
A Testing Based Empirical Study of
Dynamic Software Update Safety Restrictions

Chris Hayden Eric A. Hardisty Michael Hicks Jeffrey S. Foster

University of Maryland, College Park
{hayden,hardisty,mwh,jfoster}@cs.umd.edu

ABSTRACT
Recent years have seen significant advances in dynamic soft-
ware updating (DSU) systems, which allow programs to be
patched on the fly. Most DSU systems employ automatic
safety checks to avoid applying a patch if doing so may lead
to incorrect behavior. This paper presents what we believe
is the first comprehensive empirical evaluation of the two
most significant DSU safety checks: activeness safety (AS),
which disallows patches that modify functions on the stack,
and con-freeness safety (CFS), which allows modifications to
active functions, but only when doing so will be type safe.

To measure the checks’ effectiveness, we tested them against
three years of updates to OpenSSH and vsftpd. We per-
formed this testing using a novel DSU testing methodology
that systematically applies updates throughout the execu-
tion of a test suite. After testing updates to both applica-
tions in this way, we tracked how often the safety checks
allow updates and which updates result in test failures. We
found that updating without safety checks produced many
failures, and that both AS and CFS dramatically reduced,
but did not fully eliminate, these failures. CFS yielded more
failures than AS, but AS was more restrictive than CFS,
disallowing far more successful updates. Our results sug-
gest that neither AS nor CFS is likely suitable for general-
purpose DSU on its own. Indeed, we found that selecting
update points manually could avoid all failures while still
permitting sufficient updates. Our results present a chal-
lenge and important insights for future work: to discover
safe and sufficient update points fully automatically.

1. INTRODUCTION
Over the last 30+ years, researchers and practitioners

have been exploring means to dynamically update the soft-
ware of a running system with new code and data, to fix
bugs or add features without incurring downtime. Support
for dynamic software updating (DSU) takes many forms.
Smalltalk and CLOS have long provided basic DSU support
to enable “fix-and-continue” development, and the JVM and
CLR now provide similar support [12, 9]. Unsanity’s Ap-
plication Enhancer [24] can update running Mac OS X ap-
plications, while the DSU capabilities of Ericsson’s Erlang
programming language [3] are regularly used to hot-patch
fielded telecommunications systems. Research DSU systems
for C, C++, and Java have been used to dynamically update
servers and operating systems with patches ranging from
security bug fixes [4, 1] to full releases [20, 7, 13, 23].

int foo(int x, int y) {
return x + y;
}
void bar() {

int z = 0;
...

z = foo(z ,5);
baz();
}

void foo(int ∗x, int y) {
∗x += y;
}
void bar() {

int z = 0;
...

foo(&z,5);
baz();
}

(a) Old version (b) New version

Figure 1: Two versions of a program

However, while DSU can significantly improve application
availability, it is not without risk. Even if the new version
of an application runs correctly when started from scratch,
the application could behave incorrectly when patched on
the fly. For example, in Figure 1 the two versions of bar
have identical semantics (we assume baz, not shown, is the
same in both versions), but consider what could happen if
the program is updated just as bar starts running. In many
DSU systems [20, 7, 23, 11], functions running at the time of
an update continue executing the old code, while subsequent
function calls invoke the new version. Thus, we would have
a type error: the old bar would call the new foo with the
integer 0, instead of a pointer to an integer as expected. As
a result, foo dereferences 0, causing the program to crash.

To avoid these and other problems, most DSU systems
place restrictions on when a dynamic patch may be applied.
Several systems have proposed mechanisms for manually im-
posing timing restrictions [14, 7], while automatically im-
posed restrictions fall into two categories:

Activeness safety (AS). In this approach, an update may
be performed only if those functions changed by the update
are not active, i.e., if changed functions are neither running
nor on the activation stack of a running thread. This ensures
that, following an update, the program will only execute the
new version’s code. Notice that AS prevents the problematic
update location in our example by forbidding updates from
taking effect in bar, since it has changed. AS is advocated
by Bracha [6], and is used by DSU systems such as Dynamic
ML [25], K42 [13], OPUS [1], Ksplice [4], and Jvolve [23].

Con-freeness safety (CFS). Stoyle et al. [22] proposed a
condition called con-freeness that relaxes AS by allowing
updates to active code, but only if the old code that executes
after the update will never access data or call a function

1

whose type signature has changed. As such, it would rule
out the problematic update point in the example, since foo’s
type signature has changed and foo would be called after the
update takes place. However, unlike AS, CFS would allow
an update after the call to bar, since the type signature of
baz, which is called next, is not changed by the update.
Ginseng [20] uses CFS to ensure update type safety.

While clearly useful, Gupta [10] has shown that no fully
automatic safety check can be perfect: a check must be ei-
ther too permissive, allowing some incorrect updates, or too
restrictive, disallowing some correct updates, or both. Nev-
ertheless, while no check can be perfect in theory, there may
be a fully automatic check that is highly effective in practice.

In this paper, we present what we believe to be the first
comprehensive empirical evaluation of the permissiveness
and restrictiveness of AS and CFS when applied to real pro-
grams. The aim of our study is to help understand the ad-
vantages and limitations of these approaches, and ultimately
to understand what it will take to develop a practical and
safe DSU system.

To evaluate the two safety checks, we developed a testing
framework for Ginseng [20], a freely available DSU system
for C programs. Ginseng’s updating semantics are similar to
many existing DSU systems, so we believe our results will
generalize to other implementations. We used our frame-
work to test AS’s and CFS’s effectiveness on three-years’
worth of updates to vsftpd and OpenSSH, two popular open-
source server programs that have been extensively studied
in the DSU literature [20, 7, 16].

Our framework systematically applies a dynamic patch at
every point during a program execution that could produce
a different result, using a novel reduction algorithm to avoid
redundant tests. We used this framework to execute a suite
of system tests tracking whether, when executing a given
test and applying a patch at a given point, the test succeeds
or fails. For each choice of tested update point we deter-
mined whether the update would have been allowed by the
AS and/or CFS safety checks. In this way, we measured
each check’s permissiveness and restrictiveness based on the
update test’s outcome.

After some preliminary experience with our framework,
we found we needed to slightly refactor the test programs
by extracting some code blocks into separate functions [20],
to avoid AS precluding all possible updates (details are pre-
sented in the next section). After making these changes and
running our tests, we found a number of interesting results.
A multitude of updates fail if we use no safety checks—in to-
tal, 1.48M of the total 9.8M tested executions failed (15%).
Using either AS or CFS dramatically reduces the number of
failures to about 495 for AS (0.2%) and 48K for CFS (3.2%).

We also measured how many of the passing update points
AS and CFS allow. We found that roughly 60% are allowed
by both.

In total, CFS permitted 76% of the passing update points,
while AS permitted 62% of them, a difference of about 1.12M
update tests. Thus we can see that AS’s lower failure rates
come at the cost of higher restrictiveness, compared to CFS.

In short, though (as theorized by Gupta) neither check
eliminates all failures and permits all successes, both are
highly effective in practice, eliminating nearly all failures
while still allowing a majority of successes.

While overall more available updates is better, in general
we only need updates to occur reasonably often. We cate-

gorized the update points in each program by the program
phase they occur in—startup, connection loop, transition,
command loop, or shutdown—and found that most of the
failures occur in the startup and transition phases. Since we
likely only need to support updates during the loops, this
is a positive result. Moreover, we found that if we restrict
updates to just a few manually specified points in the loops,
then there are no test failures. This last finding suggests that
user input should be a component of DSU safety checking.

In summary, our study sheds new light on the practical
effectiveness of popular DSU safety checks. Based on our
results, we believe that a combination of manually specified
update points, automatic safety checks, and an additional
assurance argument, such as the testing strategy we used
for our experiments, will yield a practical, safe solution for
dynamic software updating.

2. DYNAMIC SOFTWARE UPDATING
This section describes the workings of modern dynamic

updating systems followed by a detailed description of the
two safety checks—Activeness Safety and Con-freeness Safety—
these systems often use to avoid incorrect updates. Despite
differences in the choice of mechanisms, many updating sys-
tems’ semantics are quite similar. As we chose to use Gin-
seng for our study, we describe it in more detail, first consid-
ering its basic mechanisms and then how it handles updates
to active code.

2.1 Basic DSU semantics and implementation
In Ginseng, an update’s effects are observed at function

calls—following the application of a patch, subsequent func-
tion calls reach the function’s most recent version. Ksplice [4],
Jvolve [23] and K42 [13] take a similar approach. In some
systems, including POLUS [7], DLpop [11], and Erlang [3],
the programmer can partially control whether a function call
should reach the newest version or the contemporaneous one.

To implement its updating semantics, Ginseng compiles
programs to use an extra level of indirection. In particular,
all direct function calls are made indirect via an introduced
global function pointer. When the Ginseng run-time system
loads a dynamic patch—which among other things contains
new and changed function definitions—it redirects changed
references to their updated versions. DLpop, Erlang, and
K42 use a similar mechanism, while POLUS, Ksplice, and
Jvolve achieve a similar effect by dynamically rewriting and
recompiling parts of the program to redirect the calls.

Ginseng also executes user-defined transformation func-
tions provided with a patch to update changed data, e.g.,
to convert values whose type definitions have changed be-
tween versions. Global data is updated by user-provided
state transformation functions at update time, and type-
level conversions are effected by type transformation func-
tions as data is accessed by the program. Such on-demand
transformation is enabled by special compilation: each ac-
cess to data whose type could change is prefaced by code to
check whether the data is up-to-date, and converts it if not.
In Erlang and DLpop, data transformation is scheduled en-
tirely by the programmer, while K42 similarly changes data
on-demand, and Jvolve changes data by piggybacking on
garbage collection. POLUS permits multiple views of data,
depending on whether it is accessed by old or new code, and
the programmer must ensure these views are coherent.

2

2.2 Updating active code
In Ginseng and the other systems we have discussed, func-

tions that are active during an update will complete execu-
tion at the same version at which they were initially invoked.
However, in some cases we might like to update an active
function so that it transitions to its new version immedi-
ately. To see why, consider the following function, which
implements a typical server’s event processing loop:

void foo (...) {
// ... loop startup code
while(1) {

req = get request ();
switch(req) {

case OPERATION 1: // ... break
case OPERATION 2: // ... break
}
}
// ... loop cleanup code
}

Suppose a subsequent version changes the loop body, e.g.,
to add additional operations to the switch statement. Once
the patch is applied, these changes will take effect the next
time foo is called. However, it could be that foo runs for a
long time without exiting. Thus, the effects of updates to
code in this long-running loop would be unduly delayed.

