
Tool Supported Detection and Judgment of
Nonconformance in Process Execution

A Scholarly Paper

Nico Zazworka

University of Maryland
Department of Computer Science
College Park, MD, 20742, USA

nico@cs.umd.edu

ABSTRACT
In the past decades the Software Engineering community has proposed a large collection
of software development life cycles, models, and processes. The goal of a major set of
these processes is to assure that the product is finished within time and budget, and that a
predefined set of functional and non functional requirements (e.g. quality goals) are
satisfied at delivery time. Based upon the assumption that there is a real relationship
between the process applied and the characteristics of the product developed from that
process, we developed a tool-supported approach that uses process nonconformance
detection to identify potential risks in achieving the required process characteristics. In
this paper we present the approach and a feasibility study that demonstrates its use on a
large-scale software development project in the aerospace domain. We demonstrate that
our approach, in addition to meeting the criteria above, can be applied to a real system of
reasonable size; can represent a useful and adequate set of rules of relevance in such an
environment; and can detect relevant examples of process nonconformance that provide
useful insight to the project manager.

1. INTRODUCTION

Software engineering process is an important contributor to the development of quality
software products within time and within budget. In many cases, the application of tested
development processes is the best mechanism for maximizing the chances of achieving a
predefined set of functional and nonfunctional requirements and minimizing risks. The
term “software engineering process” has been defined as “the system of all tasks and the
supporting tools, standards, methods, and practices involved in the production and
evolution of a software product throughout the software life cycle.” [1] As such, software
engineering processes can encompass decisions about macro-level issues, such as the best
way to organize the overall software lifecycle, as well as very specific issues, such as
what risk indicators to monitor and what to do when they are observed. The degree of
detail and rigor in defining software development processes should ideally vary from one
organization to another, and be aligned to the business and technical goals of the
organization.
Common to all software processes is the need to assess the behavior of developers in
actual practice against the processes themselves: The best process will not actually result

in improvement if never executed. Effectively assessing process conformance requires
making a decision about the appropriate next step when mismatches are found between
process and practice. Such mismatches can sometimes indicate issues where practice can
be improved, and sometimes issues where impractical processes can be better adapted to
the specific development context.
To address these issues we propose a tool-supported approach to process assessment. Our
approach is general enough that many different types of process rules can be formulated,
and indeed, we expect that different types of rules will be necessary in different types of
organizations. We argue that, to be useful in practice, such an approach needs to:

• Require minimal changes to existing work habit and minimal additional effort on
the part of software developers, ideally using existing data or information to
reason about process conformance

• Detect process nonconformance as quickly as possible, to allow corrective actions
to be taken if necessary.

• Allow the investigation of causes and risks due to process nonconformance, for
example to rule out false positives or instances where the practice is appropriate
and the process may need to change.

In this paper, we present our approach and a feasibility study that demonstrates its use on
a large-scale software development project in the aerospace domain. We demonstrate that
our approach, in addition to meeting the criteria above, can be applied to a real system of
reasonable size; can represent a useful and adequate set of rules of relevance in such an
environment; and can detect relevant examples of process nonconformance that provide
useful insight to the project manager.

1.1 Why monitor the process?

We begin by assuming that there is a relationship between the process and the product,
i.e., we perform certain processes to assure certain product characteristics. For example,
if we expect a system to be safe, we should be analyzing safety hazards, building a hazard
tracking system. If we are not performing any of these tasks, then the final product is in
risk of not being safe. Or, if we expect a system to be reliable, we might select a set of
process such as requirements reviews, design, reviews, code reviews, various testing
techniques with the goal of maximizing the reliability of the final system. The set of
processes are chosen based upon experience, past history of success, etc. The more
evidence we have, the better the chances are that we will achieve success with respect to
our goal. So, if we can evaluate whether the process is being followed or not, we have an
insight into whether we are at risk of achieving the goals for the project.
The major assumption here is that there is a relationship between the selected processes
and the project characteristics. One can argue that in the field of software development,
this relationship is not always clear, i.e., we do not always have sufficient evidence that a
particular set of processes will yield a particular characteristic. However, testing the
expected relationships and building knowledge about the relation between process and
product is necessary ingredient of any engineering field. We need to be able to identify
and be assured of this relationship. For now, we can say that if a set of processes
represents our best understanding about how to achieve the desired system qualities, then

not performing the processes correctly presents a risk to the development project.
Measuring and monitoring the lack of process conformance in executing the chosen
processes provides valuable information about the risk that the final product will not

have the specified requirements.

