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Abstract. Given an edge-weighted directed graph G = (V,E) on n
vertices and a set T = {t1, t2, . . . tp} of p terminals, the objective of the
Strongly Connected Steiner Subgraph (SCSS) problem is to find
an edge set H ⊆ E of minimum weight such that G[H] contains a ti → tj
path for each 1 ≤ i 6= j ≤ p. The problem is NP-hard, but Feldman and
Ruhl [FOCS ’99; SICOMP ’06] gave a novel nO(p) algorithm for the p-
SCSS problem.

In this paper, we investigate the computational complexity of a variant
of 2-SCSS where we have demands for the number of paths between each
terminal pair. Formally, the 2-SCSS-(k1, k2) problem is defined as follows:
given an edge-weighted directed graph G = (V,E) with weight function
ω : E → R≥0, two terminal vertices s, t, and integers k1, k2 ; the objective
is to find a set of k1 paths F1, F2, . . . , Fk1 from s  t and k2 paths
B1, B2, . . . , Bk2 from t s such that

∑
e∈E ω(e)·φ(e) is minimized where

φ(e) = max
{
|{i : 1 ≤ i ≤ k1, e ∈ Fi}| ; |{j : 1 ≤ j ≤ k2, e ∈ Bj}|

}
. For

each k ≥ 1, we show the following:

– The 2-SCSS-(k, 1) problem can be solved in nO(k) time.

– A matching lower bound for our algorithm: the 2-SCSS-(k, 1) prob-
lem does not have an f(k) ·no(k) algorithm for any computable func-
tion f , unless the Exponential Time Hypothesis (ETH) fails.

Our algorithm for 2-SCSS-(k, 1) relies on a structural result regarding the
optimal solution followed by using the idea of a “token game” similar to
that of Feldman and Ruhl [FOCS ’99; SICOMP ’06]. We show with an
example that the structural result does not hold for the 2-SCSS-(k1, k2)
problem if min{k1, k2} ≥ 2. Therefore 2-SCSS-(k, 1) is the most general
problem one can attempt to solve with our technique. To obtain the
lower bound matching the algorithm, we reduce from a special variant of
the Grid Tiling problem introduced by Marx [FOCS ’07; ICALP ’12].
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The 2-SCSS-(k1, k2) problem is as a special case of the Directed Ca-
pacitated Survivable Network Design (Dir-Cap-SNDP) problem
introduced by Goemans et al. [9] in which we are given an directed multi-
graph with costs and capacities on the edges, and the question is to find
a minimum cost subset of edges that satisfies all pairwise minimum-cut
requirements.

1 Introduction

The Steiner Tree (ST) problem is one of the earliest and most fundamen-
tal problems in combinatorial optimization: given an undirected edge-weighted
graph G = (V,E) with edge weights c : E → R+ and a set T ⊆ V of terminals,
the objective is to find a tree S of minimum cost c(S) :=

∑
e∈S c(e) which spans

all the terminals. The Steiner Tree problem is believed to have been first for-
mally defined by Gauss in a letter in 1836. The first combinatorial formulation
of the ST problem is attributed to Hakimi [12] in 1971. In the directed version
of the ST problem, called Directed Steiner Tree (DST), we are also given
a root vertex r and the objective is to find a minimum size arborescence in the
directed graph which connects the root r to each terminal from T . An easy re-
duction from Set Cover shows that the DST problem is also NP-complete. The
best known approximation ratio for DST in polynomial time is |T |ε for any ε > 0
due to Zelikovsky [23]. Halperin and Krauthgamer [13] showed an Ω(log2−ε n)
inapproximability for any ε > 0 for the DST problem.

Steiner-type of problems arise in the design of networks. Since many net-
works are symmetric, the directed versions of Steiner type of problems were
mostly of theoretical interest. However in recent years, it has been observed [20]
that the connection cost in various networks such as satellite or radio networks
are not symmetric. Therefore, directed graphs form the most suitable model for
such networks. In addition, Ramanathan [20] also used the DST problem to find
low-cost multicast trees, which have applications in point-to-multipoint commu-
nication in high bandwidth networks. A generalization of the DST problem is the
Strongly Connected Steiner Subgraph (SCSS) problem. In the p-SCSS
problem, given a directed graph G = (V,E) and a set T = {t1, t2, . . . , tp} of p
terminals the objective is to find a set S ⊆ V such that G[S] contains a ti → tj
path for each 1 ≤ i 6= j ≤ p. The best known approximation ratio in polynomial
time for SCSS is pε for any ε > 0 [3]. A result of Halperin and Krauthgamer [13]
implies SCSS has no Ω(log2−ε n)-approximation for any ε > 0, unless NP has
quasi-polynomial Las Vegas algorithms.

The Directed Steiner Forest and Directed Steiner Network prob-
lems are two other standard generalizations of the DST problem. We mention
more about their history in Appendix A.

Token Game of Feldman and Ruhl: The paper of Feldman and Ruhl [8]
gives novel nO(p) algorithms for both the p-SCSS problem and the p-DSF prob-
lem4. They first consider the special case of 2-SCSS to illustrate their approach.

4 Refer to Appendix B for a brief overview of previous work on exact algorithms for
directed Steiner problems
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We briefly mention their approach here: In the 2-SCSS problem, the input is a
directed graph and two terminal vertices s, t and we want to find a minimum
subgraph containing s  t and t  s paths. They consider a “token game” as
follows: there is one forward token f and one backward token b. The forward
token moves along the direction of the edges and the backward token moves in
the reverse direction as that of the edges. Both tokens are initially located at s.
Feldman and Ruhl define a set of “valid moves” for each of the tokens and an
associated cost for each move. The main technical part of their paper is to show
that for every move sequence (which takes both tokens from s to t) of total cost
C there is a corresponding solution of 2-SCSS of size C + 1, and if the optimum
solution for the 2-SCSS instance has cost C + 1 then there is a move sequence
(which takes both tokens from s to t) of total cost C.

The 2-SCSS-(k1, k2) Problem: We define the following generalization of
the 2-SCSS problem:

2-SCSS-(k1, k2)
Input : An edge-weighted digraph G = (V,E) with weight function ω : E →
R≥0, two terminal vertices s, t, and integers k1, k2
Question: Find a set of k1 paths F1, F2, . . . , Fk1 from s  t and k2 paths
B1, B2, . . . , Bk2 from t s such that

∑
e∈E ω(e) · φ(e) is minimized where

φ(e) = max
{
|{i : 1 ≤ i ≤ k1, e ∈ Fi}| ; |{j : 1 ≤ j ≤ k2, e ∈ Bj}|

}
.

Observe that 2-SCSS-(1, 1) is the same as the 2-SCSS problem. The definition
of the 2-SCSS-(k1, k2) problem allows us to potentially choose the same edge
multiple times, but we have to pay for each time we use it in a path between
a given terminal pair. This can be thought of as “buying disjointness” by
adding parallel edges. In large real-world networks, it might be more feasible to
modify the network by adding some parallel edges to create disjoint paths than
finding disjoint paths in the existing network. Teixira et al. [21, 22] model path
diversity in Interner Service Provider (ISP) networks and the Sprint network
by disjoint paths between two hosts. There have been several patents [10, 19]
attempting to design multiple paths between the components of Google Data
Centers.