UpStare [16], a recently developed DSU system, avoids
this problem by allowing a running function to transition to
its new version immediately after a patch is applied, with-
out requiring that it exit first. An UpStare dynamic patch
can specify a mapping between a PC location in a changed
function’s old version and one in the new, as well as provide
a function to initialize the stack frame of the new version
based on the stack frame of the running version. At update
time, if a changed function is active at a PC specified in
the patch mapping, the transformation function is used to
initialize the stack, and then execution proceeds at the new
version’s corresponding PC. In our example, it would be
straightforward to match up equivalent PC values in the old
and new versions, since all existing event processing code is
the same and only new processing code is added. Note that,
because the loop startup code of the new version will not
have a chance to execute, the developer may need to specify
state transformation code to be run at update time to mimic
the effect of the new startup code.

Using Ginseng and other systems, we can achieve a simi-
lar effect by refactoring a long-running function into several
shorter-running ones. For example, to ensure that an update
during the event processing loop will transition to the new
version on the next loop iteration, we can extract the loop
body into a separate function. Following an update, each
subsequent call to the loop body will reach the new version.
Likewise, the loop cleanup code can be made into a new
function, allowing the new version to be reached once the
refactored loop exits. We may similarly want to extract the
continuations of functions that could be on the stack when
a desirable update point (such as this loop) is reached.

The Ginseng updating system provides code extraction
features to support such refactorings [20]. These allow de-
velopers to annotate loops or blocks of code to be extracted,
and the compiler will replace the code with a call to a func-
tion containing this code. While efficacious, the drawback
of using code extraction is that developers must anticipate

which code to extract before deploying the program. In con-
trast, UpStare has no such requirement. Nevertheless, prior
work has shown it to be largely straightforward to identify
the loops and cleanup code that should be extracted to en-
sure proper semantics [20, 18, 7]. In any case, one can think
of results using Ginseng or similar systems on an extracted
program as simulating UpStare’s behavior on the same pro-
gram without extractions.

2.3 DSU safety checks
As shown by the example in Figure 1 in the introduc-

tion, applying an update at an inopportune time can lead
to incorrect program semantics. To avoid such problems,
DSU systems may employ safety checks that automatically
restrict when a patch can be applied. The two most popular
checks, which we evaluate empirically in this paper, we dub
activeness safety (AS) and con-freeness safety (CFS).

Activeness Safety (AS). AS is simple: it prevents applica-
tion of an update if the patch changes active functions, i.e.,
functions that are either running or referenced via a return
address from the stack of a running thread [4, 13, 1, 7].

Activeness Safety usefully avoids several potential prob-
lems. First, it ensures the updated program’s execution is
type safe because, if a function f is called from a function g,
and the type of f is changed in the new version, then g must
have changed as well, to properly call it at the new type. A
similar argument can be made for accesses to values whose
representation changes, since the code generated for those
accesses must also have changed.

Activeness Safety also prevents some version consistency
errors, which result from the execution of related code at
different program versions, despite being type-correct [19].
For example, consider the following example program:

int ∗g = NULL;
void foo() {

bar ();
}
void bar() {

g = malloc (...);
∗g++;
}

int ∗g = NULL;
void foo() {

g = malloc (...);
bar ();
}
void bar() {
∗g++;
}

(a) Old version (b) New version

Here, the “related code” is the initialization of g and its
first use—initially, both occur in bar, but in the new version,
the initialization is moved to foo. If we were allow the update
to take effect at the start of (the old) foo, then the call to
bar will go to the new version, which no longer initializes
g. Thus this version-inconsistent execution would result in
a crash. The AS check avoids this problem by preventing
the update while foo is running.

On the other hand, AS will not eliminate all version con-
sistency problems. Consider the following variation of the
above example:

3

int ∗g = NULL;
void foo() {

init ();
bar ();
}
void init () {
}
void bar() {

g = malloc (...);
∗g++;
}

int ∗g = NULL;
void foo() {

init ();
bar ();
}
void init () {

g = malloc (...);
}
void bar() {
∗g++;
}

(a) Old version (b) New version

An update just before the call to bar has the same neg-
ative effect as the earlier example, but in this case it will
be allowed by AS, because foo has not changed between the
versions. We found examples like this in our experiments
(Section 6).

Con-freeness safety (CFS). AS can sometimes be too re-
strictive. For example, imagine a server in which main parses
the command-line options and concludes by calling a func-
tion like foo from Section 2.2 to start processing events. In
a subsequent version, suppose main adds support for new
command-line options. Even if the new option-processing
code would have no effect on the updated execution, nev-
ertheless the update will be indefinitely precluded because
main is always active.

As a remedy to this problem, Stoyle et al. [22] proposed
a more relaxed safety check called con-freeness. This check
allows updates to active functions, but only if it can prove
those functions will not subsequently call functions or ac-
cess any data whose type signatures have changed. In other
words, any code active on the stack must be free of con-
crete uses (function calls, dereferences, field accesses, etc.)
of definitions that have changed in a type-incompatible way;
hence the name, con-freeness. This restriction ensures that
updated executions will always be type-correct. For exam-
ple, in Figure 1, CFS would allow the update while bar is
running, but only after it has called foo.

Ginseng implements CFS using a combination of static
and dynamic analysis. We note one important implemen-
tation detail. In Ginseng, a program polls the run-time
system to see if a dynamic update is available by invok-
ing the function DSU update(). If an update is available,
and is compatible with the CFS check, it is applied at this
point. The developer has the choice of inserting calls to
DSU update() manually, or having the compiler insert them
automatically, e.g., one prior to each non-system function
call in the program. Unless specified otherwise, we assume
the latter approach in our examples.

While very useful, CFS’s extra permissiveness creates op-
portunities for version consistency errors. Both of the exam-
ples of version consistency problems given above are possible
with CFS, while only the second is possible with AS. More-
over, CFS may also introduce version consistency errors be-
cause it allows old code to still execute after an update.

The question we aim to address in this paper is: how often
in practice do these problems arise? In other words, how
often are AS and CFS too permissive, and/or too restrictive,
when applying updates to practical programs? To answer
this question we developed a methodology for systematically
testing dynamic updates, which we describe next.

3. TESTING DYNAMIC UPDATES
To evaluate the effectiveness of automatic DSU safety

checks, we need to establish which program executions in
which an update takes place can be deemed correct, and
which cause misbehavior. For purposes of our experiments,
we do so using testing: if we update the old version in the
middle of running a system test and the test still passes then
we deem the update as correct; otherwise it is incorrect.
While testing is an incomplete measure of correctness, sys-
tem tests cover the most important program behaviors, and
provide an easy-to-measure, practical assessment of whether
an updated execution makes sense.

3.1 Testing Procedure
We can state the dynamic update testing problem as fol-

lows. Let P0 and P1 be two program versions, and let π
be a patch that updates P0 to P1. To dynamically test π,
we must run P0, apply π at the allowable update points,
and then decide whether the ensuing behavior is acceptable.
The challenge is determining what tests to execute, when to
apply π, and how to check the result.

In what follows, we presume we can specifically enumerate
those points at which a particular patch can be applied dur-
ing a program’s execution. In DSU systems like DLpop [11]
and Ginseng [20], programmers can provide a whitelist of
program locations (e.g., line numbers) that are valid for an
update, while Lee [14], Gupta et al. [10], Chen et al. [7], and
others propose a blacklist (e.g., by indicating that certain
functions must be inactive prior to updating). We define
an update point to occur each time the program reaches a
whitelisted or non-blacklisted location such that automatic
safety checks (if any) are satisfied for that point and the
given patch. In Ginseng, the whitelist is defined for the
original program when it is deployed: updates can only oc-
cur at calls to a DSU update() function, and then only if
those that satisfy Ginseng’s CFS check.

Our approach to update testing is to start with the sys-
tem test suites for P0 and P1 and from them generate up-
date tests for a patch π. How we choose tests from the test
suites will be described shortly, and for now we assume P0’s
execution is deterministic for the chosen tests; we discuss
non-determinism in Section 3.3.

For a deterministic test t, we can unambiguously enumer-
ate the update points that arise during the test’s execution.
We define tiπ to be the update test that executes P0 on t,
applying π at the ith update point. To run such tests, we
can easily modify the DSU run-time to delay patch appli-
cation to the ith update point reached. Since t presumably
terminates, there will be a finite number of induced update
tests tiπ for a fixed π.

Now we describe how we generate update tests from sys-
tem tests. Let Ti be a suite of system tests for Pi, for
i ∈ {0, 1}. All t ∈ (T0 ∩ T1) should pass for both P0 and P1,
so all tiπ for all i are reasonable update tests. On the other
hand, tests t ∈ (T1−T0) are meant to test functionality that
is new to P1, else t would have also been in T0. (If this is not
the case, we can treat such a test as if it were in T0 as well.)
For such a test, not all tiπ for all i will be reasonable update
tests. To see why, suppose P0 is an FTP server, and P1

adds support for a new command qux. If t tests the proper
functioning of qux, test tiπ will fail if update point i arises
too long after t sends the qux command to the server.

To address this situation we construct a hybrid test amen-

4

able to execution on either P0 or P1. In particular, we exe-
cute test t with P0 and run it to completion without perform-
ing an update. We observe P0’s output, and then manually
construct the hybrid test t′ that modifies t to also allow this
output. Thus t′ will be considered as having passed if its
output corresponds to the output of either P0 or P1. We
then generate update tests for t′ as above. At the tester’s
discretion, a hybrid test could also specify behaviors that as
correct despite not exactly matching either P0 or P1.

If P0 responds gracefully to test t, the hybrid test t′ clearly
makes sense. However, suppose t tests a bug fixed in P1 that
causes P0 to crash. In this case we would deem the hybrid
test based on t successful if the program either crashes or
produces the correct output. While reasonable, the hybrid
test may misattribute a crash to the expected behavior of
P0, when it could instead be due to an incorrectly written
or ill-timed patch.

We can guard against this possibility in two ways. First,
we can gain confidence in the patch overall through other
tests in which the outcome is the same in both versions.
Second, we can make sure that the first update point tested
for t (i.e., induced test t1π) always produces P1’s behavior
(since the overall execution should be identical to P1), and
then examine the execution of the first series of crashing
update tests manually (e.g., via tracing) to ensure that the
crash is not due to the update itself.