1.2 Process Conformance

Process conformance is a measure of how much the executed process complies with the
defined process. In a software project, it is important that "the process which is carried
out and observed is the same as the process intended” [2]. We argue in the next section
that in most scenarios we cannot assess the executed process in enough detail to assure
that the executed process fully complies with the planned, defined process. However, the
weaker form of validation, i.e. the detection of process violations (or process

nonconformities), is possible and useful.

1.2.1 Defining and Measuring the Process

We can view processes as recipes to guide developers in order to achieve a consistent
level of execution quality. They typically can be divided into activities, tasks, and
methods [3] and provide a (partial) order of execution. In some cases this order can be
described in natural language, in other cases models and methods exist [4] to express the
order in a more formal manner (e.g. flow charts, finite state machines). In order to define
a process in all detail multiple, complimentary viewpoints have to be supported by the
model and definition [5]. Two example viewpoints are the functional viewpoint that
describes the steps that have to be carried out (what is done), and the behavioral
viewpoint that defines when and how these steps are performed.
The two main issues with measuring the executed process are: what can we measure and
what does it cost to measure it.

First, we may not be able to measure all aspects of a process, especially those activities
executed outside the measurement environment, i.e. in the heads of the programmers.
Second, we need to worry about the cost of measuring. Depending on the granularity of
the process definition, it can be very costly to collect all process data needed to confirm
that the process has been totally conformed. Another concern one have to have in mind is
that the more data is collected (e.g. through human effort), the higher the chance to
interfere with the measured process itself (e.g. though a Hawthorne effect [6]).
To minimize cost we check only those more critical steps, and more specifically those
that can be checked automatically without any human effort. This focuses our attention
on where we might use the human effort to check further. Plus, we can provide support
for interpreting what we see in both cases. As we will demonstrate, this type of
nonconformance checking is both possible and cost effective.

1.2.2 Partial Nonconformance Detection

Our approach to measuring process conformance is to identify a partial set of

nonconformities; that is a subset of all occurring process nonconformities. It does neither
require a complete process definition down to the last level of detail, nor a complete set
of measurements characterizing all aspects of the process. This allows us to tailor the
detection process specifically to the project at hand, i.e., depending on what data is
available or can be collected cheaply, how detailed are the processes themselves, where

can the greatest insights be achieved. As the feasibility study will demonstrate, even a
partial set of nonconformities is rich enough to give the project manager insight into the
quality of process execution.
Given the process plan, the detection of nonconformities is done by analyzing a set of
intermediate products resulting from the application of the process, and testing whether
expected properties hold. Intermediate products can include available code components,
schedules, test plans, etc. Tested properties can include items such as completion dates,
size, defects detected, and many others. Nonconformities are patterns in the historical
data that do not comply with the specified process.
The second step in the approach is to relate nonconformities to risks for not achieving the
process’ goal. To do this, we provide a visualization framework that helps users judge if
an occurring nonconformity represents a real risk or not. As the feasibility study will
show, not all process nonconformities result in an immediate risk. In our opinion it is a
necessary step to provide the project manager with sufficient information to make
decisions about whether, how, and when to make changes to the software development
project (e.g. the process definitions, resources).

2. RELATED WORK
A need for checking process conformance has been widely noted in the field of software
process improvement and quality management. Various ISO standards emphasize process
conformance: ISO 9000 recommends we "initiate action to prevent the occurrence of any
nonconformities relating to product, process and quality system" [7] and ISO 12207 on
software life cycle processes states "It shall be assured that those life cycle processes (...)
comply with the contract and adhere to the plans."[8].
Further evidence exists, that we cannot assume that processes are executed the way
intended. In an empirical study investigating reading techniques conducted by Lanubile
and Vissagio [9] the researchers found that "(...) less than one third of Checklist
reviewers could be trusted to have used the checklist and one fifth of the PBR reviewers
could be trusted to have followed the assigned scenario." They conclude that "This
experiment provides evidence that process conformance issues play a critical role in the
successful application of reading techniques and more generally, software process tools."
The study was performed in a classroom with students, however there is no good reason -
and to our knowledge no empirical evidence - that processes executed in professional
environments comply with their definition by default. The feasibility study conducted
later in this paper further provides evidence for this claim.

2.1 Process Measurement

As stated in earlier work [2] one crucial requirement to judge process conformance is to
observe and measure the process itself, e.g. through observation of programmers or
measurement of intermediate versions of the product. Several techniques with different
payoffs exist [10]. Cognitive laboratory settings where programmers are constantly
observed by multiple researchers through a one sided mirror might give the most insight
but are unrealistic to realize in professional settings due to cost and artificiality of the
setting. The chance of introducing a Hawthorne Effect [6], in which observees behave
differently (e.g. follow a process more closely) because they are observed, is very high in
laboratory settings. A less intrusive method is remote monitoring (e.g. by capturing

screen content). However this method bears high cost in post analysis and brings along
security and privacy issues, e.g. when screen areas are captured with personal
information such as email. The third method for collecting process data is taking
predefined measurements from various sources ranging from measures reported by the
programmers themselves (e.g. effort sheets, questionnaires) to non intrusive collection
tools that capture performed actions for a set of applications (e.g. Hackystat [11] and
UMDInst[12]) to automatically computed measures based on probes from code
repositories and bug tracking systems. This mix of information can give, if wisely
chosen, a fair amount of insight. We offer a selection process in the approach section.