The 2-SCSS-(k1, k2) problem is as a special case of the Directed Surviv-
able Network Design (Dir-Cap-SNDP) problem [9] in which we are given
an directed multigraph with costs and capacities on the edges, and the question
is to find a minimum cost subset of edges that satisfies all pairwise minimum-cut
requirements. In the 2-SCSS-(k1, k2) problem, we do not require disjoint paths.
As observed in Chakrabarty et al. [2] and Goemans et al. [9], the Dir-Cap-
SNDP problem becomes much easier to approximate if we allow taking multiple
copies of each edge.

1.1 Our Results and Techniques:

In this paper, we consider the 2-SCSS-(k, 1) problem parameterized by k, which
is the sum of all the demands. To the best of our knowledge, this is the first study
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of parameterized complexity of any directed connectivity problem with respect
to this parameter. In fact, we are unaware of any non-trivial exact algorithms
for a version of the SCSS problem with demands between the terminal pairs.
Our main algorithmic result is the following:

Theorem 1. The 2-SCSS-(k, 1) problem can be solved in nO(k) time.

Our algorithm proceeds as follows: In Section 2.1 we first show that there
is an optimal solution for the 2-SCSS-(k, 1) problem which satisfies a structural
property which we call as reverse-compatibility. Then in Section 2.2 we introduce
a “Token Game” (similar to that of Feldman and Ruhl [FOCS ’99; SICOMP
’06]) and show that it can be solved in nO(k). Finally in Section 2.3, using
the existence of an optimal solution satisfying reverse-compatibility, we give a
reduction from the 2-SCSS-(k, 1) problem to the Token Game which gives an
nO(k) algorithm for the 2-SCSS-(k, 1) problem. This algorithm also generalizes
the result of Feldman and Ruhl [8] for 2-SCSS, since 2-SCSS is equivalent to
2-SCSS-(1, 1). In Appendix F, we show with an example (see Figure 4) that the
structural result does not hold for the 2-SCSS-(k1, k2) problem if min{k1, k2} ≥
2. Therefore 2-SCSS-(k, 1) is the most general problem one can attempt to solve
with our technique.

Theorem 1 does not rule out the possibility that the 2-SCSS-(k, 1) problem
is not solvable in polynomial time. Our main hardness result rules out this pos-
sibility by showing that our algorithm is tight and that the exponent of O(k) is
best possible.

Theorem 2. The 2-SCSS-(k, 1) problem is W[1]-hard parameterized by k. Mo-
roever, under the ETH the 2-SCSS-(k, 1) problem cannot be solved in f(k) ·no(k)
time for any function f , where n is the number of vertices in the graph.

We reduce from the Grid Tiling problem formulated by the pioneering work
on Marx in FOCS ’07 (see [15]):

k × k Grid Tiling
Input : Integers k, n, and k2 non-empty sets Si,j ⊆ [n]× [n] where i, j ∈ [k]
Question: For each 1 ≤ i, j ≤ k does there exist a value si,j ∈ Si,j such that

– If si,j = (x, y) and si,j+1 = (x′, y′) then x = x′.
– If si,j = (x, y) and si+1,j = (x′, y′) then y = y′.

The Grid Tiling problem has turned to be a convenient starting point for
parameterized reductions for planar problems, and has been used recently in
various W[1]-hardness proofs on planar graphs [16, 5, 17]. Under the ETH, Chen
et al. [4] showed that k-Clique5 does not admit an algorithm running in time
f(k) · no(k) for any function f . Marx [15] gave a reduction from k-Clique to
k×k Grid Tiling. In Section 3, we give a reduction from k×k Grid Tiling to
2-SCSS-(k, 1). Since the parameter blowup is linear, the f(k) ·no(k) lower bound
for Grid Tiling from [15] transfers to 2-SCSS-(k, 1).

5 The k-Clique problem asks whether there is a clique of size ≥ k?
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We would like to point out two distinctive features of our reduction. Firstly,
the graph that we construct in the reduction is not planar, and to the best of
our knowledge this is the first use of the Grid Tiling problem to show W[1]-
hardness for a problem on non-planar graphs. Secondly, the reduction in [15]
from k-Clique to k × k Grid Tiling actually shows the hardness of a special
case of the Grid Tiling problem where the sets are constructed as follows:
given a graph G = (V,E) for the k-Clique problem with V = {v1, v2, . . . , vn}
we set Si,i = {(j, j) : 1 ≤ j ≤ [n]} for each i ∈ [k] and Si,f = {(j, `) : 1 ≤ j 6=
` ≤ n, (vj , v`) ∈ E} for each 1 ≤ i 6= f ≤ k. We call this as the Grid Tiling*
problem and actually give a reduction from this problem to 2-SCSS-(k, 1). To
the best of our knowledge, this is the first use of the special structure of Grid
Tiling* in a W[1]-hardness proof.

Note: In Appendix C, we show that the edge-weighted and the vertex-
weighted variants of 2-SCSS-(k1, k2) are computationally equivalent. Therefore,
henceforth we consider only the edge-weighted version of 2-SCSS-(k1, k2).

2 An nO(k) algorithm for 2-SCSS-(k, 1)

In this section we describe an algorithm for the 2-SCSS-(k, 1) problem running
in nO(k) time where n is the number of vertices in the graph. First in Section 2.1
we present a structural property called as reverse compatibility for one optimal
solution of this problem. Next we define a Token Game in Section 2.2 and provide
an nO(k) algorithm to solve the game. Finally, in Subsection 2.3 we present an
algorithm that finds the optimum solution of 2-SCSS-(k, 1) in time nO(k) via a
reduction to the Token Game problem.

2.1 The Structural Lemma

For simplicity, we replace each edge of the input graph with k copies of that
edge which allows us to force the forwarding paths to be edge-disjoint. Since
forwarding paths can use different copies of the same edge, this change in the
problem can be done without loss of generality.

Definition 1. (path-reverse-compatible) Let F be a s  t path and B be
a t  s path. Let {B′1, B′2, . . . , B′d} be the set of maximal sub-paths that F and
B share. Suppose that for all j ∈ [d], B′j is the j-th sub-path that we see while
traversing F . We say the pair (F,B) is path-reverse-compatible if for all j ∈ [d],
B′j is the (k − j + 1)-th sub-path that we see while traversing B, i.e., B′j is the
j-th sub-path that we see while traversing B backward.

Definition 2. (reverse-compatible) Let F = {F1, F2, . . . , Fd} be a set of s 
t paths and b be a t  s path. We say (F, B) is reverse-compatible, if for all
1 ≤ i ≤ k the pair (Fi, B) is path-reverse-compatible.

The next lemma shows that there exists an optimum solution for 2-SCSS-
(k, 1) which is reverse-compatible. The proof of this lemma is tricky but short.
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Lemma 1. [?]6 (structural lemma) There exists an optimum solution for 2-
SCSS-(k, 1) which is reverse-compatible.

