.3 108.0 62.8

82.6 39.4 119.3 59.9

89.8 50.7 128.6 66.2

107.4 40.6 124.5 64.8

150.3 86.1 613.0 314.8

su3_bench

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

C
or

on
a

(M
I5

0)
Fr

on
tie

r
(M

I2
50

X
)

25.5 23.5 65.0 48.2

36.4 33.6 52.3 40.4

40.1 35.2 78.4 51.4

39.9 35.2 66.0 51.4

36.0 36.4 236.4 63.1

36.1 35.8 138.3 81.9

miniBUDE

7 18 30 34 72 110 65 132 200 39 94 150 23 51 80

Runtimes (in seconds) by Application, Architecture, and Programming Model

Fig. 2. Average execution time of all proxy applications across all systems and programming models. Lower is better.

requests in a larger number of smaller requests for a similar
number of bytes. This suggests Kokkos is selecting a more
ideal workgroup size and arranges data access patterns more
efficiently for AMD GPUs in XSBench. Meanwhile, OpenMP
appears to be able to take advantage of Local Data Share
(LDS) implicitly, reducing stalls for accesses to memory, while
HIP is not able to.

XSBench is a performance test case used in the development
of LLVM OpenMP offloading, which Clacc also uses for
OpenACC on Frontier, helping explain why both directive-
based models perform so well with XSBench. However, given
that Kokkos is a C++ abstraction over HIP code, it is surprising
that it can outperform HIP. We note that HIP XSBench perfor-
mance on Frontier is only slightly better than HIP XSBench
on Corona, suggesting that the XSBench HIP implementation
is not a fully optimized and mature baseline.

Documentation for XSBench indicates that developers used
the Hipify tool to create the XSBench HIP port, and in
comparing the HIP and CUDA versions it is clear that they
are identical aside from simple substitution of CUDA syntax
for HIP syntax. We observe that HIP kernels translated di-
rectly from CUDA without additional optimization may not
guarantee optimal performance on AMD hardware. Portable
programming models are able to achieve superior performance
in some cases with a similar level of effort.

C. Portability of SYCL

Observation 3: SYCL performance is competitive with HIP
and relatively stable across system and application pairs.

In five out of ten cases on AMD systems, SYCL performs
better than HIP. As a lower-level language extension, similar to
CUDA or HIP, this is not necessarily surprising. In some cases,
SYCL is able to improve on CUDA or HIP performance, and
even where SYCL is more than 3% slower than a native port,
is is never the worst-performing port except in XSBench on

Perlmutter, where is is only 5.3% slower. SYCL is the fastest
non-native programming model in more cases than any other
model, at nine out of twenty total application and system pairs,
and six of these are on AMD systems.

D. Portability of C++ abstraction libraries
Observation 4: Kokkos and RAJA are competitive with CUDA
and HIP on many system and application pairs.

Kokkos and RAJA compare favorably with CUDA and HIP
on NVIDIA and AMD systems, with one of the two ports
either nearing or exceeding the native port’s performance on
every combination of system and app, besides those involving
CloverLeaf on any system or miniBUDE on an NVIDIA
system. However, which model is more performant is very
application-dependent. With these very mixed results it is
hard to pick a clear portability winner between Kokkos and
RAJA, but we can observe that RAJA tends to perform more
competitively for NVIDIA systems, and Kokkos tends to have
an advantage on AMD systems.

Kokkos performance in CloverLeaf is a notable exception.
We observe that the Kokkos port of CloverLeaf spends longer
in the calc_dt reduction kernel relative to other ports. In
Nsight Compute, we find that the Kokkos port achieves fewer
eligible warps on average, mostly due to barrier warp stalls,
which we do not observe in the other ports. In Sec. VIII we
identify a fix for these issues in CloverLeaf Kokkos.

For su3 bench, we observe with RAJA substantially lower
arithmetic intensity in L1 and L2 cache compared to HIP, sug-
gesting the RAJA port loads unnecessary data from memory
more often. Additionally, in miniBUDE RAJA is not making
use of shared memory, which we address in Sec. VIII.

E. Portability of directive-based models

Observation 5: OpenMP is slower than other implementations
in roughly half our cases, and OpenACC struggles with AMD
systems.