2.2 Process Conformance Evaluation

Approaches to detect process violations in the context of software engineering processes
have been proposed by Cook and Wolf [13]. Their approach focuses on measuring the
distance between a predefined process model and a sequence of events. They use
different distance measures including parameterized, weighted distances to account for
different severities of violations (i.e. some events are more severe if they are missed than
others). Our approach differs in two ways: first we do not require capturing full event
sequences (or deriving them from of the historical data), and second we help a human to
judge the severity or risk of the nonconformities by providing insight into the collected
data. In some sense Cook and Wolf’s approach is more complete in terms of the amount
of nonconformities detected, but also more expensive by requiring the extraction or
capturing of all executed events represented in the model. Future work will focus on
assessing the completeness and precision to compare this approach to ours.
Another approach to quantify the agreement between the executed process and the
planned process is measuring the outputs of the process, namely the quality and time
taken, to calculate a deviation vector as presented in [2]. This approach does not take the
followed process steps into account, but only the outputs. It is capable of detecting
deviations on the functional and behavioral level, even if it is not able to distinguish both.
However, there are some drawbacks. First the approach can only be applied after the
process execution when results are available, second it requires a good estimate of the
expected process output variables, and third it does not give insight into which steps have
been violated and therefore provides less information about the causes of the deviations.

3. PROPOSED APPROACH

The following section describes the nonconformance and risk assessment approach we
developed to find nonconformities in the executed process. Before describing the tasks
and techniques used, we derive a set of requirements the approach should satisfy.

3.1 Requirements

As already pointed out earlier, requirements for an approach detecting risks regarding
non process conformance include non interference with ongoing processes and ideally
minimal overhead for data collection activities.
Another requirement for our approach is the detection of process nonconformities during

execution of the process. Previous work focused on validating conformance at the end of
the process (e.g. through questionnaires and post data analysis [9]). Detecting and
reporting the above stated risks during execution is highly beneficial for the outcome of

the project. Early detection and prediction techniques can help to select the according
countermeasures to minimize impacts to the schedule and final product quality.
In addition to detecting nonconformities, techniques are needed to assign risks and

uncover causes. Simply detecting nonconformities with no insight as to where causes can
be found and without judgment of the risk level is of limited use for the project manager
who has to make decisions about further steps.
Last, we need to ensure that the knowledge gained in the process can be used in future
projects. This includes information starting from the initial set of non conformance
detection algorithms and risk definitions chosen at the beginning of the project, to
information regarding which risks arise during execution and what impact they have on
the goals, and finally to which countermeasures are taken and what impact they have in
reducing the risks. Therefore formalization in the form of templates is necessary to
collect experience about the risk assessment. This structured information can then be
stored in an experience base [14] to be beneficial for future projects.

Figure 1: Process flow for nonconformance detection and risk assessment approach

(conformance approach).

3.2 Conformance Process
Based on the requirements defined in the last chapter our proposed non conformance
detection and risk assessment approach (in the following sections simply referred to as
conformance approach) is specified as a set of steps that accompany the executed
processes. Figure 1 shows the conformance approach from a top level view; a precise
description for each step is given in the each of the next subsections. We recommend that
the necessary steps are executed by a person in an analyst role (or in a small project

setting the manager her/himself) to avoid interference with the ongoing processes
(performed by the development team) and to avoid a bias of any kind. To help the reader
understand the following ideas, we are going to use one process from the feasibility study
as an example throughout the description.

3.2.1 Process and Nonconformance Definition

The first step (Figure 1: step 1) is to define the processes intended to execute in some
manner. For each process a process conformance template is filled out. An empty
template is given in Table 1. The first item to be filled in is a semi formal description of
the process. We are not restricted to any specific representation of the process since
processes are defined in many different ways. The requirement is solely that in the next
step one can define patterns in the collected data that do not comply with the definition.
In our feasibility study we used finite state machines (FSM) and lists (Excel
spreadsheets) as definitions. One could also think of using less formal descriptions, like
unambiguous natural language expressions such as "Every class should have one
according testing class at any time," or baselines (e.g. “The number of classes infected
with ‘god class’ code smells should not exceed 10% of the system size” [15]). The
second field is the goal of the process that describes which quality attributes the process
should assure or improve.