2.2 The Token Game

In the token game, we are given a graph G, a set of tokens T , vertices s and t, a
set of movesM, and a cost function Ĉ :M→ R. Each move m ∈M consists of
a set of triples (ti, ui, vi) where ti ∈ T is a token, and ui and vi are vertices of the
graph. In order to apply a move m = {(t1, u1, v1), (t2, u2, v2), . . . , (td, ud, vd)} to
a state of the game, each token ti should be on vertex ui for all 1 ≤ i ≤ d and after
applying this move, for every triple (ti, ui, vi) ∈ m token ti will be transported

to the vertex vi. For each m ∈M, Ĉ(m) specifies the cost of applying m to the
game. Initially, all of the tokens are placed on vertex s. In each step, we apply
a move m ∈ M to the game with cost Ĉ(m) and the goal is to transport all of
the tokens to the vertex t with minimum cost.

In the following, we present an algorithm to solve an instance 〈G, s, t, T ,M, Ĉ〉
of the Token game in time O(n|T ||M| log(n|T |)) where n is the number of the
vertices of G.

Lemma 2. [?] (algorithm for Token Game) There exists an algorithm which
solves the Token game in time O(n|T ||M| log(n|T |)).

2.3 Reduction to the Token Game

Here, we provide a reduction from the 2-SCSS-(k, 1) problem to the Token game.
As a consequence, we show that one can use the presented algorithm in Subsec-
tion 2.2 to solve 2-SCSS-(k, 1) in time O(nO(k)).

Let I = 〈G, s, t〉 be an instance of the 2-SCSS-(k, 1). We reduce I to an

instance Cor(I) = 〈G′, s′, t′, T ,M, Ĉ〉 of the Token Game problem where G =
G′, s = s′, t = t′ and T is a set of k+1 tokens {F1,F2, . . . ,Fk,B}. Furthermore,

M and Ĉ are constructed in the following way:

– For every edge (u, v) ∈ E(G), we add d moves {(Fi, u, v)} to M for all
1 ≤ i ≤ d. Cost of each move is equal to the length of its corresponding edge
in G.

– For every edge (u, v) ∈ E(G) with weight w, we add a move {(B, v, u)} to
M with cost w.

– For every pair of vertices u and v in G, we add k moves {(Fi, u, v), (B, v, u)}
to M for all 1 ≤ i ≤ k. Cost of each move is equal to the distance of vertex
v from vertex u in G.

Next, we show that opt(I) = opt(Cor(I)) where opt(I) and opt(Cor(I)) stand
for the optimum solutions of I and Cor(I), respectively. Therefore we provide
two lemmas to show that opt(I) ≥ opt(Cor(I)) and opt(I) ≤ opt(Cor(I)).

6 The proofs of the results labeled with ? have been deferred to the appendix.
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Lemma 3. [?] For a given instance I of the 2-SCSS-(k, 1) we have opt(I) ≥
opt(Cor(I)).

Lemma 4. [?] For a given instance I of the 2-SCSS-(k, 1) we have opt(I) ≤
opt(Cor(I)) .

Theorem 3. [?] There exists an algorithm that solves the 2-SCSS-(k, 1) in time
O(nO(k)).

3 f(k) · no(k) Hardness for 2-SCSS-(k, 1)

In this section we prove Theorem 2. We reduce from the Grid Tiling problem
(see Section 1.1 for definition). Chen et al. [4] showed that for any function
f an f(k) · no(k) algorithm for Clique implies ETH fails. Marx [15] gave the
following reduction which transforms the problem of finding a k-Clique into
an instance of k × k Grid Tiling as follows: For a graph G = (V,E) with
V = {v1, v2, . . . , vn} we build an instance IG of Grid Tiling

– For each 1 ≤ i ≤ k, we have (j, `) ∈ Si,i if and only if j = `.
– For any 1 ≤ i 6= j ≤ k, we have (`, r) ∈ Si,j if and only if {v`, vr} ∈ E.

It is easy to show that G has a clique of size k if and only if the instance IG
of Grid Tiling has a solution. Therefore, assuming ETH, the following special
case of k × k Grid Tiling also cannot be solved in time f(k) · no(k) for any
computable function f .

k × k Grid Tiling*
Input : Integers k, n, and k2 non-empty sets Si,j ⊆ [n]× [n] where 1 ≤ i, j ≤ k
such that for each 1 ≤ i ≤ k, we have (j, `) ∈ Si,i if and only if j = `
Question: For each 1 ≤ i, j ≤ k does there exist a value γi,j ∈ Si,j such that

– If γi,j = (x, y) and γi,j+1 = (x′, y′) then x = x′.
– If γi,j = (x, y) and γi+1,j = (x′, y′) then y = y′.

Consider an instance of Grid Tiling*. We now build an instance of edge-
weighted 2-SCSS-(2k−1, 1) as shown in Figure 1. We consider 4k special vertices:
(ai, bi, ci, di) for each i ∈ [k]. We introduce k2 red gadgets where each gadget is
an n× n grid. Let weight of each black edge be 4.

Definition 3. For each 1 ≤ i ≤ k, an ai  bi canonical path is a path from ai
to bi which starts with a blue edge coming out of ai, then follows a horizontal
path of black edges and finally ends with a blue edge going into bi. Similarly an
cj  dj canonical path is a path from cj to dj which starts with a blue edge
coming out of cj, then follows a vertically downward path of black edges and
finally ends with a blue edge going into dj.
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Fig. 1. The instance of 2-SCSS-(k, 1) created from an instance of Grid Tiling*.

For each 1 ≤ i ≤ k, there are n edge-disjoint ai  bi canonical paths: let us
call them P 1

i , P
2
i , . . . , P

n
i as viewed from top to bottom. They are named using

magenta color in Figure 1. Similarly we call the canonical paths from cj to dj
as Q1

j , Q
2
j , . . . , Q

n
j when viewed from left to right. For each i ∈ [k] and ` ∈ [n]

we assign a weight of ∆(nk − ni + n + 1 − `), ∆(ni − n + `) to the first, last
edges of P `i (which are colored blue) respectively. Similarly for each j ∈ [k] and
` ∈ [n] we assign a weight of ∆(nk − nj + n+ 1− `), ∆(nj − n+ `) to the first,
last edges of Q`j (which are colored blue) respectively. Thus the total weight of
first and last blue edges on any canonical path is exactly ∆(nk+ 1). The idea is
to choose ∆ large enough such that in any optimum solution the paths between
the terminals will be exactly the canonical paths. We will see that ∆ = 7n6 will
suffice for our reduction. Any canonical path uses two blue edges (which sum up
to ∆(nk+ 1)), (k+ 1) black edges not inside the gadgets and (n−1) black edges
inside each gadget. Since the number of gadgets each canonical path visits is k
and the weight of each black edge is 4, we have the total weight of any canonical
path is α = ∆(nk + 1) + 4(k + 1) + 4k(n− 1).
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Fig. 2. Let u, r be two consecutive vertices on the canonical path say P `
i . Let r be

on the canonical path Q`′
j and let p be the vertex preceding it on this path. If r is a

green (respectively orange) vertex then we subdivide the edge (p, r) by introducing a
new vertex q and adding two edges (p, q) and (q, r) of weight 2. We also add an edge
(u, q) of weight 2 (respectively 3). The idea is if both the edges (p, r) and (u, r) were
being used initially then now we can save a weight of 2 (respectively 1) by making the
horizontal path choose (u, q) and then we get (q, r) for free, as it is already being used
by the vertical canonical path.