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

C
or

on
a

(M
I5

0)
Fr

on
tie

r
(M

I2
50

X
)

Native Port

SYCL

Kokkos

RAJA

OpenMP

OpenACC

14.9 7.4 17.1 9.8

16.5 9.7 18.0 10.2

17.3 9.5 19.0 9.8

14.7 7.1 26.0 15.2

14.8 15.3 39.9 13.4

15.0 7.4 45.5 27.3

BabelStream Dot

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

C
or

on
a

(M
I5

0)
Fr

on
tie

r
(M

I2
50

X
)

98.4 33.9 70.7 65.9

93.4 35.7 68.4 57.4

99.2 33.4 66.6 50.4

108.8 34.0 70.7 66.0

99.2 34.1 71.7 50.5

103.9 34.3 71.6 50.5

XSBench

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

C
or

on
a

(M
I5

0)
Fr

on
tie

r
(M

I2
50

X
)

116.5 64.7 129.0 76.1

128.3 67.7 141.2 83.7

138.5 69.4 163.5 107.2

141.3 72.3 143.6 90.0

121.8 66.2 194.7 142.4

120.8 64.2

CloverLeaf

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

C
or

on
a

(M
I5

0)
Fr

on
tie

r
(M

I2
50

X
)

81.3 38.5 118.4 59.1

83.0 41.5 108.0 62.8

82.6 39.4 119.3 59.9

89.8 50.7 128.6 66.2

82.5 39.8 119.8 57.4

82.9 39.6 328.8 131.2

su3_bench

Su
m

m
it

(V
10

0)
Pe

rl
m

ut
te

r
(A

10
0)

C
or

on
a

(M
I5

0)
Fr

on
tie

r
(M

I2
50

X
)

25.5 23.5 65.0 48.2

36.4 33.6 52.3 40.4

40.1 35.2 78.4 51.4

25.1 23.5 67.1 49.0

36.0 36.4 236.4 63.1

36.1 35.8 138.3 81.9

miniBUDE

7 18 30 34 72 110 65 132 200 39 94 150 23 51 80

Runtimes (in seconds) After Optimizations by Application, Architecture, and Programming Model

Fig. 3. Average performance of all proxy applications across all systems and programming models, after applying optimizations. Boxes indicates where our
optimizations are applied. Lower is better.

OpenMP performance can be slower than the native base-
line, achieving significantly better performance than the base-
line only for XSBench on Frontier. OpenMP is able to achieve
rough parity with the native baseline in exactly half the cases
tested. CloverLeaf performance for OpenMP is a notable
outlier. We find that compared to HIP the OpenMP port spends
significantly more time in the PdV kernel. OpenMP achieves
less than half the L1 cache bandwidth in this kernel, as well
as a roughly 40% lower L2 cache hit rate and 30% higher
rate of stalls on L2 cache data, relative to HIP. Meanwhile,
in miniBUDE, the OpenMP port appears to allocate an order
of magnitude more Local Data Share (LDS) bytes than HIP
does, limiting the number of active compute units.

On NVIDIA systems, OpenACC generally achieves more
consistent performance with the baseline, but is consistently
worse than OpenMP and further worse than HIP on AMD
systems, likely because it is employing the same LLVM
OpenMP offloading runtime through the Clacc compiler. Per
Clacc developers, there is some overhead due to suboptimal
translation of OpenACC to OpenMP within Clacc which
will be addressed in a future release. The OpenACC port
for su3 bench in particular suffers from insufficient exposed
parallelism, even on NVIDIA. This is caused by a small fixed
number of iterations being distributed to a single block, leading
to fewer active threads per block. In Sec. VIII we identify a
portability improvement for the su3 bench OpenACC port.

VIII. OPTIMIZATIONS

Here, we present performance optimizations for a few
chosen outliers from our broader results. These optimizations
include rearranging directives, changing the level of paral-
lelism exposed, and improving use of hardware features.

A. Adjusting Kokkos CloverLeaf reduction parallelization

Kokkos CloverLeaf encounters a relatively high number
of barrier stalls. Comparing the implementations of the
calc_dt between ports, we find that Kokkos is the only
one to use a 2D reduction instead of collapsing the kernel
into a 1D reduction. We adjust the Kokkos port to use a 1D
scheme, bringing Kokkos calc_dt performance closer to
the native port on all studied systems, and no longer observe
barrier warp stalls in the new profile. As shown in Figure 3,
Kokkos CloverLeaf performance improves on all systems with
this change. The benefit is greater on Perlmutter and Corona,
where Kokkos’s performance on the other three significant
kernels compares more favorably with the native ports.