Process Name A unique identifier.

Process

Description
Semi formal description of the
process.

Process Goal The characteristic the process
should improve or ensure on the
final product.

Collected Data Describe which data has to be
collected automatically, and
manually.

Nonconformance

Items

A list of situations that do not
conform to the process description
and can be measured / detected.
Describe how the available data
sources are used to detect the
situations.

Table 1: The Process Conformance Template

Example

In our study each developed component was expected to go through a defined life cycle

that can be expressed by the non deterministic FSM given in Figure 2. The life cycle

process starts with coding. Once the component is developed successive unit testing and

code reviews are applied until no more defects can be found. Developers were asked to

report the dates when they finished the testing and review tasks (including fixing the

detected defects) for each component. Automatically collected data was provided by the

code repository (i.e. CVS1). The states TESTING and REVIEW could be further

decomposed. In our example, the granularity of the given model is sufficient for the

conformance detection presented in the next sections.

In a second step the analyst extends this template by specifying a set of non conformance
rules. Nonconformance rules are measurable situations that violate the process definition
and are the key idea of our approach. To define a set of nonconformance rules the analyst
describes patterns appearing in the collected data that do not conform to the process.
Example

In our study example, one can imagine many situations that violate the process definition

(FSM). The following (incomplete) enumeration lists some of them:

1. Changes (e.g. modifications, additions, deletions) to components that already

completed the life cycle.

2. Omission of one or both of the quality assurance tasks, unit testing and code

review.

3. Omission of bug fixing after defects were found.

4. No retesting and re-review after bug fixing.

The data collected during process execution restricts the analyst in the amount of

nonconformities that can be checked. In other words, which of the above nonconformities

can be detected, and which not, depends on the amount and type of collected data. As an

example, checking a nonconformance for item 3 (omission of bug fixing after detecting

bugs) was not possible since no data about reported bugs was available for analysis.

However, the data provided allows generating nonconformance items for situation 1: If a

component is changed in the code repository after it is reported as reviewed and tested

(taking the later date of both) then this does not conform to the process definition.

There is a strong relationship between the amount of possible nonconformance items and
the amount of automatically and manually collected data:

• The more data collected, the higher the number of possible nonconformities that
the analyst can specify and detect.

• To decide on the amount and type of collected data a GQM approach [16] can be
applied, that is selecting the right measures, based on the most important quality
goals, and type of nonconformities the manager is most interested in.

In general, automatically collected data should be favored, especially if the data is
already collected for other purposes (e.g. code repositories, bug tracking systems). The
amount of supplementary, manually collected data (e.g. effort and activity sheets,
interviews, etc.) should be kept as small as possible. As a rule of thumb, the payoff in
these cases (e.g. measured as return on investment) should be high when a
nonconformance is found. In other words, the expenses invested in data collection should
be lower than the expected expenses caused to fix the effects of the nonconformities.

1 http://www.nongnu.org/cvs/

Last, it is important to have in mind that manual data collection activities should not
interfere with the planned process.
The concept of non process conformance rules bears a strong analogy to assertions in the
methodology of software testing and verification. Both approaches specify predicates (i.e.
nonconformance rules) that are checked at run time of the model (i.e. the executed
process) to detect violations (i.e. nonconformities) against its specification (i.e. the
planned process). Finding a nonconformance item identifies logical inconsistencies in the
execution of the process. However, finding no violations does not guarantee a process
execution conform to the specification.

Figure 2: The expected testing and review process for each component (fd = number

of found defects).

3.2.2 Nonconformance Detection and Judgment

Once the nonconformities are defined, automated tools can be applied to detect them
using the data sources listed in the process definition (Figure 1: step 2). Depending on the
granularity of the data collection process, (e.g. daily or weekly commits to the code
repository and reporting of self reported data) the detection of nonconformance items can
be done over night or on weekends. Automated reports of nonconformities can be used
immediately for further analysis.
The next step to be addressed is the judgment of how much risk the detection of a
nonconformance bears according to the goal of the process (Figure 1: step 3).
Differentiating between different risks is necessary for several reasons:
First, the nonconformance item can express a quantitative measure. In our feasibility
study example, nonconformity is reported if at least one class has been changed after the
reported testing and review date. Further, the detection algorithm reports for how many
classes this applies. If this number is relatively small compared to the total number of
classes in the system (e.g. < 1%) the analyst would assign a lower risk than if this would
be the case for a major part (e.g. 20%) of the system.
Second, there are situations where a manual inspection can help to improve the risk
assessment. To illustrate, the reader should consider again the example given in the
previous section. To judge whether the files changed after testing and review pose a
threat to correctness, the analyst needs to inspect the source code changes themselves. If
these changes are solely changes that do not change the program behavior then they do
not pose a threat to the correctness of the program and can be assigned a lower risk or
even no risk. Examples for these kinds of changes are modifying documentation,
reformatting code without changing the semantics, internal renaming of variables, etc. On
the contrary, code modifications changing the behavior are a potential threat and bear a
higher risk. If the set of inspected items is too large to be inspected in this manual process
a random sample can be drawn to make the judgment with the help of a maximum
likelihood estimate.
In order to support the steps we implemented a tool that performs nonconformity
detection and helps the analyst to visually investigate the data infected with
nonconformities. A detailed description is given in Chapter 5.
After gaining enough insight the analyst can use the results to interview the right
developers in order to get a broader understanding why the nonconformities occur. The
interview should focus on finding cause-effect relationships and problems with the
defined process. As an example, causes of nonconformities in the testing and review
process could include:

• Programmers forgot to retest and re-review the code.

• There was not enough time for testing and review.

• Programmers did the retesting and re-review, but the self reported data was not
updated after the activity.

• Programmers decided that the changes do not introduce new defects.

• Changes were made by one programmer, but the programmer responsible for
testing and review was not informed.

• Programmers deviate from the process because retest and re-review after each
change is too cumbersome.

This information will help to construct possible solutions. These are presented to the
manager in the next step.

3.2.3 Advice and Rule Improvement

The last two steps (Figure 1: steps 4a and 4b) focus on outputs helpful for the manager
and the definition of the nonconformance rules. The first activity (advice) focuses on
giving the manager concrete options that will increase the agreement between executed
and planned process. The two possible directions are to modify the planned process in a
way that it complies more with the executed process, or to find ways to enforce the
planned process (e.g. by providing additional resources). The first case can be understood
as tailoring the planned process to its execution environment.
The last step in the iterative conformance process is to change the process description and
nonconformance detection according to the changes and observations made. It is crucial,
for the use of the knowledge in future projects, to record the observations (e.g.
nonconformance items and interpretations), the changes to the template (including the
reasoning why they were chosen), and the effects observed afterwards.

Process Name Correctness Process

Process
Definition

Given by FSM in Figure 2

Collected Data Automatically:

• Code repository

Manually:

• End of unit testing

• End of code review

Process Goal Process improves correctness on unit /
class level.

Nonconformance
Items and
Detection

Modifications to components after
finished testing and review date, detected
by using change data from repository and
reported finish dates.

Table 3: Process Template for the correctness process

4. FEASIBILITY STUDY

An initial feasibility study was performed on data captured during a software
development project from an industrial software application. The study demonstrates on
the one hand that there is a sufficient amount of nonconformance in the execution of
processes in real world examples, and on the other that the approach we are taking is
applicable and powerful enough to uncover real risks in such projects. However, since the
nonconformance detection is performed after the project’s lifetime it was not possible to
influence the process executions, such as changing processes and reevaluating the impact
of the changes.

4.1 Study Context

The development time of the target application from the domain of aerospace was two
years and split into four phases. Seven programmers worked on developing the software
and were required to deliver a running and tested version (build) at the end of each phase.
The final size of the application was 83 000 lines of code distributed over nearly 2000
components (Java classes). The following analysis focuses on the first and second phase
of the project.

4.2 Processes and Collected Data

We inspected two processes that were planned to track project progress (completion
process) and to increase correctness of the code (correctness process). The first process
defined for each component a time frame that described the start and end time of
development. The process definition was given in form of a list. The second implemented
process included testing (i.e. unit testing) and code review activities planned at the end of
the development time for each component.
Automatically collected data was gathered through the version control system. Further,
programmers had to fill in weekly information about when code review and testing
activities (including bug fixing) were completed. Both of these mechanisms were part of
the normal work environment at this organization.
We created nonconformance process templates for both processes. The examples given in
Chapter 3 already illuminate the generation of nonconformance rules for the correctness
process. For completeness, both process templates are given in Table 2 and Table 3.

4.3 Nonconformance Detection and Risk Assessment

We applied algorithms implementing these nonconformance items on the given data. A
description of the developed tool framework for nonconformance detection and
visualization is given in Chapter 5. For demonstration we plotted the number of detected
nonconformance items for both processes in Figures 3 and 5. Both graphs show the first
months of development.
Both graphs show an increasing number of nonconformance items over time. In the case
of process completion the number of delayed classes increases from the beginning on.
Further, the amount of undefined classes is very high: the repository contains more
undefined classes at any time than actually planned and developed classes. The number
of classes being developed too early is high in the beginning and decreases; this is logical
since these classes fall into the "on time" category once their planned start date is
reached.
As for process correctness, the number of modified components after testing/review
increases steadily from September on. In the end of the plotted time period 50 classes are
marked.
To judge the risks posed by the detected items it is necessary to investigate the data
closer. This is done on a recurring basis. As example for this paper we picked two fixed
dates for demonstration.