Intuitively the k2 gadgets correspond to the k2 sets in the Grid Tiling*
instance. Let us denote the gadget which is the intersection of the ai  bi paths
and cj  dj paths by Gi,j . If i = j, then we call Gi,j as a symmetric gadget;
else we call it as a asymmetric gadget. We perform the following modifications
on the edges inside the gadget: (see Figure 1)

– Symmetric Gadgets: For each i ∈ [k], if (x, y) ∈ Si,i then we color green
the vertex in the gadget Gi,i which is the unique intersection of the canonical
paths P xi and Qyi . Then we add a shortcut as shown in Figure 2. The idea
is if both the ai  bi path and ci  di path pass through the green vertex
then the ai  bi path can save a weight of 2 by using the green edge and a
vertical downward edge ((which is already being used by cj  dj canonical
path)) to reach the green vertex, instead of paying a weight of 4 to use the
horizontal edge reaching the green vertex.

– Aymmetric Gadgets: For each i 6= j ∈ [k], if (x, y) ∈ Si,j then we color
orange the vertex in the gadget Gi,i which is the unique intersection of the
canonical paths P xi and Qyi . Then we add a shortcut as shown in Figure 2.
The idea is if both the ai  bi path and cj  dj path pass through the green
vertex then the ai  bi path can save a weight of 1 by using the orange edge
of weight 3 followed by a vertical downward edge (which is already being used
by cj  dj canonical path) to reach the orange vertex, instead of paying a
weight of 4 to use the horizontal edge reaching the green vertex.

From Figure 1, it is easy to see that each canonical path has weight equal to α.

3.1 Vertices and Edges not shown in Figure 1

The following vertices and edges are not shown in Figure 1 for sake of presenta-
tion:
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– Add two vertices s and t.
– For each 1 ≤ i ≤ k, add an edge (s, ci) of weight 0.
– For each 1 ≤ i ≤ k, add an edge (di, t) of weight 0
– Add edges (t, ak) and (b1, s) of weight 0.
– For each 2 ≤ i ≤ k, introduce two new vertices ei and fi. We call these 2k−2

vertices as bridge vertices.
– For each 2 ≤ i ≤ k, add a path bi → ei → fi → ai−1. Set the weights of

(bi, ei) and (fi, ai−1) to be zero.
– For each 2 ≤ i ≤ k, set the weight of the edge (ei, fi) to be W . We call these

edges as connector edges. The idea is that we will choose W large enough
so that each connector edge is used exactly once in an optimum solution for
2-SCSS-(k, 1). We will see later that W = 53n9 suffices for our reduction.

We need a small technical modification: we add one dummy row and column
to the Grid Tiling* instance. Essentially we now have a dummy index 1. So
neither the first row nor the first column of any Si,j has any elements in the
Grid Tiling* instance. That is, no green vertex or orange vertex can be in
the first row or first column of any gadget. We now prove two theorems which
together give a reduction from Grid Tiling* to 2-SCSS-(k, 1). Let

β = 2k · α+W (k − 1)− (k2 + k) (1)

3.2 Grid Tiling* has a solution ⇔ 2-SCSS-(2k − 1, 1) has a solution
of weight ≤ β

First we show the easy direction.

Theorem 4. [?] Grid Tiling* has a solution implies OPT for 2-SCSS-(k, 1)
is at most β.

We now prove the other direction which is more involved. First we show some
preliminary lemmas:

Definition 4. For each i ∈ [k], let us call the set of gadgets {Gi,1, Gi,2, . . . , Gi,k}
as the gadgets of level i.

Lemma 5. [?] In any optimum solution for 2-SCSS-(k, 1), the t s path

– Must use all the k − 1 connector edges
– Contains an ai  bi path (which does not include any connector edge) for

each i ∈ [k]

Lemma 6. [?] In the optimum solution exactly k of the s t paths cannot use
any connector edge.

We call the s  t paths described in Lemma 6 as expensive paths. Note
that the only outgoing edges from s are to {c1, c2, . . . , ck} and the only incoming
edges into t are from {d1, d2, . . . , dk}. So, we can think of the expensive paths as
actually k paths from {c1, c2, . . . , ck} to {d1, d2, . . . , dk}. Since expensive edges
do not use any connector edge, the existence of a cj  d` path implies ` ≥ j.
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Definition 5. For each i ∈ [k], let λi, µi denote the number of ci  di, ci  
{di+1, di+2, . . . , dk} expensive paths in the optimum solution.

We know that
∑k
i=1 λi ≤ k and λj ≥ 0 for each j ∈ [k].

Lemma 7. [?] For each i ∈ [k], the sum of weights of blue edges incident on ai
and bi on the ai  bi path in any optimum solution is at least ∆(nk + 1).

Lemma 8. [?] The sum of weights of the blue edges in any expensive path is at
least ∆(nk + 1), with equality iff the path is canonical.

Lemma 9. [?] In any optimum solution, the weight of blue edges is at least

2k ·∆(nk+ 1) and the weight of black edges is at least 2k
(

4(k+ 1) + 4k(n− 1)
)

Lemma 10. [?] In any optimum solution, the weight of black edges is at least

2k
(

4(k + 1) + 4k(n− 1)
)

, without considering the savings via orange and green

edges (see Figure 2).

Lemma 11. [?] Every expensive path is canonical, i.e., µj = 0 for all j ∈ [k].

Note the shortcuts described in Figure 2 again bring the ai  bi path back
to the same horizontal canonical path.

Definition 6. We call an ai  bi path as an almost canonical path if it is
basically a canonical path, but can additionally take the small detour given by
the green or orange edges in Figure 2. An almost canonical path must however
end on the same horizontal level on which it began.

Lemma 12. [?] For each i ∈ [k], the optimum solution contains an almost
canonical ai  bi path .

Theorem 5. [?] OPT for 2-SCSS-(k, 1) is at most β implies the Grid Tiling*
instance has a solution.

Appendix E.11 finishes the proof of Theorem 2, and hence shows that nO(k)

algorithm for 2-SCSS-(k, 1) given in Section 2 is optimal.

4 Conclusions

In this paper, we studied the 2-SCSS-(k, 1) problem and presented an algorithm
which finds an optimum solution in time nO(k). This algorithm was based on
the fact that there always exists an optimal solution for 2-SCSS-(k, 1) that has
the reverse-compatibility property. However, we show in Appendix F that the
2-SCSS-(k1, k2) problem need not always have a solution which satisfies the
reverse-compatibility property. Therefore, it remains an important challenging
problem to find a similar structure and generalize our method to solve the 2-
SCSS-(k1, k2) problem.