B. Improving parallelism and alignment in OpenACC and
OpenMP su3 bench

The su3 bench OpenACC port originally generates code
with only 36 threads per block, despite iterations being
assigned to blocks of size 128. This limits the parallelism
available on the device. We address this issue by collapsing
all four loops, exposing more parallelism.

We find that both OpenMP and OpenACC generated twice
as many global loads and stores as CUDA, due to a misaligned
complex number struct. OpenMP, OpenACC, and SYCL do
not provide a native complex type for GPUs. We declare
this struct aligned to sizeof(T) * 2, resulting in a single load
and store for each complex number in the array. On AMD
this optimization has no effect. As presented in Figure 3,
OpenACC benefits strongly from this combination of opti-
mizations, whereas OpenMP achieves modest speedups.

C. Utilizing shared memory in RAJA miniBUDE

In comparing the Kokkos, RAJA, SYCL, and CUDA ver-
sions of miniBUDE, we notice that the RAJA version is not
making use of shared memory, while the Kokkos, SYCL,

and CUDA ports are. RAJA recently added features for
dynamically allocating shared memory inside a kernel, a
feature needed in miniBUDE since the forcefield data is input-
dependent in size, so we modify RAJA miniBUDE to use
shared memory for this data.

This optimization improves RAJA performance on NVIDIA
systems, with little impact on AMD, leading to an overall
increase in portability (see Fig. 3). After the change RAJA
performance comes very close to the CUDA performance on
Perlmutter, an impressive gain since other models already
using shared memory do not get this close on NVIDIA
systems. At the time of writing we are unable to add dynamic
shared memory allocation inside the kernel for the OpenMP
and OpenACC ports due to lack of support.

D. Evaluating performance portability after optimizations

Figure 4 displays the PP metric for each programming
model and proxy application combination after applying the
optimizations described above. The “Native Port” column
provides context, indicating what the metric would report if
a team decided to maintain both a HIP and CUDA version
of the application. We are unable to run CloverLeaf with
OpenACC on AMD systems, so that cell is zero per the official
formulation of the metric4. According to PP, we observe
a moderate preference for SYCL, RAJA, and Kokkos as
performance portable programming models, and for OpenMP
over OpenACC within directive-based models.

N
at

iv
e

Po
rt

SY
C

L

K
ok

ko
s

R
A

JA

O
pe

nM
P

O
pe

nA
C

C

BabelStream Dot

XSBench

CloverLeaf

su3_bench

miniBUDE

0.98 0.87 0.86 0.79 0.58 0.53

0.9 0.94 0.98 0.88 0.96 0.95

1 0.92 0.81 0.86 0.73 0

0.97 0.95 0.95 0.84 0.96 0.54

0.9 0.82 0.68 0.89 0.44 0.52

Harmonic Mean of Application Efficiency

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. PP of GPU kernel performance for each programming model
and application combination, after optimizations. Applications are listed in
ascending order of arithmetic intensity from top to bottom. Note for OpenACC
we are unable to compile CloverLeaf on AMD systems.

IX. CONCLUSION

In this paper, we empirically evaluated seven GPU program-
ming models and directly compared their capabilities for en-
abling performance portability. We performed this evaluation

4For the subset of systems (Summit and Perlmutter) we are able to run
OpenACC on, the value is 0.98.

on some of the fastest supercomputers in the world using proxy
application codes that represent real scientific workloads. We
developed a Spack-based methodology to substantially lower
the barrier for future experiments comparing portable pro-
gramming models. We invested significant effort in ensuring
each proxy application’s implementations in each model can
be easily built and run on additional systems, and we plan to
open-source these efforts, sharing them with the broader HPC
community.

After our optimizations, a few broad outliers remain in
the performance portability cases we studied which may be
of interest to developers looking to choose a programming
model. We highlight the frequent gap between OpenACC
and OpenMP performance on AMD systems, the challenges
with miniBUDE and CloverLeaf that Kokkos, OpenACC, and
OpenMP all face on AMD systems, generally poor reduction
performance in OpenACC and OpenMP, and poor reductions
on AMD systems with RAJA. For application, compiler, and
programming model developers, we present several insights
from our experiences as well as suggestions for future invest-
ment of effort towards performance portability:

• Successfully building all of these applications across
systems is not trivial, especially for RAJA as a multi-
library portability suite. Robustness and documentation
in the build process may enable app developers to more
easily test competing programming models.