Process Name Completion Process

Process
Definition

Each developed component, given by its
expected java class name, should be
developed between its start coding and
end coding date. A list defines these dates.

Collected Data Automatically:

• code repository

Process Goal Process improves traceability and
predictability of project progress.

Nonconformance
Items and
Detection

Various items can be detected. At a
specific time t each class from the plan is
in one of the three states:

• before start of coding

• in coding (after start of coding,
before end of coding)

• after end of coding

Further each component in the repository
can be assigned one of the two states:

• existent in the repository

• nonexistent in the repository

Nonconformities are the following
combinations:

• {before start, existent}: a class
that is too early in the repository

• {in coding, nonexistent}: a class
that should be in coding phase
but cannot be found in the
repository: slightly delayed

• {after end, nonexistent}: a class
that should be finished with
coding and cannot be found in
the repository: delayed

• {undefined, existent}: a class in
the repository that cannot be
found in the plan: unexpected

Table 4: Process Template for the completion process.

4.3.1 Process Completion Risk Judgment

Figure 3 and Table 5 show that after 50% percent of project duration (08/21) of the first
phase the number of nonconformance items is already alarming high:

0

200

400

600

800

1000

1200

1400

1600

1800

2000

6
/1

3
/2

0
0

6

7
/1

3
/2

0
0

6

8
/1

3
/2

0
0

6

9
/1

3
/2

0
0

6

1
0

/1
3

/2
0

0
6

1
1

/1
3

/2
0

0
6

1
2

/1
3

/2
0

0
6

1
/1

3
/2

0
0

7

2
/1

3
/2

0
0

7

Time

N
u

m
b

e
r

o
f

c
o

m
p

o
n

e
n

ts

on time (developed) delayed

slightly delayed on time (not yet developed)

early unexpected

Figure 3: Found nonconformance items for process completion. The replanning that

was done after end of phase one (10/27) shows up in the graph as a drop. Further

the graph shows the conform components (labeled as “on time”): the lower ones are

the components already developed according to plan, the upper ones are the ones

not yet developed according to plan.

To make sense out of these numbers a visualization approach can help to get insight into
various aspects of the nonconformities. Our developed tool framework, described in
Section 5, maps the detected nonconformance items back to the observed data (i.e. the
source code repository). The goal is to give the analyst enough information to either
judge the risk immediately, or to give guidance to the developers that have to be
interviewed to make a judgment. The visualizations therefore give information about:

• When nonconformities occur: This helps to judge if certain events (such as a
change of process) trigger nonconformities, or if the number of nonconformities is
(abruptly) increasing, or decreasing.

• Where nonconformities occur: This helps to get insight into the distribution of
nonconformities over the population of elements (i.e. source code files), and judge
if certain parts (or clusters) of the software are more affected (e.g. packages) than
others.

• Who is involved: This helps to find the right developers for further interviews.

The visualization implements these three dimensions in space (when = x axis, where = y
axis) and color (color = developer).

Figure 4: Found nonconformance items for process correctness: the red fraction

represents the number of components modified after a completed testing and review

cycle. The risk of introducing defects into the code is high for these components.

Our initial hypothesis by looking at Figure 3 was that the developers were falling more
and more behind plan (based on the increase in the number of delayed components) and
that the high number of unexpected files can be explained by the import of external
libraries that were not defined in the plan.
However, the visual analysis of the four categories showed that all the nonconformance
types were distributed fairly uniformly over the number of developers and the parts
(packages) of the software system. Further, components marked as unexpected were
modified heavily and could be found in almost any of the packages. An example package
is visualized in Figure 5. It shows a two sudden increases (September and October) of
unexpected components developed by two programmers.
At this time we were able to interview a project participant with our results. The
participant explained that the static design of the application (developed in the design
phase down to class level) was changed by the programmers during the development. In
many cases, bigger classes were broken down into multiple smaller classes. This can
explain the amount of delayed classes (big classes) and unexpected classes (smaller
classes). The developers did not report those modifications, because the process did not
implement this step. Therefore the components in the project plan were never updated
with this information.
One might now ask which risks this divergence between the project plan and the actual
development implies for the process goal. Remembering the goal of the process
(traceability and predictability of project progress) one can argue that the risk is high that
the plan cannot provide a precise trace and prediction anymore, because it differs
significantly from the system developed in reality.
A second question a project manager would be certainly interested in is: will my project
be delayed? This question cannot be answered directly. The developers claim to have
implemented the necessary functionality into the split classes of the system. The project

plan however, does not defined in terms of functionality – it is therefore impossible to
check if the functionality in the unexpected classes sums up to the functionalities in the
delayed classes.
It is worthwhile mentioning that in reality the first phase of the project was delayed by
two weeks.