Furthermore, we can show that 2-SCSS-(k, 1) is W[1]-hard parameterized by
k and under the ETH it cannot be solved in f(k) · no(k) for any function f .
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A The Directed Steiner Forest and Directed Steiner
Network problems

Another standard generalization of the DST problem is the Directed Steiner
Forest (DSF) problem. In the p-DSF problem, given a directed graph G =
(V,E) and a set T = {(s1, t1), (s2, t2), . . . , (sp, tp)} of p pairs of terminals, the
objective is to find a set S ⊆ V such that G[S] contains an si → ti path for each
1 ≤ i ≤ p. For the more general DSF problem, the best known approximation
ratio in polynomial time is n2/3+ε for any ε > 0 due to Berman et al. [1]. Dodis

and Khanna [6] showed that DSF has no Ω(2log
1−ε n)-approximation for any

0 < ε < 1, unless NP has a quasi-polynomial time algorithm.
By adding a demand requirement between each pair, we obtain a well-known

generalization of the DSF problem which is known as the Directed Steiner
Network (DSN) problem. Formally, in the p-DSN problem, given a directed
graph G = (V,E) and a set T = {(s1, t1), (s2, t2), . . . , (sp, tp)} of p pairs of
terminals and a set of demands {d1, d2, . . . , dp}, the objective is to find a set
S ⊆ V such that G[S] contains di disjoint si  ti paths for each 1 ≤ i ≤ p. The
DSN problem is known to be notoriously hard: it admits no known non-trivial
approximation. Essentially, the big jump in hardness from DSF to DSN comes
from the introduction of the requirement of having a demand of di disjoint paths
between each pair (si, ti). Note that we can check in polynomial time whether
the given instance of DSN has a feasible solution or not: for each pair (si, ti)
check whether the flow from si to ti is at least di.

B Previous Work on Exact Algorithms for Directed
Steiner Problem

Rather than finding approximate solutions in polynomial time, one can look for
exact solutions in time that is still better than the running time obtained by
brute force solutions. Brute force can be used to check in time nO(`) if a solution
of size at most ` exists: one can go through all sets of size at most `. Recall that
a problem is fixed-parameter tractable (FPT) with a particular parameter ` if it
can be solved in time f(`) · nO(1), where f is an arbitrary function depending
only on `. One can also consider parameterization by the number p of terminals
(terminal pairs); with this parameterization, it is not even clear if there is a
polynomial-time algorithm for every fixed p, much less if the problem is FPT.
It is known that Steiner Tree on undirected graphs is FPT: the classical
algorithm of Dreyfus and Wagner [7] solves the problem in time 3p ·nO(1), where
p is the number of terminals. The same algorithm work for Directed Steiner
Tree as well.

For the SCSS and DSF problems, we cannot expect fixed-parameter tractabil-
ity: Guo et al. [11] showed that SCSS is W[1]-hard parameterized by the number
of terminals p, and DSF is W[1]-hard parameterized by the number of terminal
pairs p. In fact, it is not even clear how to solve these problems in polynomial
time for small fixed values of the number p of terminals/pairs. The case of p = 1

13



in DSF is the well-known shortest path problem in directed graphs, which is
known to be polynomial time solvable. For the case p = 2 in DSF, Natu and
Fang [18] gave an algorithm running in O(mn+n2 log n) time. The question re-
garding the existence of a polynomial algorithm for DSF when p = 3 was open.
In a paper in [FOCS ’99, SICOMP ’06] Feldman and Ruhl solved this question by
giving an nO(p) algorithm for p-DSF, where p is the number of terminal pairs [8].
They first designed an nO(p) algorithm for p-SCSS, and used it as a subroutine
in the algorithm for the more general DSF problem. In a paper in [SODA ’14]
Chitnis, Hajiaghayi and Marx improved on these results by showing that p-SCSS
can be solved in 2O(p log p) · nO(

√
p) time, when the underlying undirected graph

of G is planar (or more generally, H-minor-free for any fixed graph H) [5]. They
also showed a matching hardness result: the p-SCSS on planar graphs cannot
be solved in time f(p) ·no(

√
p) (for any function f) unless the Exponential Time

Hypothesis (ETH) fails7. Chitnis et al. [5] also showed that the Feldman-Ruhl
algorithm for p-DSF running in nO(p) is optimal by proving that p-DSF does not
admit an f(p) · no(p) algorithm for any function f , unless the ETH fails.

C Equivalence of Vertex-Weighted and Edge-Weighted
Versions of 2-SCSS-(k, 1)

Lemma 13. The edge-weighted 2-SCSS-(k1, k2) and the vertex-weighted 2-SCSS-
(k1, k2) are equivalent.

Proof. First, we show that every instance of the edge-weighted 2-SCSS-(k1, k2)
can be reduced to an instance of the vertex-weighted 2-SCSS-(k1, k2). Let G be
an edge weighted graph. We replace each edge of G with a path of length 2 such
that the middle vertex weights is that of the corresponding edge. We leave the
weight of the other vertices to be zero. Clearly, this change preserves the weight
of the paths.

Next, we provide a reduction from the vertex-weighted 2-SCSS-(k1, k2) to the
edge-weighted 2-SCSS-(k1, k2). Let G be a vertex-weighted graph. We replace
each vertex v, with a pair of vertices (vin, vout) and add an edge from vin to vout
with weight equal to weight of v. We connect the incoming edges of v to vin and
the outcoming edges to vout. Again, this reduction preserves the weight of paths
which completes the proof of the lemma. ut

D Omitted Proofs from Section 2

D.1 Proof of Lemma 1

Proof. In order to prove this lemma, we introduce the notion of the rank of a
solution for 2-SCSS-(k, 1). Later, we show that an optimum solution of 2-SCSS-
(k, 1) with the minimum rank is reverse-compatible.

7 Recall that ETH can be stated as the assumption that n-variable 3SAT cannot be
solved in time 2o(n) [14]
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Fig. 3. The top path is B and the bottom path is F . F and B share u→ v and x→ y,
and both contain u→ y sub-paths.

Definition 7. Let F = {F1, F2, . . . , Fk} be a set of paths form s  t and B be
a path from t  s. Let di be the number of maximal sub-paths that B and Fi
share. The rank of (F, B) is given as

R(F, B) =

k∑
i=1

di

Let (F, B) be an optimum solution of 2-SCSS-(k, 1) with the minimum rank.
Assume for the sake of contradiction that (F, B) is not reverse-compatible. Let
F be an element of F such that (F,B) is not path-reverse-compatible. This
means that F and B share two maximal sub-paths u → v and x → y, and at
the same time F and B both contain u→ y sub-path (See Figure 3).

