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Introduction

In this report, we give a brief survey of various results relating the Teaching
Dimension and VC-Dimension. The concept of Teaching Dimension was
first introduced by Goldman and Kearns, 1995 and Sinohara and Miyano,
1991. In this model, an algorithm tries to learn the hidden concept c from
examples, called the teaching set, which uniquely identifies c from the rest of
the concepts in the concept class C. In a seemingly unrelated direction, the
notion of sample compression was introduced by Warmuth and Littlestone,
where they study if the number of samples needed to learn a concept can
somehow be compressed so that the number of training examples needed
is minimized. In this survey, we give results from recent literature which
makes interesting connections between Teaching Sets and VC Dimension.

Recursive Teaching Dimension

Formally, given a set of examples E = {E1, E2, . . . , Em} and a concept
class(possibly infinite and uncountable) C, a teaching set for a concept c ∈ C
is a subset S ⊆ E such that, ∀c′ 6= c ∈ C ∃x ∈ S s.t. c(x) 6= c′(x). In other
words, a teaching set is a subset of examples that can uniquely identify c
in the class C. A minimum teaching set for a concept c ∈ C is the smallest
set S ⊆ E such that S is a teaching set for c. Teaching dimension(T D) for
a concept class C is the maximum size of the minimum teaching set for any
concept in C. In other words, T D = maxc∈C minS⊆E (S is a teaching set for
c).

Often, the notion of teaching complexity is too restrictive. The follow-
ing example, which is a folklore, illustrates this. Consider the set of concept
class to be the set of all singletons on [m] and the empty set. Note that for
each of the singletons, the minimum teaching set is a single element, while
for the empty set, the minimum teaching set is the entire set of examples.
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Even for an extremely simple concept class, the teaching dimension is very
large. Hence, this worst case description can be slightly refined to get was
is known as the recursive teaching dimension.

Consider the subset of concepts which are the simplest to learn i.e. has
the minimum sized teaching set among all concepts. Intuitively, one can
first learn those concepts and remove them from the concept class. Now, for
the remaining set of concepts we can recursively learn the simplest concepts
and so on. With this goal in mind, recursive teaching dimension is formally
defined as follows. Let k1 denote the size of the minimum teaching set for
the current concept class C. Remove all concepts from C such that the size
of their teaching sets is k1. Let k2 be the size of the minimum teaching set of
the remaining concepts. Recursively, do the following and let ki be the size
of the minimum teaching set at iteration i. Recursive teaching dimension is
maxi ki.

Dual Class

In this section, we will briefly describe the notion of dual class. We will
first represent the set of examples and hypothesis in the form of a matrix.
Define a matrix M such that the rows correspond to the hypothesis and the
columns correspond to the set of points in the domain. The entry (h, x)
in the matrix M is either 0 or 1 based on whether the hypothesis h labels
the point x with 0 or 1. With this representation of the matrix, the dual
class is simple to describe. Dual class is the set of hypothesis represented
by the transpose of the matrix M . In other words, with every point x in
the domain we associate a concept cx. And the domain of this new concepts
is the set of all concepts from the original class. cx(x) = 1 if and only if
M(c, x) = 1.

We will now prove the following simple claim regarding the Dual Class.

Claim 0.1. For a given concept class C with VC-Dimension d, the dual
class has a VC-Dimension at most 2d+1 − 1.

Proof. With the matrix representation of the concept class, it is straight
forward to prove this claim. We will prove the contrapositive of this as
follows. Suppose the dual class has a VC-Dimension of 2d+1. Then in the
transpose of the matrix M , we have a sub-matrix of size 22

d+1 ∗ 2d+1 such
that for every binary vector b of length 2d+1, there exists a row such that
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the entries there correspond to the vector b. Now, consider the transpose
of this sub-matrix. It is clear that it is a sub-matrix of M . We will now
see that, we can find d + 1 columns which are shattered. Define k = 2d+1.
Consider the transpose of the sub-matrix. Note that, all columns in this
untransposed sub-matrix are unique. Hence, in the transposed version, all
the rows are unique. To have k unique rows, we need to have at least log(k)
columns such that in those columns, all combinations of the binary vector
is seen. Hence, we have d+ 1 columns where all combinations of the binary
vector is seen. By definition, this is the VC-Dimension.