Figure 5: One package (LOGIC) with 30 java source files. The yellow (light grey)

and green (dark grey) authors mainly worked on these files. Each circle represents

one commit to the repository. A black triangle indicates that the component is

unexpected (not defined in the project plan). A white triangle shows that the

component is too early in the repository.

8/21 Number of Components

early 153

slightly delayed 33

delayed 96

unexpected 441

Table 5: Number of nonconformance items on 8/21.

4.3.2 Process Correctness Risk Judgment

Figure 4 indicates that the number of components modified after testing/review increases
significantly on October 8th. For each of the 24 nonconformance items the visualization
can be used to asses the risk introduced. To demonstrate, we used the visualization
features described in Figure 6 to distinguish six kinds of changes with different risk
levels:

• changing documentation (d) - no risk

• code formatting, e.g. changing code indent, deleting blank lines (no syntactical
change) (cf) - no risk

• code rewriting (syntax change, but no semantic change) (cr) - no risk

• add/delete of debugging (system.out.print) statements (so) - no risk

• semantic code changes (sc) - high risk

• addition of new functionality (af) - high risk

• deletion of functionality (df) - high risk

The last three categories pose a threat to correctness since these kinds of changes require
retesting and re-reviewing the component. After finding risk items the manager might be
interested in the reasons for these late modifications. Therefore, the analysis keeps track
of the names of the programmers performing the changes to guide interview sessions.

Component T/R
Date

Autor d c
f

c
r

s
o

s

c

a

f

d

f

Churn

Comp_a 7/24 A + + + + + - - 0.30

Comp_b 8/17 A + + - + + + + 6.98

Comp_c 8/10 A + - - - - - - 0.04

Comp_d 8/10 A + - + - - - - 0.02

Comp_e 8/10 A + - - - - - - 0.02

Comp_f 8/11 B,C + + - - - + - 0.12

Comp_g 8/11 B,C + - - - + + - 0.03

Comp_h 8/11 B - - - - + + - 0.35

Table 6: Risk assessment for a random selection of nonconformance items. Bold

components include sc (semantic modifications) / af (adding functionality) /df

(deleting functionality) changes, and pose a threat to correctness. The churn

measure shows how much lines of code relative to the T/R (test/review) date was

changed, e.g. 0.5 means 50% of lines were changed.

In cases where a complete manual inspection of all affected files is too costly, the analyst
might either want to draw a random sample from the set of affected components in order
to estimate the total number of high risk items, or focus on the ones that are promise to
pose a high risk first. In later case, the relative code churn measured after the

testing/review date can be helpful to guide to these components [17]. Table 6 shows an
excerpt of the risk judgment for October 8th.
The analysis showed that half of the nonconformance items included dangerous changes.
The risk that the correctness process will not achieve its optimal performance is certainly
elevated by these items.

Figure 6: CodeView: plots the history of one file. Every version is a column with

transitions between each of them. Free zooming from overview of whole history (top

picture) down to source code level (bottom picture). Transitions are colored the

following way: modified (blue), added (green), and deleted (red) lines visualize the

edit distance between two versions.

4.4 Advice and Rule Improvement

Since the investigated project was not observed at development time (but a-posteriori) we
did not have the chance yet to give advice directly to the manager and to measure the
impact on the nonconformities and risks. However, if we would have the chance then we
would have advised to tailor the completion process to account for design changes during
the development time of the project. Further we would advise to retest and review the
detected and analyzed classes that pose a risk to correctness in later states of the
development phase.
As rule improvements, one can think of further optimizing the detection algorithms for
the correctness process: they could eliminate more false positives by checking for the

type of changes automatically in most cases (documentation changes, code formatting
changes, and debugging changes).

5. TOOL FRAMEWORK

In order to detect nonconformities and to assess risks we built a tool (CodeVizard) that is
capable of gathering, mining, and visualizing information from source control
repositories (such as CVS and Subversion2).
The two main requirements implemented by the tool are the detection of nonconformance
items in a code repository and the visualization of the history enriched by these
nonconformities in order to help assessing the risk. Two main visualizations show the
history of the system (a collection of files and folders) or of a single file. Figure 5 shows
a part of the system view with labeled nonconformities (black and white triangles). To
investigate changes down to a single line level (as needed for the analysis in Table 6) the
code view lays out all versions of a file and a computed difference (string distance)
between. Then it lets the user dynamically zoom in and out to investigate single changes
(Figure 6).