The last category of tests are those in T0 − T1, which are
likely tests for deprecated functionality. In these cases, we
might omit the test, since it does not apply to P1. Alter-
natively, if P1 handles deprecated features gracefully, e.g.,
it issues warning messages for unsupported commands, we
could create hybrid tests for these cases as well.

3.2 Test suite minimization
The procedure described in Section 3 lets us systemati-

cally derive update tests from existing system tests. Unfor-
tunately, we have found this procedure vastly multiplies the
number of tests to run. For example, our experiments with
roughly 100 system tests applied for 10 patches of OpenSSH
yielded more than 8 million update tests. We mitigate this
increase in test suite size by developing an algorithm that
eliminates all provably redundant tests, sometimes yielding
a dramatic reduction in test suite size.

To illustrate our algorithm, consider the following code,
assuming that f, g, and h call no other functions:

1 void main() { DSU update();
2 f ();
3 DSU update();
4 g ();
5 DSU update();
6 h(); }

Suppose a dynamic patch π1 to this program contains only
a modification to function h. Then whether the update is
applied at line 1, 3, or 5, the behavior of the program is the
same: the calls to f and g will be to the old version, which
is the same as the new version, and the call to h will be to
the new version. Thus, for patch π1, update points {1, 2, 3}
form an equivalence class, and we need only test one of the
three to cover the whole class.

However, suppose dynamic patch π2 modifies f, g, and h.
In this case, none of the update points are equivalent. If we
update at line 1, we will call the new versions of all three
functions. if we update at line 3, we will call the old version

Expressions e ::= c | x | f(e1, ..., en) | s; e
Statements s ::= x := e | s1; s2 | skip

| if e then s1 else s2 | update

Heap, patch H,π ::= · | b,H
Binding b ::= x 7→ c | f 7→ λ(x1, ..., xn).e

Traces ν ::= ν; ν | skip | read(x, c) | write(x, c)
| call(f(c1, ..., cn))
| ret(f(c1, ..., cn))
| noupdate | update(π)

Figure 2: Syntax of programs and event traces

of f and the new versions of g and h. If the update happens
at line 5, we will call the old f and g and the new h. All of
these executions may produce reasonable behavior, but we
have to test them to find out.

Formal language. We present our algorithm in terms of
the small formal language in Figure 2, meant to model our
actual implementation described in the next section. In
this language, expressions consist of constants c (e.g., inte-
gers, floating point numbers, etc.), variables x, function calls
f(e1, ..., en), or sequences s; e, which evaluate s and then e,
returning the result of the latter. Statements consist of as-
signment x := e, sequencing s1; s2, branching if e then s1 else s2
(which executes s1 if e evaluates to a non-zero integer, and
s2 otherwise), and the no-op skip. The statement update
identifies a program point where a dynamic update is per-
mitted to take place if a patch is available, akin to Ginseng’s
DSU update() calls described above. We can apply our al-
gorithm to other dynamic updating approaches as discussed
in Section 3.2.1.

We model a program as a pair (H, s), where H is a heap
containing bindings for functions and global variables, and s
is the statement to be executed. A binding b maps an identi-
fier to a constant c or to λ(x1, ..., xn).e, which denotes a func-
tion with arguments x1 to xn and body e. When the function
is called it returns the result of evaluating e with the formal
parameters substituted by the actual arguments. A patch π
is also a set of bindings, just like the heap. When a patch is
applied, its bindings add to or overwrite the corresponding
bindings in the heap. Roughly speaking, we can model a C
program in this language as (H, fin := main(c1, ..., cn)) where
H contains the program’s initial function and global variable
bindings, the ci represent the command-line arguments, and
fin receives the final result.

We express the operational semantics of this language as a
relation (H, s) −→ν H ′, where H and s are the current heap
and statement, H ′ is the heap after s has been completely
executed, and ν is an event trace, described below. We also
need a sibling judgment (H, e) −→ν (H ′, c) for expressions,
where c is the result of computing the expression e.

The label ν describes an event trace induced by the state-
ment or expression’s execution. Event traces are defined at
the bottom of Figure 2. Each event corresponds to the exe-
cution of one program construct, and individual events are
concatenated using the ; operator. For example, if plus is a
function that returns the sum of its arguments, then

((x 7→ 4, plus 7→ ...), x := plus(x, 5)) −→ν (x 7→ 9, plus 7→ ...)

5

fun-call
H(f) = λ(x1, ..., xn).e

(H, e1) −→ν1 (H1, c1)...(Hn−1, en) −→νn (Hn, cn)
e′ = e[xn 7→ cn] for all n (Hn, e

′) −→ν (H ′, c)
ν′ = ν1; ...; νn; call(f(c1, ..., cn)); ν; ret(f(c1, ..., cn))

(H, f(e1, ..., en)) −→ν′
(H ′, c)

upd-skip

(H, update) −→noupdate H

upd-taken
H ′ = H[x 7→ π(x)] for all x in dom(π)

(H, update) −→update(π) H ′

expr-seq

(H, s) −→ν1 H ′ (H ′, e) −→ν2 (H ′′, c)

(H, s; e) −→ν1;ν2 (H ′′, c)

stmt-seq

(H, s1) −→ν1 H ′ (H ′, s2) −→ν2 H ′′

(H, s1; s2) −→ν1;ν2 H ′′

asgn
(H, e) −→ν (H ′, c) H ′′ = H ′[x 7→ c]

(H,x := e) −→ν H ′′

cond-true
(H, e) −→ν1 (H ′, c) c 6= 0 (H ′, s1) −→ν2 H ′′

(H, if e then s1 else s2) −→ν1;ν2 H ′′

cond-false
(H, e) −→ν1 (H ′, 0) (H ′, s2) −→ν2 H ′′

(H, if e then s1 else s2) −→ν1;ν2 H ′′

skip

(H, skip) −→skip H

Figure 3: Operational rules

where ν is

read(x, 4); call(plus(4, 5)); ...; ret(plus(4, 5)); write(x, 9)

That is, starting out with a heap that maps x to 4 and plus to
an appropriate function, executing x := plus(x, 5) produces
a heap that maps x to 9. The execution also yields an event
trace ν indicating x was read, the function plus was called,
its body executed (...), the function returned, and then x was
written. We discuss update(π) and noupdate events shortly.

Figure 3 gives the three most interesting operational se-
mantics rules for our language. The other rules are straight-
forward, and are omitted due to lack of space.

The fun-call rule describes the semantics of expression
f(e1, ..., en). First, we look up f ’s definition in H. Next,
we evaluate arguments e1 through en. Then we set e′ to
be e (the body of f), but with all occurrences of its formal
parameters xn replaced by the actual arguments cn. We
then evaluate e′ to produce c, which is returned by the call.
The trace ν′ computed by the function call composes the
traces produced by evaluating each of the arguments along
with the trace produced by evaluating the function’s body,
delimited by call(f(...)) and ret(f(...)) events.

conflict(π, skip) = false
conflict(π, call(x(. . .)) = (x ∈ dom(π))
conflict(π, ret(. . .)) = false
conflict(π, read(x, . . .)) = (x ∈ dom(π))
conflict(π,write(x, . . .)) = (x ∈ dom(π))
conflict(π,noupdate) = false
conflict(π, update(π′)) = (dom(π) ∩ dom(π′) 6= ∅)
conflict(π, ν1; ν2) = (conflict(π, ν1) ∨ conflict(π, ν2))

—

gentests(π,N,U, ν) = (N,U)
where ν 6= (ν1; ν2) ∧ ν 6= noupdate ∧ ¬conflict(π, ν)

gentests(π,N,U, ν) = (N,U ∪ {N})
where ν 6= (ν1; ν2) ∧ ν 6= noupdate ∧ conflict(π, ν)

gentests(π,N,U,noupdate) = (N + 1, U)
gentests(π,N,U, ν1; ν2) =

let (N ′, U ′) = gentests(π,N,U, ν1) in gentests(π,N ′, U ′, ν2)

Figure 4: conflict and gentests functions

The semantics of update are non-deterministic, allowing
us to either skip or take an update. In the former case we
apply upd-skip, which treats update like skip but produces
a noupdate event. In the latter case we apply upd-taken,
which produces a new program H ′ with bindings in π re-
placing or adding to those in H. For example, if given (H, s)
where s is f(2); update; f(3), then the first call to f would use
H(f), and if we reduced update using upd-taken, then the
second call to f would use H ′(f). Note that we have not
specified where π comes from in this rule, as that does not
affect our formal reasoning about this system; in practice,
we choose π and the position in the trace at which to apply
upd-taken before we execute the test.

We can now formally define trace equivalence.

Definition 3.1. Traces ν and ν′ are π-equivalent for (H, s)

iff we have (H, s) −→ν H ′ and (H, s) −→ν′
H ′ where

ν = ν1; update(π); ν2; noupdate; ν3
ν′ = ν1; noupdate; ν2; update(π); ν3

The key here is that H,H ′, s, ν1, ν2, and ν3 are exactly the
same in both ν and ν′. This means that they read and write
the same values to and from the same variables, call the same
functions with the same parameters, etc. The only difference
is when the update is actually applied, but obviously this
difference has no effect on the program’s execution.

Finding equivalent update points. Let t = (H, s) be a
system test, i.e., the program code in H with a test driver
s. Then if we run t, the resulting trace νt contains some
number n of noupdate events, which in turn induce a set
of update tests t1π . . . t

n
π. Our goal is to determine which

of these update tests produce equivalent traces for a given
patch π. Then we can run a single representative test from
each equivalence class while retaining full update coverage.

We compute equivalent update points by applying the
gentests function in Figure 4 to the original trace νt. The
gentests function invokes conflict(π, ν), which returns a bool-
ean indicating whether actions in ν conflict with patch π.
More precisely, if this function returns false, then applying
π any time during a run that generates ν will not affect the
generated trace (and therefore will not affect the program’s
behavior). If the function returns true, then applying the
patch may affect the program’s behavior.

6

Function conflict(π, ν) is defined at the top of Figure 4.
Given a call, read, or write to x, there is a conflict with
π if and only if x ∈ dom(π). There are no conflicts with
skip or noupdate, and there are no conflicts with ret(. . .)
because in our updating model an active function is not
immediately changed by an update—its next call will be to
the new version, but the current code will continue executing
as-is. Given a different update with patch π′, there is a
conflict if and only if π′ and π affect overlapping functions
or variables (each update test will perform one update per
run, making this case academic). Finally, a patch π conflicts
with trace ν1; ν2 if it conflicts with either ν1 or ν2.