We replace the u → y sub-path of B by the u → y sub-path of F . On
one hand, B shares all of the u → y sub-path with F . Thus, this change does
not increase the cost of the network, therefore it remains an optimum solution.
On the other hand, by this change, the sub-paths u → v and x → y join.
In addition, since forward paths are edge-disjoint, after the change B shares
the whole u → y sub-path with only F . Therefore, this change decreases the
rank of the solution. The existence of an optimum solution with a smaller rank
contradicts the selection of (F, B) and completes the proof. ut

D.2 Proof of Lemma 2

Proof. Let 〈v1, v2, . . . , v|T |〉 denote a state of the game in which token ti is placed

on vertex vi and G∗ be a graph containing n|T | vertices, where each of its ver-
tices corresponds to one state of the game. For every state 〈v1, v2, . . . , v|T |〉 of
the game and every move m ∈ M which is applicable to 〈v1, v2, . . . , v|T |〉, we
add an edge from vertex 〈v1, v2, . . . , v|T |〉 of G∗ to vertex 〈v∗1 , v∗2 , . . . , v∗|T |〉 with

weight Ĉ(m), where 〈v∗1 , v∗2 , . . . , v∗|T |〉 is the state of the game after applying m

to 〈v1, v2, . . . , v|T |〉.
In order to solve the game, we need to find a sequence of moves which trans-

ports all of the tokens from s to t with the minimum cost. This is equivalent
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to finding the shortest path from vertex 〈s, s, . . . , s〉 of G∗ to vertex 〈t, t, . . . , t〉
which can be determined with the Dijkstra algorithm. Since the running time of
the Dijkstra algorithm is |E(G∗)| log |V (G∗)|, we can find the optimum solution
of the game in time O(n|T ||M| log(n|T |)). ut

D.3 Proof of Lemma 3

Proof. After each move, the state of the game changes in one of the following
ways:

1. A token Fi moves through an edge.
2. Token B moves through an edge in the backward direction.
3. Token B and a token Fi swap their positions.

The cost of each move of type 3 is equal to the weight of the shortest path from
the position of Fi to the position of B. Therefore, we assume that in these moves,
token Fi moves to the position of B through the shortest path and token B goes
back to the position of Fi along the same path in the opposite direction. Note
that, token B always traverses the edges in the opposite direction, therefore we
can assume that token B traverses a path from t to s in the backward direction.

Let pi be the walk that token Fi traverses from s to t and q be the walk from
t to s that B traverses in backward direction. The total cost of the game is equal
to

w(p1) + w(p2) + . . .+ w(pk) + w′

where w(pi) is the length of the path pi and w′ is the sum of all moves of type
2. Therefore we pay at least max{f∗(e), b∗(e)} times the weight of each edge e
where f∗(e) and b∗(e) denote the number of occurrences of e in {p1, p2, . . . , pk}
and q, respectively. Thus, the cost of the game is at least C(p1, p2, . . . , q), hence

opt(I) ≤ opt(Cor(I)).

ut

D.4 Proof of Lemma 4

Proof. In order to prove this lemma we use Lemma 1 which states there exists an
optimal solution for I which is reverse-compatible; Let it be (F1, F2, . . . , Fk, B).
We provide a solution for Cor(I) with the total cost equal to C(F1, F2, . . . , Fk, B).

Let {r1, r2, . . . , rd} be the set of maximal sub-paths of B which are shared
with paths F1, F2, . . . , Fk.

Initially all of the tokens are placed on vertex s. While token B has not
reached vertex t, we do the following:

– We move token B along the path B in the opposite direction with moves of
type (2) until it arrives at the end of a sub-path in {r1, r2, . . . , rd} or reaches
the vertex t. In the former case, let ri be the sub-path that B is standing on
its end and Fj be the path that shares ri with B. We move token Fj to the
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beginning of the sub-path ri using moves of type (1) and swap the positions
of the tokens B and Fj . In the latter case, we move each token Fi along the
path Fi with moves of type (1) until it reaches vertex t.

Since each pair of paths (Fi, B) is reverse-compatible, all of the tokens Fi traverse
sub-paths r1, r2, . . . , rd with moves of type (3), therefore the total cost of the
moves is

w(F1) + w(F2) + . . .+ w(Fk) + w(B)− w(b̂1)− . . .− w(b̂|B|)

where w(x) is the length of the path x. This is equal to C(F1, F2, . . . , Fk, B).
Therefore, we have opt(I) ≥ opt(Cor(I)). ut

D.5 Proof of Theorem 3

Proof. Let I be an instance of the 2-SCSS-(k, 1). According to Lemmas 3 and
4, we have opt(I) = opt(Cor(I)).

Since the number of moves inM is O(n2d), by Lemma 2 we can solve Cor(I)
in time O(n|T ||M| log(n|T |)) which is O(nO(k)). Let Fi be the path of token Fi
and B be the path that token B traverses in the opposite direction in an optimal
solution of Cor(I). Since opt(I) = opt(Cor(i)), {F1, F2, . . . , FkB} is an optimal
solution for I. ut

E Omitted Proofs from Section 3

E.1 Proof of Theorem 4

Proof. For each 1 ≤ i, j ≤ k let si,j ∈ Si,j be the vertex in the solution of the
Grid Tiling* instance. Therefore for every i ∈ k we know that each of the k
vertices si,1, si,2, . . . , si,k have the same x-coordinate, say δi. Similarly for every
j ∈ [k] each of the k vertices s1,j , s2,j , . . . , sk,j has the same x-coordinate, say
γj . We use the following path for the t s path in our solution:

– First use the edge (t, ak). This incurs weight 0.
– For each k ≥ i ≥ 2, use the canonical ai  bi path P δii followed by the path
bi → ei → fi → ai−1. This way we reach a1. Finally use the canonical path
P δ11 to reach b1. The total weight of these edges is α · k +W (k − 1).

– Finally use the edge (b1, s) of weight 0.

Therefore, with a total cost of α · k + W (k − 1) we have an t  s path. Since
we have used all the k − 1 connector edges in the t  s path, we can now use
them for free in s  t paths. In particular, we get k − 1 s  t paths given by
s→ ei → fi → t for each 2 ≤ i ≤ k. Note that the total cost of these k−1 s t
paths is 0, since for each 2 ≤ i ≤ k the edge (ei, fi) is obtained for free (since it
was used in the t s path) and both the edges (s, ei) and (fi, t) have weight 0.

Now, for each j ∈ [k], we add the canonical cj  dj path Q
γj
j . For each

j ∈ [k], note that the edges (s, cj) and (dj , t) have weight 0. Hence, for each

17



j ∈ [k] we get an s  t path whose weight is exactly equal to α. However,
now the canonical paths will encounter a green or orange vertex in each gadget
(depending on whether the gadget is symmetric or asymmetric). As shown in
Figure 2, we can save 2 in every symmetric gadget and 1 in every asymmetric
gadget. Since number of symmetric gadgets is k and number of asymmetric
gadgets is (k2 − k), we save a total weight of 2k + (k2 − k) = (k2 + k).

Hence, the total weight of the solution is equal to
(
α · k + W (k − 1)

)
+ α ·

k − (k2 + k) = β. ut

E.2 Proof of Lemma 5

Proof. The only outgoing edge from t is (t, ak) and the only incoming edge into
s is (b1, s). Hence, the t s is essentially a path from ak  b1. Since the edges
in the gadgets are oriented downwards and rightwards, the only way to reach a
gadget of level i−1 from a gadget of level i is to go to the vertex bi and then use
the path bi → ei → fi → ai−1. That is, we must use all the (k − 1) connector
edges which are given by (ei, fi) for each 2 ≤ i ≤ k.

The above argument also implies that we have an ai  bi path for each
2 ≤ i ≤ k. Since the only coming incoming edge into s is (b1, s) we must also
have an a1  b1 path in the solution. Therefore, the t  s path contains an
ai  bi path for each i ∈ [k]. Suppose there is some i ∈ [k] such that the ai  bi
path used in the t  s path uses any connector edge. Since we have already
used the connector edges to go from a gadgets of a certain level to gadgets of a
level above it, we now need to pay again for this connector edge. Therefore, the
weight of the optimum solution is at least W (k − 1) +W . We show below that
this is greater than β.