Relation between recursive teaching dimension and
VC-Dimension

The key question regarding the concept of teaching sets is, the relation be-
tween Recursive Teaching Dimension and VC-Dimension. It is clear that the
recursive teaching dimension of a concept class is at least the VC-Dimension.
The question that remains unsolved is the following. Is it possible to upper-
bound the recursive teaching dimension of a concept class with a function
of its VC-Dimension.

It is a folklore that for concept class with infinite concepts, the answer
is negative. The following concept class has a VC-Dimension of 2, while
its recursive teaching dimension is unbounded. Let Q denote the set of all
rational numbers. For every q ∈ Q, associate a concept cq which labels all
points greater than equal to q as 1 and the remaining points as 0. The
VC-Dimension of this concept class is 2, because this is same as the concept
class of intervals. However, notice that for any given concept, the teaching
set is an infinite set. This is because, one has to provide all the rationals
greater or equal q to uniquely identify the concept cq.

Hence, the question can be restricted to finite concept classes. In case of
concept classes with VC-Dimension of 1, Kuhlmann showed that the recur-
sive teaching dimension is at most 1. Hence, the quest for constant factor
with respect to the VC-Dimension was solved. For concepts VC-Dimension
of d >= 2 was open for a while, until recently Moran, Shpilka, Wigder-
son and Yehudayoff showed that for a special restriction of concept classes
with VC-Dimension 2, the recursive teaching dimension can be bounded
by 3. The restriction they defined is as follows. For concept classes with
VC-Dimension of 2, it implies that any subset of 3 points there can be at
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most 7 out of the 8 patterns of the binary string. They call this the (3, 7)
hypothesis class. Their result applies to the (3, 6) case of VC-Dimension 2.
Formally, the following claim shows their result.

Claim 0.2 (Moran, Shpilka, Wigderson, Yehudayoff). For concept classes
with VC-Dimension 2 and (3, 6)-pairing the recursive teaching dimension
can be upper bounded by 3.

Before we prove the above claim, we make a note that this theorem is
tight. In other words, we show the following example where the concept
class has a (3, 7) pairing and the recursive dimension is 4.

Concepts x1 x2 x3 x4 x5
c1 0 0 1 1 0
c2 0 1 1 1 0
c3 1 0 0 1 0
c4 1 1 1 0 0
c5 0 0 1 1 1
c6 0 1 1 1 1
c7 1 0 1 0 0
c8 1 1 0 1 0

Note that in the above example, the VC Dimension is 2. And for
the columns x1, x2, x5, other than the pattern 1, 1, 1 all other patterns are
present. But in the first step, we need x1, x2, x3, x5 to teach any concept.

Proof. (Moran, Shpilka, Wigderson, Yehudayoff)
Let C denote a (3, 6) concept class. If VC-Dimension of C is 1, by Kuhlmann
C has RTD of at most 1. Thus we assume C has VC-Dimension 2. Hence
for a shattered pair {x, x′} ⊆ X and b, b′ ∈ {0, 1}, there exists a non empty

concept class Cb,b′

x,x′ := {c ∈ C|c(x) = b, c(x′) = b′}. It is not hard to see

that the VC-Dimension of Cb,b′

x,x′ is 1. Thus the set of {x, x′} in addition to

a teaching set for Cb,b′

x,x′ is a teaching set for a concept in C.