The bottom of Figure 4 defines gentests(π,N,U, ν), which
uses conflict() to compute a minimal set of update points
for ν. Here π is the patch, N is the index of the last-seen
noupdate event, U is the set of indexes of update points to
test, and ν is the trace (which should contain no update(. . .)
events). The gentests() function returns a pair (N ′, U ′) with
the new index N ′ of the most recently seen update point and
new set U ′ of update point indexes to test. Thus, given a
complete trace νt from a system test t, we compute

(N,U) = gentests(π, 0, ∅, (νt; noupdate))

The set U defines the minimal set of update points that
achieve 100% update coverage; we ignore i = 0, if it happens
to be in U , since 0 represents the beginning of the trace and
not a proper update point.

In the definition of gentests() the first clause handles the
case when ν is not a sequence, is not an update point, and
does not conflict with π. In this case, the output sets N and
U are the same as the inputs. The second clause is similar,
but handles the case when the event does conflict with π. In
this case, if the update π had been applied before the event ν
took place, its outcome might be different. As such, we add
the index N of the most recent update point to our set U .
The third clause increments the counter N when it sees a
noupdate event. Finally, the last clause simply processes the
two subtraces ν1 and ν2 in sequence.

As an example, consider the trace

ν = noupdate; call(f()); noupdate; call(g()); noupdate; call(h())

corresponding to the execution of the example from the be-
ginning of Section 3.2. If we run gentests(π, 0, ∅, (ν; noupdate))
where dom(π) = {f}, our outcome will be U = {1}, as fol-
lows. When we see the first noupdate, we increment N = 0
to N = 1. Then we see the call to f , where conflict(f, π) =
true. As such, we add N = 1 to U . Subsequent occurrences
of noupdate increment N , but no further elements are added
to U because neither call(g()) nor call(h()) conflict with π.
On the other hand, if dom(π) = {f, g, h}, then all three calls
would conflict with π, and thus N would be added to U in
each case, resulting in U = {1, 2, 3}.
Correctness. We have proven our algorithm correct. Given
a system test t = (H, s), let ν denote the trace produced by
executing t with no updates. Also let νiπ denote the trace
produced by induced update test tiπ.

Theorem 3.2 (Correctness). If (H, s) −→ν H ′ and
gentests(π, 0, ∅, (ν; noupdate)) = (N,U), then for all i 6∈ U ,
there exists j ∈ U such that νiπ = νjπ.

The proof of this proposition depends crucially on the
proof of the following lemma, which shows that if a patch

does not conflict with a trace, then applying the patch does
not affect the generated trace.

Lemma 3.3. Let H, s, e, ν, π be such that ¬conflict(ν, π)
and either (H, s) −→ν H ′ or (H, e) −→ν (H ′, c). Let H0 =
H[x 7→ π(x)] for all x ∈ dom(π). Then we have (H0, s) −→ν

H ′0 or (H0, e) −→ν (H ′0, c), respectively, with H ′0 = H ′[x 7→
π(x)] for all x ∈ dom(π).

The proof is by induction on evaluation derivations.

3.2.1 Application to full DSU systems
The gentests() algorithm can accommodate a variety of

dynamic updating systems. The proof of Theorem 3.2 never
refers directly to the definition of the judgment (H, s) −→ν

H ′, relying entirely on simple properties of traces and Lem-
ma 3.3. Thus, to apply gentests() to a particular DSU sys-
tem, we need only define conflict() appropriately and then
prove that Lemma 3.3 holds.

The semantics above models DSU systems like Ginseng [20]
and DLpop [11], which allow updates to running functions
but delay the effect of those updates until the next time the
function is called (this is captured precisely in the fun-call
rule in Figure 3). This semantics also effectively captures
the behavior of systems that permit only updates to inac-
tive functions, such as Ksplice [4], OPUS [1], and K42 [13].

We can extend gentests to support other updating seman-
tics as well. We consider three possible extensions next.

Updating type definitions. In the full Ginseng, patches
can also change type definitions, where accesses to values of
updatable type occur via special wrapper functions. When
an update occurs, subsequent calls to wrappers first con-
vert the accessed value using a transformer function. Thus
we must trace calls to these functions and consider calls con-
flicting when a patch modifies the respective type definition.
Systems like Jvolve [23] and POLUS [7] provide similar sup-
port and would require similar changes.

Immediate updates to active functions. Systems like Up-
Stare [15] allow updating some active functions immediately,
which is to say that if the function is running, it will immedi-
ately transition to the new version, without exiting first. Im-
mediate updates can be modeled in our semantics by adding
labels L to program statements and interpreting a patch π so
that if a function f is updated, then when execution reaches
label L in f , we begin executing the code starting at L in
π(f).

To perform test reduction for such a system, we add trace
events to be emitted at labeled statements. For example,
we would emit an event labelf (L) when we begin executing
a block in the function f labeled with L and this event would
conflict with a patch π when f ∈ dom(π).

Versioned calls. Systems like POLUS [7] and UpgradeJ [5]
allow explicitly versioned function calls. For example, we
could extend our language with the syntax [f](e1, ..., en) to
denote the call to f should be to the same version as the
code making the call, rather than the most recent version.
Explicitly versioned calls, e.g., [f]4(e1, ..., en) indicating that
version 4 of f should be called, are also possible. In this case,
we can extend our definition of traces to include explicitly
versioned function calls call([f](c1, ..., cn)) (and likewise for
returning from a call), while leaving conflict() as is; i.e., ex-
plicitly versioned calls never conflict with a patch, since the
call will always execute an extant code version, and thus be

7

unaffected by the update. Note that if that extant code in-
cludes normal calls, which will invoke the newest version, the
processing of the event trace will identify these as conflicting
and identify appropriate update tests.

3.2.2 Reduction Effectiveness
Figure 5 illustrates the effectiveness of our reduction algo-

rithm for our actual implementation (described next) when
testing our benchmark servers. In each column, we show the
original count to the left of the arrow, the minimized count
to the right of it, and the percent reduction in parenthe-
ses. The All Pts column shows the reduction for the full set
of update points that are reached during the execution of
each application’s test suite. Overall, 95% of update points
from OpenSSH and 86% points from vsftpd could be elimi-
nated. This is significant because the initial number of tests
was very large: over 8M for OpenSSH and over 1.7M for
vsftpd. For every patch to both applications, the reduction
was over 90% with the exception of the 6→7 patch to vsftpd,
for which only a 14% reduction was possible. This particu-
lar patch included complex state transformation code that
accesses a large number of global variables. When a variable
may be read or written during state transformation, update
points before and after an access to that variable in the pro-
gram trace cannot be considered equivalent. In general, the
amount of reduction is roughly inversely proportional to the
size of the patch and the particular tests being run.

In practice, it is only necessary to test update points that
are allowed by the safety check in use. The CFS and AS
columns show the number of points allowed under these
models and the further reduction achieved by our algorithm.
The combination yields a significant reduction: the maxi-
mum number of tested points to achieve full update cover-
age a patch to either application was 5,467 for patch 8→9 of
OpenSSH under CFS and 4,141 for patch 7→8 of OpenSSH
under AS.

The manually introduced update points are a small frac-
tion of those in All, and we found the reduction strategy
to be ineffective at further reducing these points. This is
because the manually inserted update points occur once per
iteration of the long-running loops of the program and so
many function calls may occur between iterations, increas-
ing the chances of a conflict. In effect, we may view manual
update point selection as a highly-effective form of reduction
in itself as no OpenSSH patch would require more than 870
tests of manual points and no vsftpd patch would require
over 82 for full update coverage.

Our reduction algorithm was critical in enabling us to
perform our experiments. As we note in Section 4, testing
of these reduced points for OpenSSH still required approxi-
mately 600 CPU hours to complete.

3.3 DSUTest Implementation
We extended Ginseng to implement our testing frame-

work. Our extended implementation, called DSUTest, works
in two phases, illustrated in Figure 6(a) and (b), respec-
tively. In the first phase, the DSUTest compiler instruments
the program to log relevant events to a trace file, and then
processes each file to find the reduced set of update points
to test. In the second phase, the instrumented program re-
plays a given test once per update point identified during
the test’s reduction, and tabulates the results.

The implementation was largely straightforward, except

Program
Source

Instrumenting/
updating
compiler

Tracing/
updateable
executable

Test 1

Trace 1

Test n

Trace n

...

...

Update point
minimization

Update
set 1

Update
set n...

(a) Instrumentation and trace gathering

Tracing/
updateable
executable

Test i

Patch j

Update
point k

Pass/
fail

Trace and
update set i

(b) Running a test case

Figure 6: DSU testing framework architecture

for two wrinkles: handling programs that fork child pro-
cesses that themselves must be updated, and coping with
non-determinism that arises during tracing.

Handling multiple processes. So far, we have assumed we
could identify an update point by its position in the trace.
However, this approach does not accommodate server pro-
grams that fork independent subprocesses that could them-
selves be updated. Even when forked processes do not com-
municate with each other in an interesting way, their logging
output will be interleaved in the shared log file, and the par-
ticular interleaving can vary from run to run.

To compensate, we include the current process number
when logging events, and count update points relative to
a particular process. Since OS-supplied process identifiers
vary between runs, we use our own process numbering scheme,
being careful to deterministically choose numbers that are
globally unique among related processes. We log the parent
and child at each fork, and when we reduce a child process’s
trace, we may equate some of its initial update points with
the parent’s update point before the fork, if there were no
intervening conflicting events in the child.