β = W (k − 1) + 2k
(
∆(nk + 1) + 4(k + 1) + 4k(n− 1)

)
− (k2 + k)

≤W (k − 1) + 2k
(
∆(nk + 1) + 4(k + 1) + 4k(n− 1)

)
= W (k − 1) + 2k

(
7n6(nk + 1) + 4(k + 1) + 4k(n− 1)

)
[Since ∆ = 7n6]

≤W (k − 1) + 2n
(

7n6(2n2) + 4(2n) + 4n2
)

[Since k ≤ n]

≤W (k − 1) + 2n
(

14n8 + 8n8 + 4n8
)

= W (k − 1) + 52n9

≤W (k − 1) + 53n9

= W (k − 1) +W [Since W = 53n9]

Contradiction. ut

E.3 Proof of Lemma 6

Proof. We can get at most (k−1) s t paths for free given by s→ ei → fi → t
since all the (k − 1) connector edges have been used by the t  s path. Let
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us call these paths as cheap paths. We now claim that the optimum solution
uses all the (k − 1) cheap paths. Suppose not. Let P be the s t path used in
optimum instead of a cheap path. Note that the only outgoing edges from s are
to {c1, c2, . . . , ck} and the only incoming edges into t are from {d1, d2, . . . , dk}.
Moreover, the t  s path in the optimum does not use any blue edge incident
on {c1, c2, . . . , ck} or {d1, d2, . . . , dk} since that either brings us back to t or we
have already reached s. Hence, P pays now at least two blue edges. Replacing
P by a cheap path gives a solution of smaller weight than optimum, which is a
contradiction. Therefore, the optimum solution contains exactly (k − 1) cheap
s t paths.

Suppose there is another s  t path uses a connector edge. Since there are
exactly (k − 1) connector edges, some connector edge is used by two different
s  t paths. Hence, the weight of the optimum solution is ≥ W (k − 1) + W =
Wk > β, which is a contradiction. ut

E.4 Proof of Lemma 7

Proof. From Lemma 5, for each i ∈ [k] we know that any optimum solution
contains an ai  bi path which does not include any connector edge, i.e., the
edges of this ai  bi path are contained among the gadgets of level i. We must use
at least one blue edge incident on ai and one blue edge incident on bi. Let the blue
edges incident on ai, bi be from the canonical paths P `i , P

`′

i . Since the edges in
gadgets are oriented downwards and rightwards, it follows that `′ ≥ `. Hence the
sum of weights of the blue edges is given by ∆(nk−ni+n+1−`)+∆(ni−n+`′) =
∆(nk + 1) + (`′ − `) ≥ ∆(nk + 1). ut

E.5 Proof of Lemma 8

Proof. Suppose the expensive path is cj  d` path. Since expensive paths do
not use connector edges, we have ` ≥ j. We consider two cases: ` = j and ` > j.
Suppose ` > j. The minimum weights of any blue edges incident on cj , d` are
∆(nk−nj+1), ∆(n`−n+1) respectively. Hence, the sum of weights of these edges
is ∆(nk−nj+1)+∆(n`−n+1) = ∆(nk+1)+∆+∆(n(`−j−1)) ≥ ∆(nk+2).

If ` = j, then let the blue edges incident on cj , dj be from the canonical paths

Qrj , Q
r′

j . Since expensive paths do not use connector edges, we have r′ ≥ r. The
weight of blue edges incident on cj from canonical path Qrj is ∆(nk−nj+n+1−r)
and the weight of the blue edge incident on dj from the canonical path Qr

′

j is
∆(nj − n + r′). Hence, the sum of weights of these edges is ∆(nk − nj + n +
1 − r) + ∆(nj − n + r′) = ∆(nk + 1) + ∆(r′ − r)) ≥ ∆(nk + 1), with equality
if and only if the path is canonical (recall an expensive path does not use any
connector edges).

ut

E.6 Proof of Lemma 9

Proof. From Lemma 7, we know that the sum of weights of blue edges incident
on ai and bi on the ai  bi path in any optimum solution is at least ∆(nk + 1)
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for each i ∈ [k]. From Lemma 8, we know that the sum of weights of the blue
edges in any expensive path is at least ∆(nk + 1). Moreover, these blue edges
are incident on some cj and d` for some k ≥ ` ≥ j ≥ 1. Hence, the total weight
of blue edges is at least 2k ·∆(nk + 1). ut

E.7 Proof of Lemma 10

Proof. From Lemma 5, we know that for each i ∈ [k] there is an ai  bi path
in the optimum solution which does not include any connector edge. Hence, the
edges of this ai  bi path are contained in the gadgets of level i. Hence, we need
to at least buy the set of horizontally right black edges which take us from ai
to bi. These black edges have cost 4(k + 1) + 4k(n − 1). Since the edges of the
ai  bi paths are contained in the gadgets of level i and the sets of horizontally
right black edges in gadgets of different levels are disjoint, the total weight of

horizontally right black edges is at least k
(

4(k + 1) + 4k(n− 1)
)

. Similarly, let

cj  d` be an expensive path for some ` ≥ j. Again, we need to at least buy
at least the set of vertically downward black edges which take us from cj to
d`. These vertically downward black edges have total cost 4(k + 1) + 4k(n− 1).
Even though two expensive paths may use the same vertically downward edges,
they are both to be used in s  t paths and hence we must pay for them each
time. Hence, the total weight of the horizontally right black edges is at least

k
(

4(k+ 1) + 4k(n−1)
)

. Combining the two observations above, we get that the

total weight of black edges (horizontally right and vertically downward) in the

optimum solution is 2k
(

4(k + 1) + 4k(n− 1)
)

. ut

E.8 Proof of Lemma 11

Proof. Suppose an expensive path is not canonical. Hence, from Lemma 8, the
contribution of the blue edges of this expensive path is ≥ ∆(nk + 2). From
Lemma 9, it follows that the contribution of the blue edges to the optimum is
at least 2k ·∆(nk + 1) +∆.