• Our ability to identify bottlenecks depended heavily on
profiling tools. Improving the quality of these tools for
new programming models and hardware architectures
will be critical to enabling performance portability. Line-
level stall attribution is a crucial capability missing from
Omniperf at the time of writing.

• Reduction operations continue to be a major bottleneck,
as observed in prior studies, and work on improving
compiler handling of reductions would close some of the
major remaining performance outliers between portable
models and native baselines.

• The ability to separate correctness and performance con-
cerns in these models was critical in identifying the
optimizations we describe, as it allowed us to tune ports
without invalidating scientific results. Exposing and docu-
menting more semantic-preserving performance “knobs”
within each model may provide developers with a wider
space to explore to fine-tune performance portability.

REFERENCES

[1] TOP500.org, “June 2024 top500,” 2024. [Online]. Available: https:
//www.top500.org/lists/top500/2024/06/

[2] “OpenMP Application Program Interface. Version 4.0. July 2013,” 2013.
[3] R. D. Hornung and J. A. Keasler, “The RAJA Portability Layer:

Overview and Status,” Lawrence Livermore National Laboratory, Tech.
Rep. LLNL-TR-661403, Sep. 2014.

[4] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Elling-
wood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Mad-
sen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam, M. Simberg,
D. Sunderland, B. Turcksin, and J. Wilke, “Kokkos 3: Programming
model extensions for the exascale era,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 805–817, 2022.

[5] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody,
B. R. de Supinski, and S. Futral, “The spack package manager:
bringing order to hpc software chaos,” in SC15: International
Conference for High-Performance Computing, Networking, Storage and
Analysis. Los Alamitos, CA, USA: IEEE Computer Society, nov
2015. [Online]. Available: https://doi.ieeecomputersociety.org/10.1145/
2807591.2807623

[6] A. Sabne, P. Sakdhnagool, S. Lee, and J. S. Vetter, “Evaluating perfor-
mance portability of openacc,” in Languages and Compilers for Parallel
Computing: 27th International Workshop, LCPC 2014, Hillsboro, OR,
USA, September 15-17, 2014, Revised Selected Papers 27. Springer,
2015, pp. 51–66.

[7] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler,
“Stateful dataflow multigraphs: A data-centric model for performance
portability on heterogeneous architectures,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, 2019, pp. 1–14.

[8] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “A metric for
performance portability,” in Proceedings of the 7th International
Workshop in Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems, 2016. [Online]. Available:
https://arxiv.org/abs/1611.07409

[9] ——, “Implications of a metric for performance portability,” Future
Generation Computer Systems, vol. 92, pp. 947–958, 2019.

[10] J. Sewall, S. J. Pennycook, D. Jacobsen, T. Deakin, and S. McIntosh-
Smith, “Interpreting and visualizing performance portability metrics,”
in 2020 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2020, pp. 14–24.

[11] S. J. Pennycook, J. D. Sewall, D. W. Jacobsen, T. Deakin, and
S. McIntosh-Smith, “Navigating performance, portability, and produc-
tivity,” Computing in Science & Engineering, vol. 23, no. 5, pp. 28–38,
2021.

[12] S. J. Pennycook and J. D. Sewall, “Revisiting a metric for performance
portability,” in 2021 International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2021, pp. 1–9.

[13] D. F. Daniel and J. Panetta, “On applying performance portability
metrics,” in 2019 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), 2019, pp. 50–59.

[14] A. Marowka, “A comparison of two performance portability metrics,”
Concurrency and Computation: Practice and Experience, p. e7868,
2023.

[15] ——, “Toward a better performance portability metric,” in 2021 29th Eu-
romicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP). IEEE, 2021, pp. 181–184.

[16] M. Martineau, S. McIntosh-Smith, and W. Gaudin, “Assessing the
performance portability of modern parallel programming models us-
ing tealeaf,” Concurrency and Computation: Practice and Experience,
vol. 29, no. 15, p. e4117, 2017.

[17] I. Z. Reguly and G. R. Mudalige, “Productivity, performance, and
portability for computational fluid dynamics applications,” Computers
& Fluids, vol. 199, p. 104425, 2020.