Non-determinism. Our basic methodology presumes that
tests are deterministic. However, most programs, including
our benchmark servers, exhibit some non-determinism, and
thus different runs of the same test may produce slightly dif-
ferent traces. We have encountered non-determinism arising
from three main causes. The first is I/O handling by the OS.
The main connection loops of our servers block until they
receive a command on a socket, carry out the appropriate
behavior, and then continue with the loop. Sometimes the

8

Update All Pts CFS AS Manual

O
p
e
n
S
S
H

0 → 1 580,871 → 31,791 (95%) 68,044→ 3,687 (95%) 35,314→ 3,027 (91%) 566→ 566 (0%)
1 → 2 705,322 → 1,795 (∼100%) 705,322→ 1,795 (∼100%) 587,578→ 1,717 (∼100%) 630→ 592 (6%)
2 → 3 638,720 → 63,011 (90%) 75,307→ 5,454 (93%) 20,902→ 2,353 (89%) 568→ 568 (0%)
3 → 4 772,198 → 4,324 (99%) 772,198→ 4,324 (99%) 638,803→ 3,775 (99%) 783→ 770 (2%)
4 → 5 773,086 → 27,399 (96%) 110,633→ 4,592 (96%) 21,343→ 1,564 (93%) 782→ 782 (0%)
5 → 6 878,235 → 17,398 (98%) 130,000→ 1,292 (99%) 111,950→ 1,723 (98%) 860→ 841 (2%)
6 → 7 879,668 → 47,092 (95%) 96,183→ 4,568 (95%) 44,278→ 2,139 (95%) 859→ 859 (0%)
7 → 8 918,717 → 89,601 (90%) 80,070→ 3,925 (95%) 100,854→ 4,141 (96%) 850→ 850 (0%)
8 → 9 973,364 → 34,293 (96%) 261,885→ 5,467 (98%) 61,724→ 2,070 (97%) 868→ 823 (5%)

9 → 10 933,514 → 52,356 (94%) 121,337→ 3,424 (97%) 61,051→ 2,891 (95%) 833→ 833 (0%)
Total 8,053,695 → 369,060 (95%) 2,420,979→ 38,528 (98%) 1,683,797→ 25,400 (98%) 7,599→ 7,484 (2%)

v
sf

tp
d

0 → 1 210,142 → 26 (∼100%) 210,142→ 26 (∼100%) 102,307→ 26 (∼100%) 80→ 13 (84%)
1 → 2 210,142 → 516 (∼100%) 90,073→ 514 (99%) 69,775→ 166 (∼100%) 80→ 67 (16%)
2 → 3 215,223 → 1,122 (99%) 215,223→ 1,122 (99%) 55,555→ 553 (99%) 80→ 67 (16%)
3 → 4 220,564 → 3,866 (98%) 220,564→ 3,866 (98%) 37,265→ 1,912 (95%) 80→ 80 (0%)
4 → 5 218,586 → 19,893 (91%) 4,478→ 1,196 (73%) 2,123→ 301 (86%) 80→ 80 (0%)
5 → 6 223,098 → 15,910 (93%) 24,924→ 3,485 (86%) 67,330→ 3,567 (95%) 80→ 67 (16%)
6 → 7 233,199 → 200,653 (14%) 3,737→ 1,433 (62%) 7,437→ 2,742 (63%) 82→ 68 (17%)
7 → 8 222,296 → 10,371 (95%) 1,993→ 353 (82%) 3,098→ 275 (91%) 80→ 80 (0%)
Total 1,753,250 → 252,357 (86%) 771,134→ 11,995 (98%) 344,890→ 9,542 (97%) 642→ 522 (19%)

Figure 5: Update point reduction

server can wake unpredictably though no I/O is available.
In this case, the server “stutter steps” back to the top of
the loop, but in doing so may call functions or access data,
affecting the trace. Second, the exact timing of any signal
handlers can vary between runs. Thus, trace events that oc-
cur within a signal handler could be spliced into a trace at
different positions in different runs. Finally, some common
functionality depends on the environment, such as the cur-
rent system time, random numbers, and for vsftpd, process
IDs and memory addresses used as hash keys.

To keep update tests consistent with the initial trace, we
check that each update test trace matches the original trace
up to the chosen update point, and replay it if not. How-
ever, this approach fails to converge in the presence of highly
non-deterministic events, e.g., the timing of signal handling
and, in some cases, the occurrence of loop stutter steps. To
compensate, we designate ignore regions of code in which
the test trace need not match the original and within which
updates are not tested. We still note accesses to changed
code and data within ignore regions to ensure that update
points separated by a region are not erroneously equated.
We use ignore regions to skip stutter steps, signal handlers,
and similar events. We use as few ignore regions as possible
to avoid missing test failures due to untested update points
within these regions.

Note that we currently limit our focus to single-threaded
programs, making no attempt to account for non-determinism
that would arise from thread scheduling. We may explore in-
tegrating our framework with techniques for systematically
testing under different thread schedules [17, 21] to handle
multi-threading.

4. EXPERIMENTAL SETUP
Using our testing framework, we set out to empirically

measure the permissiveness and restrictiveness of the AS and
CFS checks. In this section we describe our experimental
setup: which applications we considered, how we modified
the applications to make them amenable to update testing,
and which test suites we used.

∆ to next ver
Version LoC Tsts Sig Fun Type

O
p
e
n
S
S
H

0 3.5p1 46,735 75 3 98 5
1 3.6.1p1 48,459 75 0 6 0
2 3.6.1p2 48,473 76 5 238 11
3 3.7.1p1 50,448 91 0 18 0
4 3.7.1p2 50,460 91 13 172 10
5 3.8p1 51,822 104 0 24 1
6 3.8.1p1 51,838 104 6 257 10
7 3.9p1 53,260 104 4 179 12
8 4.0p1 56,068 105 0 72 3
9 4.1p1 56,104 104 10 157 7

10 4.2p1 57,294 (Not patched)

v
sf

tp
d

0 2.0.0 13,048 13 0 6 0
1 2.0.1 13,059 13 1 12 0
2 2.0.2pre2 13,114 13 0 21 0
3 2.0.2pre3 14,293 13 0 76 0
4 2.0.2 16,970 13 0 10 1
5 2.0.3 12,977 13 0 25 1
6 2.0.4 14,427 14 0 100 2
7 2.0.5 14,482 13 0 93 2
8 2.0.6 14,785 (Not patched)

Figure 7: Version and patch information

Test Applications. We tested updates to two long-running
server applications: OpenSSH, a widely used SSH server,
and vsftpd, a popular FTP server. Figure 7 summarizes
the versions of OpenSSH and vsftpd that we consider. We
largely re-use the dynamic patches and program versions
used by Neamtiu et al. in their Ginseng work [20], with
some changes that we describe in the next section. Our
OpenSSH releases range from Oct. 2002 to Sept. 2005, and
vsftpd releases range from July. 2004 to Feb. 2008. To make
it easy to refer to the versions in the subsequent discussion,
we number them starting from 0. For each version, Figure 7
lists the total lines of code (measured with sloccount), the
number of update tests (drawn from unmodified and hybrid
system tests, described below), and the number of function

9

signature changes, function body changes, and named type
changes (structs, unions and typedefs), that are required to
update to the next version.

Update point selection. As mentioned earlier, updates can
take effect at calls to DSU update(), where these calls can be
inserted manually or automatically. To consider the effec-
tiveness of AS and CFS, we direct Ginseng to automatically
insert a call to DSU update() prior to each function call, and
systematically test the outcome of performing an update at
each of these points. We refer to this set of dynamic update
points as All Pts. We separately consider the subset of these
update points that satisfy the AS and CFS safety checks.

As a last point of comparison, we consider the results of
update tests with manually selected update points. In par-
ticular, when preparing vsftpd and OpenSSH to support up-
dating, Neamtiu et al. chose to place a single DSU update()
at the beginning of the connection loop. They argued that
updates that occur at quiescent points, i.e., places where
there are no in-flight operations, are more likely to suc-
ceed than arbitrarily chosen points [20]. We decided to
test this claim by seeing whether our tests would pass for
these points, and determine whether these points would per-
mit updates often enough. In addition to the points ad-
vocated by Neamtiu et al., we added an additional man-
ual update point into each per-session command loop of the
applications—some patches we consider add new command
handling, and we wanted to allow those to be updated during
an active session. OpenSSH provides two distinct command
loops to handle different ssh protocol versions, while vsftpd
uses only one.

Program and patch modifications. The program code and
patches we received from Neamtiu et al. [20] had been pre-
pared by extracting the connection loop and its cleanup
code, as described in Section 2.2, so that each connection
loop iteration would execute the most recent code. We ad-
ditionally extracted the command loops and cleanup code
to ensure a similar semantics; Neamtiu et al. did not do this
because they did not consider updates during command pro-
cessing.

After some preliminary testing, we discovered a significant
problem with the AS check. Recall that AS forbids updates
to functions that are on the stack. It turns out that this
restriction forbids all updates from being applied to Open-
SSH and vsftpd, because they all include changes to main,
which is always on the stack. Even excluding main, we found
that AS very often forbids updates within the command
loop. Schematically, the command loop is reached through
a chain of function calls, starting from main, that look like
the following:

void f () {
... // startup code

g (); // call next function in the chain ;
// last one is the loop

rest f (); // (extracted) continuation code
}

In many cases updates change the“startup”code in the func-
tions in this chain (i.e., the code before the call to g() in the
schematic), and thus AS would prevent those updates from
being applied during the command loop. However, upon
manual inspection we found that the startup code usually
bore no tight dependence on the loop code, nor was it ever

reexecuted. Therefore, we felt it reasonable, for the pur-
poses of obtaining interesting results, to relax the AS check
by also extracting the startup code, so that it is no longer on
the stack when the loop executes. In actual fact, we opted
to leave the code as-is and simulate the extraction: When
we post-process the All Pts data set to determine which up-
dates would be allowed by AS, we permit updates within
the command loop even if they modify startup code in the
functions leading up to the loop.

We also found the CFS check to be unreasonably restric-
tive in one instance. To implement CFS, Ginseng uses a
static analysis. Unfortunately, this analysis over-approximates
the set of possible calls through a table of function pointers,
and as such spuriously forbids updates within the command
loop as well. Rather than strengthen the analysis to avoid
this imprecision, we performed some additional code extrac-
tions so that updates within the command loop would pass
the CFS check. These extractions have no bearing on the
behavior of the updated execution, and serve merely to over-
come the conservatism of the analysis.

Test Suites. We constructed update tests for OpenSSH from
the suite of system tests that are distributed with OpenSSH’s
source code. Tests launch a server and communicate with it
via an ssh client, exercising various connection parameters
and/or executing remote commands, and judging success/-
failure on return codes and command output. We found that
all supplied tests for version n also pass for version n + 1.
Thus, we used the full suite of version n’s server tests to
develop update tests for the patch to version n+ 1.

We made two minor changes to OpenSSH’s test suite for
efficiency. First, we reduced the timeout period of the login-
timeout test, which tests that a server terminates its con-
nection if a client takes too long to log in. Second, we split
large tests with orthogonal components (e.g., the try-ciphers
test) into many smaller tests, to reduce total testing time
and permit testing in parallel.

As vsftpd is not distributed with any system tests, we con-
structed 13 tests for core FTP operations, including connect-
ing, uploading and downloading files in binary and ASCII
formats, and navigating remote FTP directories. These tests
apply to all versions of the server, and exercise a significant
portion of its functionality.

Running Tests. For each test execution, we record whether
the test passed or failed. We mark a run as failing if either
the system test itself reports a failure, if the server unexpect-
edly terminates during the test, or if the test times out. We
set the timeout for each run as the time required to gather
the initial trace plus 10 seconds.