Refer to Figure 2. Note that we can use each shortcut at most
(
k+1
2

)
times,

once for each pair of paths that will meet at the orange or green vertex (note
that there are total k + 1 paths ). There are k · n green edges (n in each of the
k symmetric gadgets). Since each green shortcut can save a weight of 2, we can
save at most 2k · n from the green edges. Note that in the asymmetric gadgets,
there are no shortcuts along the diagonal. Hence, an asymmetric gadget can
have at most (n2 − n) orange edges. There are (k2 − k) asymmetric gadgets
and we can save a weight of 1 from each orange edge. So, we can save at most
(n2 − n)(k2 − k) from the orange edges. Hence, total maximum saving is(

k + 1

2

)(
2k · n+ (n2 − n)(k2 − k)

)
≤ 4k2

2
· (2n2 + n4) [Since k ≤ n]

≤ 2k2 · (3n4)

≤ 6n6
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We now claim that the cost of our solution exceeds β, even if we allow this max-
imum possible saving. Recall that we have cost of W (k − 1) from the connector
edges. Hence, the cost of our optimum solution is at least

OPT ≥W (k − 1) + 2k ·∆(nk + 1) +∆+ 2k
(

4(k + 1) + 4k(n− 1)
)
− 6n6

= W (k − 1) + 2k ·∆(nk + 1) + 2k
(

4(k + 1) + 4k(n− 1)
)

+
(
∆− 6n6

)
= W (k − 1) + 2k ·∆(nk + 1) + 2k

(
4(k + 1) + 4k(n− 1)

)
+ n6 [Since ∆ = 7n6]

> W (k − 1) + 2k ·∆(nk + 1) + 2k
(

4(k + 1) + 4k(n− 1)
)

> W (k − 1) + 2k ·∆(nk + 1) + 2k(4(k + 1) + 4k(n− 1))− (k2 − k)

= β [From Equation 1]

Contradiction. ut

E.9 Proof of Lemma 12

Proof. Fix some i ∈ [k]. From Lemma 5, we know that the ai  bi path in
the optimum solution does not include any connector edge, i.e., this path is
completely contained in the gadgets of level i. Suppose to the contrary that the
ai  bi path in the optimum solution is not canonical. From the orientation
of the edges in the gadgets of level i (rightwards and downwards), we know
that there is a ai  bi path in the optimum solution that starts with the blue
edge from P `i and ends with a blue edge from P `

′

i for some `′ > `. Hence, the
contribution of these blue edges is ∆(nk − ni + n + 1 − `) + ∆(ni − n + `′) =
∆(nk+1)+∆(`′−1) ≥ ∆(nk+1)+∆. Now, a similar argument as in Lemma 11
can be applied to show that the cost of this optimal solution is greater than β.
Contradiction. ut

E.10 Proof of Theorem 5

Proof. By Lemma 11, we know that
∑k
i=1 λi = k and λi ≥ 0 for each i ∈ [k].

We now claim that λi = 1 for each i ∈ [k].
Let our optimum solution be X . By Lemma 11 and Lemma 12, we know that

X contains

– An ai  bi almost canonical path for every 1 ≤ i, j ≤ k.
– k canonical expensive paths.

In addition, X contains (k−1) connector edges. For the moment let us forget the
shortcuts we did in Figure 2. The weight of X , without considering the shortcuts

from Figure 2, is equal to W (k − 1) + 2k
(
∆(nk + 1) + 4(k + 1) + 4k(n− 1)

)
=

β+ (k2 + k). Therefore, we must have at a saving of ≥ (k2 + k) from the orange
and green shortcuts.
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By Lemma 12, we know that for each i ∈ [k] there is exactly one ai  bi
path. Moreover it is almost canonical. Recall that only the horizontal edges can
save some weight (see Figure 2). Therefore, we can use at most k green edges
(one for each symmetric gadget). Each canonical expensive path can use (k− 1)
orange edges; once for each of the (k− 1) asymmetric gadget that it encounters
along the way. Suppose we use δ green edges for some δ ≤ k. Then the total
saving is (k− 1)

∑k
i=1 λi + 2δ = k(k− 1) + 2δ. Since we want the total saving to

be at least k(k−1)+2k, this forces δ ≥ k. But, we already know that δ ≤ k, and
hence δ = k. This forces that λi = 1 for each i ∈ [k] as follows: If any λi = 0,
then we cannot use the green edge in the symmetric gadget Gi,i. If any λi ≥ 2,

then some other λj = 0 (since
∑k
i=1 λi = k) and we return to previous case.

Therefore, the total saving is exactly k(k − 1) + 2k
So, we have that for each j ∈ [k], there is a canonical cj  dj path in X , say

Q
γj
j . Further, X also contains an ai  bi almost canonical path for any i ∈ [k],

say Pαii . The fact that we have a saving of at least k(k − 1) + 2k implies we
have exactly one intersection in each symmetric gadget and each non-symmetric
gadget. By construction of the gadgets, it follows that

– γi = αi for each i ∈ [k]
– For each 1 ≤ i 6= j ≤ k there is an edge (αi, γj).

That is, the set of values (αi, γj) ∈ Si,j for each 1 ≤ i, j ≤ k form a solution for
the Grid Tiling* instance. ut

E.11 Proof of Theorem 2

Proof. Theorem 4 and Theorem 5 together imply the W[1]-hardness. They also
give a reduction which transforms the problem of k × k Grid Tiling* into an
instance of 2-SCSS-(k, 1) where we want to find k paths from s  t and one
path from t s.

Chen et al. [4] showed for any function f an f(k)no(k) algorithm for Clique
implies ETH fails. Composing the reduction of [15] from Clique to Grid Tiling*,
along with our reduction from Grid Tiling* to 2-SCSS-(k, 1), we obtain under
ETH there is no f(k)no(k) algorithm for 2-SCSS-(k, 1) for any function f . This
shows that the nO(k) algorithm for 2-SCSS-(k, 1) given in Section 2 is optimal.

ut

F 2-SCSS-(k1, k2) Does Not Always Have
Reverse-Compatibility

In the 2-SCSS-(k1, k2) problem we want k1 paths from s  t and k2 paths
from t  s. So, we define a natural generalization of Definition 1 to reverse-
compatibility of a set of forward paths and a set of backward paths as follows.

Definition 8. Let F = {F1, F2, . . . , Fk1} be a set of paths form s to t and
B = {B1, B2, . . . , Bk2} be a set of paths form t to s. We say (F,B) is reverse-
compatible, if for all 1 ≤ i ≤ k2, (F, Bi) is reverse-compatible.
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The following example has a unique optimum solution to 2-SCSS-(2, 2). How-
ever, this solution is not reverse-compatible. This shows that Lemma 1 does not
hold for the 2-SCSS-(k1, k2) problem when both k1 and k2 are greater than 1.
This shows that Lemma 1 is in its most general form.

Example 1. In Figure 4 each solid edge has weight one and each dashed edge
has weight zero. Note that, solid edges are from left to right and dashed edges
are generally from right to left. Length of each shortest path from s to t is 7,
and there are exactly two such paths. p1 := s, v1, v2, v3, v4, v5, v6, t and p2 :=
s, u1, u2, u3, u4, u5, u6, t. Thus, any optimum solution to 2-SCSS-(2, 2) has cost
at least 14. In addition, if we select both p1 and p2 we can select two paths
q1 = t, u3, u4, s and q2 = t, u1, u2, v1, v2, v3, v4, v5, v6, u5, u6, s from t to s without
any cost. Therefore, ({p1, p2}, {q1, q2}) is an optimum solution to 2-SCSS-(2, 2)
with cost 14.

If we select paths p1 and p2 as forward paths, (q1, q2) is the only pair of
backward paths which is free. On the other hand, if we select one of p1 or p2
twice, there is no free backward path. Thus, ({p1, p2}, {q1, q2}) is the unique
optimum solution to 2-SCSS-(2, 2). However, one can see that paths p2 and q2
are not reverse-compatible.

Fig. 4. An example of a graph which does not have a reverse-compatible optimum
solution for 2-SCSS-(2, 2).
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