6. CONCLUSION AND FUTURE WORK
In this paper we presented a new approach to detect nonconformities between a planned
and executed process. The process builds on defining templates and nonconforming
patterns in the collected process data. Further we present a way to assess and argue about
risks that arise from these nonconformities. Our approach is based on software
visualization techniques. A first feasibility study shows that the proposed process is
feasible and can be executed with the help of the developed tool framework. It further
shows that differences between the planned and executed process occur in even in very
process-driven industrial development environments and that (at least a meaningful
subset) of them can be found with the approach.
Further our approach satisfies the requirement of mainly building on automatically
collected data. The examples in the posterior study used mostly data that was collected
for version control. Finally we show that with our approach and this kind of data it was
possible to find deviations right from the start of the planned processes and continuously
during their execution.
Having shown the feasibility of our approach, we are working now on working with
ongoing development projects and providing the output of our approach in a more timely
way. This will better allow us to test whether the nonconformities that we find are useful
for monitoring the project in an ongoing way. This work will also allow us to compare
the cost, coverage, and precision of our approach to more typical work practices.

7. ACKNOWLEDGMENTS

This research was supported in part by NSF grant CF0438933, "Flexible High Quality
Design for Software" to the University of Maryland. The author would like to thank
Victor Basili, Forrest Shull, Daniela Cruzes, Steffen Olbrich, and Frank Herman for their
contributions to this work.

2 http://subversion.tigris.org/

8. REFERENCES

[1] Werth .“Lecture Notes on Software Process Improvement” by Laurie Honour Werth,
document number CMU/SEI-93-EM-8, copyright 1993 by Carnegie Mellon University.
http://www2.umassd.edu/SWPI/curriculummodule/em8.part1.pdf

[2] S. Sørumgård. “Verification of Process Conformance in Empirical Studies of
Software Development”. Ph.D. thesis, Norwegian University of Science and Technology,
1997.

[3] Marvin V. Zelkowitz and Dolores Wallace. Experimental Models for Software
Diagnosis. Technical report NISTR 5889, September 1996.

[4] A. Finkelstein, J. Kramer, B. Nuseineh (eds.). Software Process Modeling. John
Wiley RSP, 1994.

[5] Kellner, M. I. 1988. Representation formalisms for software process modelling. In
Proceedings of the 4th international Software Process Workshop on Representing and
Enacting the Software Process (Devon, United Kingdom). C. Tully, Ed. ACM, New
York, NY, 93-96.

[6] Roethlisberger, Fritz J., and W. J. Dickson. Management and the Worker. Harvard
University Press, 1939.

[7] Quality systems - Model for quality assurance in design, development, production,
installation and servicing. International Organization for Standardization, 1993.

[8] Information Technology - Software life cycle processes. International Organization
for Standardization, 1995.

[9] Lanubile, F. and Visaggio, G., “Evaluating Defect Detection Techniques for Software
Requirements Inspections”, ISERN Report no. 00-08, 2000.

[10] Silva, L.F.S.; Travassos, G.H., "Tool-supported unobtrusive evaluation of software
engineering process conformance," Empirical Software Engineering, 2004. ISESE '04.
Proceedings. 2004 International Symposium on , vol., no., pp. 127-135, 19-20 Aug. 2004

[11] Johnson, P.M.; Hongbing Kou; Agustin, J.M.; Qin Zhang; Kagawa, A.; Yamashita,
T., "Practical automated process and product metric collection and analysis in a
classroom setting: lessons learned from Hackystat-UH," Empirical Software Engineering,
2004. ISESE '04. Proceedings. 2004 International Symposium on , vol., no., pp. 136-144,
19-20 Aug. 2004

[12] Lorin Hochstein, Taiga Nakamura, Forrest Shull, Nico Zazworka, Victor R. Basili,
Marvin V. Zelkowitz “An Environment for Conducting Families of Software Engineering

Experiments”, Advances in Computers (ed. by Marvin Zelkowitz), Vol. 74, ElseVier,
2008

[13] Cook, J. E. and Wolf, A. L. 1998. Discovering models of software processes from
event-based data. ACM Trans. Softw. Eng. Methodol. 7, 3 (Jul. 1998), 215-249.

[14] Basili, V., Caldiera, G., and Rombach, D. Experience Factory. Encyclopedia of
Software Engineering Volume 1:469-476, Marciniak, J. ed. John Wiley & Sons, 1994

[15] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[16] Basili, V. R. 1992 Software Modeling and Measurement: the Goal/Question/Metric
Paradigm. Technical Report. University of Maryland at College Park.

[17] Nagappan, N.; Ball, T., "Use of relative code churn measures to predict system
defect density," Software Engineering, 2005. ICSE 2005. Proceedings. 27th International
Conference on , vol., no., pp. 284-292, 15-21 May 2005