To compile complete testing results for a program and a
patch, we disabled all safety checks and used DSUTest to
gather results for applying the patch at each update point
reached in the test suite. We utilized our test reduction algo-
rithm (Section 3.2) to determine which update tests should
actually be performed and then scaled the results back up
to the full set of points. Having done this, we then used
the traces produced during testing along with information
about the patch contents to retroactively determine which
points would be allowed under each safety check.

We ran our experiments for OpenSSH in the “cloud” using
60 Amazon EC2 basic instances [8], each of which provides
the equivalent of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor, 1.7 GB memory, and 160GB storage. All Open-

10

Update All Pts CFS AS Manual
Failed Total Failed Total Failed Total Failed Total

O
p
e
n
S
S
H

0→1 19,715 580,871 0 68,044 0 35,314 0 566
1→2 0 705,322 0 705,322 0 587,578 0 630
2→3 306,965 638,720 1,688 75,307 4 20,902 0 568
3→4 0 772,198 0 772,198 0 638,803 0 783
4→5 565,681 773,086 609 110,633 380 21,343 0 782
5→6 10,703 878,235 0 130,000 0 111,950 0 860
6→7 163,333 879,668 44,461 96,183 110 44,278 0 859
7→8 11,380 918,717 1 80,070 1 100,854 0 850
8→9 3 973,364 0 261,885 0 61,724 0 868

9→10 357,919 933,514 24 121,337 0 61,051 0 833
Total 1,435,699 8,053,695 46,783 2,420,979 495 1,683,797 0 7,599

v
sf

tp
d

0→1 0 210,142 0 210,142 0 102,307 0 80
1→2 2,462 210,142 558 90,073 0 69,775 0 80
2→3 0 215,223 0 215,223 0 55,555 0 80
3→4 0 220,564 0 220,564 0 37,265 0 80
4→5 43,233 218,586 546 4,478 0 2,123 0 80
5→6 58 223,098 0 24,924 0 67,330 0 80
6→7 2,115 233,199 0 3,737 0 7,437 0 82
7→8 234 222,296 0 1,993 0 3,098 0 80

Total 48,102 1,753,250 1,104 771,134 0 344,890 0 642

Figure 8: Test failures/points allowed

SSH update tests for all program versions were executed in
under 600 instance-hours. We tested the smaller suite of
vsftpd tests on one core of a 2.66GHZ Intel Xeon with 4GB
of memory in under 200 hours.

5. EXPERIMENTAL RESULTS
This section presents our experimental results. Our goal

was to understand the effectiveness of the safety checks, in
terms of permissiveness (failing to prevent incorrect behav-
ior) and restrictiveness (failing to allow correct behavior),
compared to using no checks at all, and compared to allow-
ing updates only at manually placed positions.

Test Failures/Points Allowed. Figure 8 summarizes the
number of update points allowed by each safety check for
each patch to OpenSSH and vsftpd, and how many of those
points resulted in a failing test.

The All Pts column of Figure 8 lists over 1.4M failing up-
date points out of 8M total (17.8%) for OpenSSH and over
48K failing runs out of 1.7M total (2.7%) for vsftpd. This
is clear evidence that applying updates indiscriminately is
extremely risky. Comparing program versions, we see that
updates containing few changes typically result in a corre-
spondingly small number of failures. One particularly strik-
ing observation is that patches containing no type or func-
tion signature changes (OpenSSH patches 1→2 and 3→4 and
vsftpd patches 0→1, 2→3, and 3→4) exhibited no failures.
However, it is worth noting that these patches also contained
relatively few overall changes. The largest updates, such as
OpenSSH patches 2→3, 4→5, and 9→10, generally resulted
in more failures. There are notable exceptions to this gen-
eral trend, such as vsftpd patch 4→5, which contained few
changes but resulted in the most vsftpd failures.

The CFS and AS columns of Figure 8 illustrate that both
checks succeed at dramatically reducing (but not eliminat-
ing) the total number of failures, while still allowing a signif-
icant number of update points. For both applications, CFS
allows the most failures, but manages to reduce the total

number of failures from 1.4M to 46.8K (96.7% reduction)
for OpenSSH and 61K to 1.1K (97.7% reduction) for vsftpd.
AS performed even better, allowing only 495 failures (well
over 99.9% reduction) for OpenSSH and no failures for vs-
ftpd. On the other hand CFS is more permissive, allowing
far more update points compared to AS. Manual exhibited
no test failures, but has many fewer allowed update points.

Comparing safety checks. The top half of Figure 9 clas-
sifies each failing update point based on which safety checks
would have prevented the failure, while the bottom half of
the figure shows how many update points that pass all test
cases are allowed by the checks. We break down the results
into four basic categories, one per row in each of the table,
visualized in the Venn diagram at the top of the figure.

For both vsftpd and OpenSSH, we see that well over 95% of
the failing points would be disallowed by both safety checks
(row (c)). We manually examined several of these failures,
and found type safety violations to be the most common
cause. Indeed, since both AS and CFS ensure updates are
type safe, it seems likely that a large portion of the failures
are due to type errors. The next largest category of failures
are those that are allowed by CFS but disallowed by AS (row
(a)), and no failures are prevented only by CFS (row (b)).
Lastly, fewer than 1% of the failures for each application are
allowed under all safety checks (row (d)). These last three
categories of failures are those where mistimed updates are
type safe but violate some other program logic. We discuss
several examples of these failures in detail in Section 6.

Turning to the bottom half of Figure 9, we see that more
than half of the possible update points are allowed by both
checks (row (c)), and that of the remaining points CFS per-
mits many more than AS (rows (b) and (a), respectively).
These results suggest CFS provides more update availability
than AS.

Update points per program phase. Generally speaking,
while allowing more correct update points is better than
fewer, it also matters where those update points occur dur-

11

AS
(a)

CFS
(b)

CFS ∩ AS
(c)

(AS ∪ CFS)
(d)

Category Failures % Failures

O
p
e
n
S
S
H (a) Only Prevented by AS 46,288 3%

(b) Only Prevented by CFS 0 0%
(c) Prevented by AS and CFS 1,388,916 97%
(d) Prevented by Neither 495 < 1%
(a+b+c+d) Total Failures 1,435,699 100%

v
sf

tp
d

(a) Only Prevented by AS 1,104 2%
(b) Only Prevented by CFS 0 0%
(c) Prevented by AS and CFS 46,998 98%
(d) Prevented by Neither 0 0%
(a+b+c+d) Total Failures 48,102 100%

Failures Prevented

Category Successes % Successes

O
p
e
n
S
S
H (a) Only Allowed by AS 102,076 2%

(b) Only Allowed by CFS 792,970 12%
(c) Allowed by AS and CFS 4,141,724 63%
(d) Allowed by Neither 1,581,226 24%
(a+b+c+d) Total Passing 6,617,996 100%

v
sf

tp
d

(a) Only Allowed by AS 106,234 6%
(b) Only Allowed by CFS 531,374 31%
(c) Allowed by AS and CFS 828,884 49%
(d) Allowed by Neither 238,656 14%
(a+b+c+d) Total Passing 1,705,148 100%

Successes Allowed

Figure 9: Breakdown of results by safety check

ing program execution. In particular, since the majority
of each server’s execution takes place within one of a few
long-running loops, it is crucial that a safe update point is
reached on most every iteration of these loops. Otherwise,
we may be unable to update a program in a timely fashion.

To get a more refined view of where updates are allowed
and where they fail, we have broken down the execution of
our benchmark programs into phases corresponding to their
long-running loops and the transitions between them.

The execution of vsftpd consists of a connection loop that
accepts session requests and forks child processes to handle
them, and a command loop in each child process that re-
ceives, processes, and responds to requests from the client.
In addition, vsftpd includes a startup phase that initializes
and configures the server state, and a transition phase that
performs some per-connection initialization. Transitions be-
tween phases occur as follows:

startup connection loop transition command loop

We have identified a similar set of phases for OpenSSH.
The key differences are the presence of two command loop
phases that handle requests for different protocol versions,
a brief shutdown phase to handle cleanup after a client con-
nection ends, and the possibility of skipping the connection
loop under certain configurations. The transitions between
phases for OpenSSH occur as follows:

startup

connection loop

transition

command loop 1

command loop 2

shutdown

Figure 10 summarizes test failures by program phase and
patch (the full tables from which this figure is derived can
be found in Figures 13 and 14 in the appendix). Black boxes
indicate that all tests pass and grey boxes indicate one or
more failures. White boxes indicate that no allowable up-
date points were reached during execution of the particular
phase.

We can see that CFS allows at least one update point
in each program phase, while AS precludes updates during
the startup phases. We can also clearly see that there are
no manually placed update points in the startup and tran-
sition phases. In all cases, updates are permitted within
the command and connection loop phases, which should en-
sure updates are reasonably available. Moreover, for Manual
and AS, no failures occur at update points within the loops,
while for CFS, the only loop-phase failures occur in the vs-
ftpd command loop. This is interesting, because as we have
just discussed, updates within the loops are most important,
while updates within the startup or transition phases are far
less important, since these phases are finite and presumably
short.

Threats to Validity. There are several potential threats to
the validity of our study. First, the test suites we used for
OpenSSH and vsftpd do not exercise all features of the ap-
plications, so we may be undercounting how many patches
introduce failures into the programs. Second, our empir-
ical study is currently limited to these two applications.
As such, our results may not generalize, but we believe we
have explored enough tests and mature enough applications
to strongly suggest the general trend. Likewise, the fact
that we changed the applications slightly to make the safety
checks more permissive also challenges the generality of our
results. But, as discussed earlier, we believe the changes are
ones that developers using these safety checks would have
reasonably made so as to ensure a proper level of updatabil-
ity. Lastly, because update points within ignore regions are
not tested, bugs in patches may not be found during test.
For this reason, we have manually inspected these regions
and attempted to minimize their size. This threat could
be completely mitigated by continuing to prevent updates
within ignore regions after the application is deployed.

6. DISCUSSION
Next, we look in detail at failures that were observed dur-

ing our experiments, and discuss the limitations of CFS and
AS. We also discuss future research directions suggested by
our results.