Attempts

In this section, we briefly mention some of the attempts we made to make
progress. We wanted to understand how the RTD grows with respect to
adding more concepts into the class. In particular, we have the following
conjecture.
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Conjecture 0.3. Given a class of concepts C whose teaching dimension is t,
it is impossible to add a new concept c′ /∈ C such that the teaching dimension
of the new concept class is t + 2 or greater.

The above conjecture is interesting, because if true, this says that adding
concept by concept one cannot increase the teaching dimension by a lot. On
the other hand, adding in more concepts increases the VC Dimension at
least logarithmically. This will potentially give us a relation between the
two, independent of the size of concept class.

In a different direction we wanted to find a counter example to our orig-
inal problem. In other words, we wanted to find a concept class such that
the recursive teaching dimension is much bigger than the VC Dimension.
We wrote computer codes to enumerate the concept classes. For small val-
ues of m <= 30 and n <= 8, where m is the number of concepts and n is
the number of examples, we generated thousands of random matrices and
we were unable to find a single example where the RTD exceeded the VCD
more than 2. This gives an evidence that, for most matrices the RTD is very
close to the VCD exactly as conjectured. Currently, we are writing a code
to systematically enumerate all examples to see if there is a special example
where it might break. The challenge with all concept enumeration is that,
the number of concept classes are really big that even for n >= 4, it quickly
becomes infeasible to generate all possible concept classes.

Moran et al. provide a general lower bound for RTD of a concept class
C of VC-Dimension d.

Theorem 0.4 (Moran, Shpilka, Wigderson, Yehudayoff). Let C be a concept
class of VC-Dimension d. Then there exists c ∈ C with a teaching set of
size at most

d2d+3(log(4e2) + log log |C|).

Proof Idea. They show if |C| > (4e2)d2
d+2

, there exist two distinct x and
x′ in X such that the set of concepts c ∈ C such that c(x) 6= c(x′) is much
smaller than |C|. More precisely they show |{c ∈ C : c(x) = 0 and c(x′) =

1}| ≤ |C|1−1/d2d+2‘
. Then they add x and x′ to the teaching set. They

recursively do this until there exists a teaching set of size 1. They show
d2d+2 log log |C|

Theorem 0.4 implies the RTD is also upper bounded by d2d+3(log(4e2)+
log log |C|). However they leave the following open question.
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Problem 0.5. Let C be a concept class of VC-Dimension d. Does there
exist any upper bound for the RTD of C which is independent of |C|?

Geometric examples

As indicated by the simple example before, there exist concept classes with
infinite RTD and finite VC dimension. A direct translation of geometric
concepts like the interiors of circles or rectangles do not have finite teaching
dimension. For example, for the concept class of concentric circles centered
at the origin with radius in Q, there is no finite teaching set for the circle
centered at 1, as given any finite teaching set, we can always find a slightly
larger circle than the true concept consistent with the teaching examples,
by taking a point in the annulus between the minimum radius of a “no”
instance found in the teaching set and the true radius.

However we can construct a related (infinite) concept class that has RTD
similar to the VC dimension: circles (containing their interior) centered
around the origin with integer radius.

The teaching set for a circle with radius r ≥ 1 is of size 2, as the yes
instance (r, 0) and the no instance (r + 1, 0) suffice. The only concept not
in the minimal teaching set is the concept all 0’s (circle with radius 0), so
the RTD is 2. This is identical to the VC dimension.

Similar discretizations exist for slightly more complex shapes.
Consider rectangles on the two-dimensional lattice Z2. These will have

RTD 4, as the two corners (and points just beyond the corners) suffice. The
VC dimension for this concept class is 4.

Both of these concept classes are closed under intersection.
A result proved in Doliwa, Simon, and Zilles is that for finite concept

classes which are closed under intersection, the RTD is always less than the
VC dimension. The examples above are not finite, but a review of the proof
sketch confirms that the techniques used still apply to these examples.

Note that since RTD is monotonic in the sense that removing a concept
cannot increase RTD, geometric concept classes whose closure have small
VC dimension also must have small RTD.
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