[18] I. Z. Reguly, “Performance portability of multi-material kernels,” in
2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC). IEEE, 2019, pp. 26–35.

[19] A. Sedova, J. D. Eblen, R. Budiardja, A. Tharrington, and J. C. Smith,
“High-performance molecular dynamics simulation for biological and
materials sciences: Challenges of performance portability,” in 2018
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC). IEEE, 2018, pp. 1–13.

[20] S. Boehm, S. Pophale, V. G. Vergara Larrea, and O. Hernandez,
“Evaluating performance portability of accelerator programming models
using spec accel 1.2 benchmarks,” in High Performance Computing:
ISC High Performance 2018 International Workshops, Frankfurt/Main,
Germany, June 28, 2018, Revised Selected Papers 33. Springer, 2018,
pp. 711–723.

[21] A. S. Dufek, R. Gayatri, N. Mehta, D. Doerfler, B. Cook, Y. Ghadar,
and C. DeTar, “Case study of using kokkos and sycl as performance-
portable frameworks for milc-dslash benchmark on nvidia, amd and intel
gpus,” in 2021 International Workshop on Performance, Portability and
Productivity in HPC (P3HPC). IEEE, 2021, pp. 57–67.

[22] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “Evaluating
attainable memory bandwidth of parallel programming models via
babelstream,” Int. J. Comput. Sci. Eng., vol. 17, no. 3, p. 247–262, jan
2018.

[23] V. Artigues, K. Kormann, M. Rampp, and K. Reuter, “Evaluation of
performance portability frameworks for the implementation of a particle-
in-cell code,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 11, p. e5640, 2020.

[24] E. M. Rangel, S. J. Pennycook, A. Pope, N. Frontiere, Z. Ma, and
V. Madananth, “A performance-portable sycl implementation of crk-
hacc for exascale,” in Proceedings of the SC’23 Workshops of The
International Conference on High Performance Computing, Network,
Storage, and Analysis, 2023, pp. 1114–1125.

[25] R. Gayatri, C. Yang, T. Kurth, and J. Deslippe, “A case study for
performance portability using openmp 4.5,” in Accelerator Programming
Using Directives: 5th International Workshop, WACCPD 2018, Dallas,
TX, USA, November 11-17, 2018, Proceedings 5. Springer, 2019, pp.
75–95.

[26] H. Brunst, S. Chandrasekaran, F. M. Ciorba, N. Hagerty, R. Henschel,
G. Juckeland, J. Li, V. G. M. Vergara, S. Wienke, and M. Zavala, “First
experiences in performance benchmarking with the new spechpc 2021
suites,” in 2022 22nd IEEE International Symposium on Cluster, Cloud
and Internet Computing (CCGrid). IEEE, 2022, pp. 675–684.

[27] G. K. Reddy Kuncham, R. Vaidya, and M. Barve, “Performance study of
gpu applications using sycl and cuda on tesla v100 gpu,” in 2021 IEEE
High Performance Extreme Computing Conference (HPEC), 2021, pp.
1–7.

[28] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and
C. H. Still, “Exploring traditional and emerging parallel programming
models using a proxy application,” in Proceedings of the IEEE Inter-
national Parallel & Distributed Processing Symposium, ser. IPDPS ’13.
IEEE Computer Society, May 2013.

[29] T. Deakin, S. McIntosh-Smith, J. Price, A. Poenaru, P. Atkinson,
C. Popa, and J. Salmon, “Performance portability across diverse com-
puter architectures,” in 2019 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC), 2019, pp.
1–13.

[30] T. Deakin, A. Poenaru, T. Lin, and S. McIntosh-Smith, “Tracking
performance portability on the yellow brick road to exascale,” in 2020
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC), 2020, pp. 1–13.

[31] T. Deakin, S. McIntosh-Smith, S. J. Pennycook, and J. Sewall, “Analyz-
ing reduction abstraction capabilities,” in 2021 International Workshop
on Performance, Portability and Productivity in HPC (P3HPC). IEEE,
2021, pp. 33–44.

[32] T. Deakin, J. Cownie, W.-C. Lin, and S. McIntosh-Smith, “Heteroge-
neous programming for the homogeneous majority,” in 2022 IEEE/ACM
International Workshop on Performance, Portability and Productivity in
HPC (P3HPC), 2022, pp. 1–13.