Failures allowed by CFS. The property that distinguishes
CFS is that it allows changed code to be executed at the old
version following an update, provided this execution will not
violate type safety. However, as we discussed in Section 2.3,
even though such executions will be type safe, they may re-
sult in failures, and indeed we observed cases of this. One ex-
ample occurred while testing upload operations against the
1→2 patch to vsftpd. Figure 11 shows a simplified version of
the relevant code. In this patch, the code that sends the FTP
return code 226 indicating a successful transfer was moved

12

0→ 1

1→ 2

2→ 3

3→ 4

4→ 5

5→ 6

6→ 7

7→ 8

8→ 9

9→ 10

O
p
en

S
S
H

A
ll

P
ts

C
F
S

A
S

M
an

u
al

startup transition shutdown

A
ll

P
ts

C
F
S

A
S

M
an

u
al

A
ll

P
ts

C
F
S

A
S

M
an

u
al

A
ll

P
ts

C
F
S

A
S

M
an

u
al

A
ll

P
ts

C
F
S

A
S

M
an

u
al

A
ll

P
ts

C
F
S

A
S

M
an

u
al

command
loop 1

command
loop 2

connection
loop

0→ 1

1→ 2

2→ 3

3→ 4

4→ 5

5→ 6

6→ 7

Failure(s) Ocurred

v
sf

tp
d

A
ll

P
ts

C
F
S

A
S

M
an

u
al

startup transition

A
ll

P
ts

C
F
S

A
S

M
an

u
al

A
ll

P
ts

C
F
S

A
S

M
an

u
al

A
ll

P
ts

C
F
S

A
S

M
an

u
al

All Points Passed

No Points Allowed

7→ 8

command
loop

connection
loop

Figure 10: Updatability across program phases

void
handle upload common() {

DSU update();
ret = do file recv ();

}
void do file recv () {

... // receive file
if (ret == SUCCESS)

write (226, ”OK.”);
return ret ;
}

void
handle upload common() {

DSU update();
ret = do file recv ();
if (ret == SUCCESS)

write (226, ”OK.”);
}
void do file recv () {

... // receive file
return ret ;
}

(a) Version 1 (b) Version 2

Figure 11: Skipped return code

from do file recv to handle upload common. If an update oc-
curs after entering handle upload common, but before calling
do file recv, then the new version of do file recv executes and
then returns to the old version of handle upload common—
and thus the server will never write the return code. After
some time, this causes the transfer to timeout and fail. Up-
date points exhibiting this failure are allowed by CFS be-
cause, although the code executed following the update in
handle upload common is changed in the update, executing
at the old version is type safe. AS prevents these failures
because handle upload common is changed and active when
the problematic update points are reached.

Failures allowed by CFS and AS. While AS prevents the
failure we just saw, as discussed in Section 2.3, it does not
prevent such version consistency problems entirely. A par-
ticularly interesting example occurs in the 4→5 patch of
OpenSSH. This example involves a version consistency vio-
lation that was not present in the original code base, but
was introduced via a code extraction step that is needed to
permit many other, safe updates to occur.

Figures 12(a) and (b) show a highly simplified version of
the relevant code for both versions. In version 4, a global
pointer is initialized in the serverloop2 function, prior to en-
try into the command loop. Version 5 moves this initializa-
tion earlier into maincont (a function we added during code
extraction), prior to calling serverloop2. (In the actual code
base, the call to serverloop2 is further down the call chain.)

CFS will always allow this update to be applied, because
it involves no type changes, and hence is type safe. How-

void maincont() {
DSU update();
serverloop2 ();

}
void serverloop2 () {

global ptr = init ;
tmp = (∗global ptr).pw;
}

void maincont() {
global ptr = init ;
DSU update();
serverloop2 ();

}
void serverloop2 () {

tmp = (∗global ptr).pw;
}

(a) Version 4 (b) Version 5

void maincont() {
extracted ();
DSU update();
serverloop2 ();

}
void extracted () {
}
void serverloop2 () {

global ptr = init ;
tmp = (∗global ptr).pw;
}

void maincont() {
extracted ();
DSU update();
serverloop2 ();

}
void extracted () {

global ptr = init ;
}
void serverloop2 () {

tmp = (∗global ptr).pw;
}

(c) Ver. 4, after extraction (d) Ver. 5, after extraction

Figure 12: Skipped initialization error

ever, if the update indicated in Figure 12(a) is taken, then
global ptr will be uninitialized when dereferenced, leading
to a segfault. On the other hand, AS should prevent this
update, because maincont is changed by the update and is
active at the update point.

However, recall from Section 4 that we extracted the“start-
up” code in all functions leading up to the command loops
in our subject programs. Consider Figures 12(c) and (d),
which show the two versions of the program after code ex-
traction. Notice that the initialization of global ptr is moved
from serverloop2 to extracted. Thus, the update no longer
changes maincont, and when the indicated update point is
triggered in our experiments, AS actually allows the update.
This example illustrates the tension between update avail-
ability and safety when applying AS, and cases like these
show the fragility of automatic update safety checks.

In general, AS is also unable to prevent any version con-
sistency problems where the old version of code involved is
executed to completion and so is no longer on the stack.

13

We observed a set of failures where this occurs in OpenSSH
patch 2→3. This patch included a change to the format of a
packet sent from the server to the client and then later sent
back to the server. Version 2 included only a sequence num-
ber in the packet, while version 3 adds a count of blocks and
packets. This change is manifested through a modification
to two functions: mm send keystate and mm get keystate.
If an update occurs after a call to mm send keystate but
before a call to mm get keystate, then the new version of
mm get keystate is invoked and is unable to parse a packet
generated by the old code version, causing a test failure.

These update points are allowed by CFS, which deter-
mines that the update cannot violate type safety. AS will
also allow these failures as this version consistency error can
occur at points when neither changed function is on the call
stack. Typically, state transformation can be used to ensure
that program state is updated to work with new code, but in
this case the state of the packet is stored on the client, where
it cannot easily be changed when the server is updated.

Failures allowed by AS. Although we encountered no in-
stances of failures that are prevented by CFS but allowed
by AS in our experiment, we believe such cases are possible.
This may occur in cases where Ginseng’s implementation of
CFS prevents failures essentially by coincidence, due to con-
servatism in its static analysis’ approximation of a function’s
calling context.

Future directions. The results of our empirical study, along
with observations we made while preparing programs for up-
dating, suggest several potential future directions for more
practical and safe DSU systems.

While automatic safety checks are not perfect, we believe
they are still very much worthwhile, as our results show that
allowing arbitrary update points with no checks results in
many failures. There is, however, room for improvement in
both AS and CFS, and there may also be other approaches
that work better in practice.

The major issue we found with AS is update availability,
since functions on the stack can never be updated. One idea
to address this issue is to relax AS slightly: We could imag-
ine allowing updates that change functions on the stack, as
long as after we return to such a function the code that is
executed was not changed by the update—and hence execut-
ing the old version of that code is the same as executing the
new version. Notice this variant of AS is still more restric-
tive than CFS, since CFS only requires type safe updates,
rather than code equivalence.

The chief benefit of CFS over AS is that it is more per-
missive without sacrificing type safety. However, sometimes
it introduces too much update availability, and so it may
be worthwhile to explore ways to reduce permitted updates,
such as the transactional version consistency proposed by
Neamtiu et al [19].

While improvements to AS and CFS will be beneficial,
our experience suggests that increased updatability beyond
a certain threshold often provides little benefit while intro-
ducing additional points of failure. For example, in Open-
SSH and vsftpd, it is important to allow updating during
the long-running loops but less important to allow updates
elsewhere. Thus, it seems sensible for programmers to pre-
scribe updates only at a small number of carefully selected
points. Further work remains in trying to streamline the
choice of such update points. For example, even if an up-

dating system makes use of a permissive safety check such
as CFS, an offline analysis might help the developer identify
update points that will eliminate any version consistency er-
rors. The kind of testing we used in our experiments should
also prove useful in choosing safe update points.

We believe that ultimately, a combination of manually
chosen update points, automatic safety checks to prevent
particular types of failure, and additional assurance argu-
ments based on developer reasoning and update testing, will
yield the most practical and safe DSU systems.

7. RELATED WORK
Gupta et al. [10] originally defined the update validity

problem as showing, for a given program and patch, that
after patching the old version its execution would eventu-
ally reach a state that could have been reached by executing
the new version from scratch. Gupta et al. showed that
this problem is in general undecidable, and then proposed
safety checks on a program and patch that are sufficient to
ensure validity, but only under limited circumstances. For
example, Gupta’s check only applies when a patch adds new
functionality and programs do not use complex data types
and pointers. As described in Section 2.3, more practical
DSU implementations tend to use either the AS and CFS
checks. Our study is the first to provide empirical data on
the effectiveness of these checks in practical situations.

Many DSU systems allow programmers to further restrict
update timing, rather than rely wholly on automatic safety
checks. For example, as already mentioned, using Ginseng [20],
programmers can provide a whitelist of program locations
(e.g., line numbers) that are valid for an update; DLpop [11]
has similar behavior. Conversely, Lee [14], Gupta et al. [10],
Chen et al. [7], and others support a blacklist (e.g., by requir-
ing that certain functions must be inactive prior to updat-
ing), indicating particular points that are not allowed. We
leave more detailed empirical study of these mechanisms to
future work.

Our approach to generating update tests is related to
Chess [17] and MultithreadedTC [21], which test multi-thread-
ed programs by intelligently enumerating a program’s po-
tential thread schedules. At a high level, our technique
for test reduction is like partial order reduction in model
checking [2], which is used to avoid consideration of distinct
program executions that result in the same states. Our re-
duction algorithm on traces is inspired by Neamtiu et al.’s
observation that an update at two program points is equiva-
lent if the activity between those two points is unaffected by
the patch [19]. Neamtiu et al. applied this observation to a
static analysis for implementing update transactions whose
execution is version consistent (i.e., consisting of behavior
entirely attributable to either the old or new version), while
we apply it to the test case reduction.

8. CONCLUSIONS
We have presented an empirical evaluation of two well-

known DSU safety checks, activeness safety and con-freeness
safety. Our evaluation is based on exhaustively testing up-
dates to vsftpd and OpenSSH. We found that updating with-
out the use of safety checks resulted in a large number of fail-
ures, and that both checks were able to eliminate the vast
majority of these failures. AS was the more restrictive model
as it prevented more failures but also more successes than

14

CFS. Significantly, neither check prevented all failures. Ulti-
mately, we believe that a combination of manually specified
update points, automatic safety checks, and an additional
assurance argument, such as the testing strategy we used
for our experiments, will yield a practical, safe solution for
dynamic software updating.

9. REFERENCES
[1] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz.

Opus: online patches and updates for security. In
USENIX Security, 2005.

[2] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer,
and S. K. Rajamani. Partial-order reduction in
symbolic state space exploration. In CAV, 1997.

[3] J. Armstrong, R. Virding, C. Wikstrom, and
M. Williams. Concurrent programming in ERLANG
(2nd ed.). Prentice Hall International Ltd., 1996.

[4] J. Arnold and F. Kaashoek. Ksplice: Automatic
rebootless kernel updates. In Eurosys, 2009. To
appear.

[5] G. M. Bierman, M. J. Parkinson, and J. Noble.
UpgradeJ: Incremental typechecking for class
upgrades. In ECOOP, 2008.

[6] G. Bracha. Objects as software services. http:
//bracha.org/objectsAsSoftwareServices.pdf,
Aug. 2006.

[7] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew.
Polus: A powerful live updating system. In ICSE,
pages 271–281, 2007.

[8] Amazon elastic compute cloud.
http://aws.amazon.com/ec2.

[9] Edit and continue. http://msdn2.microsoft.com/
en-us/library/bcew296c.aspx.

[10] D. Gupta, P. Jalote, and G. Barua. A formal
framework for on-line software version change. IEEE
TSE, 22(2), 1996.

[11] M. Hicks and S. Nettles. Dynamic software updating.
ACM Trans. Program. Lang. Syst., 27(6):1049–1096,
2005.

[12] Java platform debugger architecture. http:
//java.sun.com/j2se/1.4.2/docs/guide/jpda/.

[13] The K42 Project.
http://www.research.ibm.com/K42/.

[14] I. Lee. DYMOS: A Dynamic Modification System.
PhD thesis, Dept. of Computer Science, U. Wisconsin,

Madison, 1983.

[15] K. Makris and R. Bazzi. Immediate multi-threaded
dynamic software updates using stack reconstruction.
Technical Report TR-08-007, Arizona State
University, 2008.

[16] K. Makris and R. Bazzi. Immediate multi-threaded
dynamic software updates using stack reconstruction.
In USENIX ATC, 2009.

[17] M. Musuvathi, S. Qadeer, and T. Ball. Chess: A
systematic testing tool for concurrent software.
Technical Report MSR-TR-2007-149, Microsoft
Research, 2007.

[18] I. Neamtiu and M. Hicks. Safe and timely dynamic
updates for multi-threaded programs. In PLDI, June
2009. To appear.

[19] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis.
Contextual effects for version-consistent dynamic
software updating and safe concurrent programming.
In POPL, 2008.

[20] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for C. In PLDI,
2006.

[21] W. Pugh and N. Ayewah. Unit testing concurrent
software. In ASE, 2007.

[22] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and
I. Neamtiu. Mutatis Mutandis: Safe and flexible
dynamic software updating. ACM Trans. Program.
Lang. Syst., 29(4), 2007.

[23] S. Subramanian, M. Hicks, and K. S. McKinley.
Dynamic software updates for Java: A VM-centric
approach. In PLDI, 2009.

[24] Unsanity. Application Enhancer – enhance the
applications by loading modules.
http://www.unsanity.com/haxies/ape.

[25] C. Walton. Abstract Machines for Dynamic
Computation. PhD thesis, University of Edinburgh,
2001. ECS-LFCS-01-425.

APPENDIX
A. FULL RESULTS

Following are tables showing the complete breakdown of
program failures across each application, safety check, and
program phase. These results are summarized in the text in
Figures 8 and 10.

15

Update All Pts CFS AS Manual
Failed Total Failed Total Failed Total Failed Total

O
p
e
n
S
S
H

in
it

0→1 7,226 68,141 0 25,455 no pts no pts
1→2 0 90,776 0 90,776 no pts no pts
2→3 10,830 87,569 906 32,703 no pts no pts
3→4 0 103,035 0 103,035 no pts no pts
4→5 9,191 103,035 0 38,010 no pts no pts
5→6 10,596 116,164 0 47,455 no pts no pts
6→7 108,669 116,872 44,351 47,691 no pts no pts
7→8 11,222 138,750 0 1,572 no pts no pts
8→9 0 153,985 0 71,880 no pts no pts

9→10 2 149,279 0 45,477 no pts no pts
Total 157,736 1,127,606 45,257 504,054 no pts no pts

O
p
e
n
S
S
H

m
a
in

lo
o
p

0→1 0 1,151 0 48 0 48 0 24
1→2 0 1,196 0 1,196 0 1,196 0 27
2→3 2 1,121 0 44 0 44 0 22
3→4 0 1,187 0 1,187 0 1,187 0 24
4→5 46 1,172 0 46 0 46 0 23
5→6 0 1,636 0 70 0 70 0 35
6→7 212 1,636 0 70 0 70 0 35
7→8 0 4,234 0 68 0 68 0 34
8→9 0 4,694 0 2,254 0 78 0 39

9→10 0 4,396 0 72 0 72 0 36
Total 260 22,423 0 5,055 0 2,879 0 299

O
p
e
n
S
S
H

tr
a
n
si

ti
o
n

0→1 12,489 473,167 0 28,847 0 32,503 no pts
1→2 0 572,337 0 572,337 0 550,537 no pts
2→3 290,876 510,969 782 29,076 4 8,954 no pts
3→4 0 618,569 0 618,569 0 588,380 no pts
4→5 556,444 619,472 609 33,954 380 9,363 no pts
5→6 107 705,534 0 41,043 0 57,056 no pts
6→7 54,452 706,432 110 32,746 110 38,359 no pts
7→8 158 721,499 1 45,421 1 67,627 no pts
8→9 3 759,782 0 146,387 0 48,551 no pts

9→10 357,917 726,649 24 35,608 0 45,554 no pts
Total 1,272,446 6,414,410 1,526 1,583,988 495 1,446,884 no pts

O
p
e
n
S
S
H

c
li
e
n
tl
o
o
p
1 0→1 0 26,542 0 12,443 0 2,490 0 415

1→2 0 28,593 0 28,593 0 23,425 0 479
2→3 5,257 26,995 0 4,174 0 836 0 418
3→4 0 37,537 0 37,537 0 37,537 0 632
4→5 0 37,537 0 27,431 0 1,264 0 632
5→6 0 42,904 0 30,215 0 42,904 0 698
6→7 0 42,858 0 11,144 0 5,576 0 697
7→8 0 42,640 0 22,128 0 22,128 0 692
8→9 0 43,216 0 30,353 0 1,408 0 704

9→10 0 41,075 0 28,937 0 4,020 0 670
Total 5,257 369,897 0 232,955 0 141,588 0 6,037

O
p
e
n
S
S
H

c
li
e
n
tl
o
o
p
2 0→1 0 10,759 0 1,232 0 254 0 127

1→2 0 10,483 0 10,483 0 10,483 0 124
2→3 0 10,852 0 8,665 0 10,125 0 128
3→4 0 10,759 0 10,759 0 10,759 0 127
4→5 0 10,759 0 10,651 0 10,651 0 127
5→6 0 10,759 0 10,651 0 10,759 0 127
6→7 0 10,759 0 3,991 0 254 0 127
7→8 0 10,483 0 10,340 0 9,920 0 124
8→9 0 10,576 0 10,470 0 10,576 0 125

9→10 0 10,759 0 10,651 0 10,254 0 127
Total 0 106,948 0 87,893 0 84,035 0 1,263

O
p
e
n
S
S
H

sh
u
td

o
w

n

0→1 0 1,111 0 19 0 19 no pts
1→2 0 1,937 0 1,937 0 1,937 no pts
2→3 0 1,214 0 645 0 943 no pts
3→4 0 1,111 0 1,111 0 940 no pts
4→5 0 1,111 0 541 0 19 no pts
5→6 0 1,238 0 566 0 1,161 no pts
6→7 0 1,111 0 541 0 19 no pts
7→8 0 1,111 0 541 0 1,111 no pts
8→9 0 1,111 0 541 0 1,111 no pts

9→10 0 1,356 0 592 0 1,151 no pts
Total 0 12,411 0 7,034 0 8,411 no pts

Figure 13: Test success and failure (OpenSSH Full)

16

Update All Pts CFS AS Manual
Failed Total Failed Total Failed Total Failed Total

v
sf

tp
d

in
it

0→1 0 100,672 0 100,672 0 1,222 no pts
1→2 0 100,672 0 68,172 0 1,222 no pts
2→3 0 103,246 0 103,246 0 1,222 no pts
3→4 0 103,259 0 103,259 0 1,053 no pts
4→5 2,991 101,543 0 806 0 13 no pts
5→6 45 104,689 0 2,405 0 13 no pts
6→7 2,111 113,106 0 784 0 952 no pts
7→8 0 105,261 0 793 0 884 no pts

Total 5,147 832,448 0 380,137 0 6,581 no pts

v
sf

tp
d

m
a
in

lo
o
p

0→1 0 806 0 806 0 806 0 26
1→2 0 806 0 741 0 806 0 26
2→3 0 806 0 806 0 728 0 26
3→4 0 949 0 949 0 715 0 26
4→5 0 806 0 650 0 741 0 26
5→6 0 806 0 650 0 780 0 26
6→7 0 868 0 700 0 868 0 28
7→8 0 806 0 650 0 52 0 26

Total 0 6,653 0 5,952 0 5,496 0 210

v
sf

tp
d

tr
a
n
si

ti
o
n 0→1 0 36,270 0 36,270 0 27,885 no pts

1→2 0 36,270 0 7,579 0 27,846 no pts
2→3 0 37,505 0 37,505 0 18,603 no pts
3→4 0 37,648 0 37,648 0 10,803 no pts
4→5 15,503 37,258 0 533 0 1,261 no pts
5→6 13 37,336 0 7,618 0 19,513 no pts
6→7 4 45,174 0 612 0 5,509 no pts
7→8 234 37,492 0 442 0 2,054 no pts

Total 15,754 304,953 0 128,207 0 113,474 no pts

v
sf

tp
d

c
li
e
n
tl
o
o
p 0→1 0 72,394 0 72,394 0 72,394 0 54

1→2 2,462 72,394 558 13,581 0 39,901 0 54
2→3 0 73,666 0 73,666 0 35,002 0 54
3→4 0 78,708 0 78,708 0 24,694 0 54
4→5 24,739 78,979 546 2,489 0 108 0 54
5→6 0 80,267 0 14,251 0 47,024 0 54
6→7 0 74,051 0 1,641 0 108 0 54
7→8 0 78,737 0 108 0 108 0 54

Total 27,201 609,196 1,104 256,838 0 219,339 0 432

Figure 14: Test success and failure (vsftpd Full)

17