[33] W.-C. Lin, S. McIntosh-Smith, and T. Deakin, “Preliminary report:
Initial evaluation of stdpar implementations on amd gpus for hpc,” arXiv
preprint arXiv:2401.02680, 2024.

[34] J. Kwack, J. Tramm, C. Bertoni, Y. Ghadar, B. Homerding, E. Rangel,
C. Knight, and S. Parker, “Evaluation of performance portability of
applications and mini-apps across amd, intel and nvidia gpus,” in 2021
International Workshop on Performance, Portability and Productivity in
HPC (P3HPC), 2021, pp. 45–56.

[35] S. L. Harrell, J. Kitson, R. Bird, S. J. Pennycook, J. Sewall, D. Jacobsen,
D. N. Asanza, A. Hsu, H. C. Carrillo, H. Kim et al., “Effective
performance portability,” in 2018 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC). IEEE,
2018, pp. 24–36.

[36] T. Koskela, I. Christidi, M. Giordano, E. Dubrovska, J. Quinn, C. May-
nard, D. Case, K. Olgu, and T. Deakin, “Principles for automated and
reproducible benchmarking,” in Proceedings of the SC’23 Workshops
of The International Conference on High Performance Computing,
Network, Storage, and Analysis, 2023, pp. 609–618.

[37] “Ecp proxy applications,” https://proxyapps.exascaleproject.org/, ac-
cessed: 2023-09-30.

[38] “Nersc proxy suite,” https://www.nersc.gov/research-and-
development/nersc-proxy-suite/.

[39] M. A. Heroux, R. F. Barrett, J. M. Willenbring, S. D. Hammond,
D. Richards, J. Mohd-Yusof, and A. Herdman, “Mantevo suite 1.0.”
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States),
Tech. Rep., 2013.

[40] J. H. Davis, C. Daley, S. Pophale, T. Huber, S. Chandrasekaran, and
N. J. Wright, “Performance assessment of openmp compilers target-

ing nvidia v100 gpus,” in Accelerator Programming Using Directives,
S. Bhalachandra, S. Wienke, S. Chandrasekaran, and G. Juckeland, Eds.
Cham: Springer International Publishing, 2021, pp. 25–44.

[41] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “Xsbench-the de-
velopment and verification of a performance abstraction for monte carlo
reactor analysis,” The Role of Reactor Physics toward a Sustainable
Future (PHYSOR), 2014.

[42] P. K. Romano, N. E. Horelik, B. R. Herman, A. G. Nelson, B. Forget,
and K. Smith, “Openmc: A state-of-the-art monte carlo code for research
and development,” Annals of Nuclear Energy, vol. 82, pp. 90–97, 2015.

[43] J. Herdman, W. Gaudin, S. McIntosh-Smith, M. Boulton, D. A. Beck-
ingsale, A. C. Mallinson, and S. A. Jarvis, “Accelerating hydrocodes
with openacc, opencl and cuda,” in 2012 SC Companion: High Perfor-
mance Computing, Networking Storage and Analysis. IEEE, 2012, pp.
465–471.

[44] D. Doerfler and C. Daley, “su3 bench: Lattice qcd su (3) matrix-matrix
multiply microbenchmark (su3 bench) v1. 0,” Lawrence Berkeley Na-
tional Lab.(LBNL), Berkeley, CA (United States), Tech. Rep., 2020.

[45] C. Bernard, M. C. Ogilvie, T. A. DeGrand, C. E. DeTar, S. A. Gottlieb,
A. Krasnitz, R. L. Sugar, and D. Toussaint, “Studying quarks and
gluons on mimd parallel computers,” The International Journal of
Supercomputing Applications, vol. 5, no. 4, pp. 61–70, 1991.

[46] S. McIntosh-Smith, J. Price, R. B. Sessions, and A. A. Ibarra, “High
performance in silico virtual drug screening on many-core processors,”
The international journal of high performance computing applications,
vol. 29, no. 2, pp. 119–134, 2015.

[47] D. A. Beckingsale, M. J. McFadden, J. P. S. Dahm, R. Pankajakshan,
and R. D. Hornung, “Umpire: Application-focused management and
coordination of complex hierarchical memory,” IBM Journal of Research
and Development, vol. 64, no. 3/4, pp. 00:1–00:10, 2020.

