Top-k Queries in Uncertain OLAP

Master Scholarly Paper

Bao N. Nguyen
Department of Computer Science
University of Maryland
College Park, MD 20742, USA

baonn@cs.umd.edu

Abstract

Top-k is the most important query type in OLAP, a common data warehouses model. Recently,
OLAP was extended to represent data ambiguity, specifically imprecision and uncertainty. How-
ever, how to deal with top-k queries in uncertain OLAP still remains an unanswered question.
This project introduces a solution for top-k query evaluation in uncertain OLAP including query
semantic definition, query processing algorithm and data materialization. An experimental eval-
uation showed that the proposed solution is feasible.

Keywords: data warehouse, OLAP, top-k, query processing.

1 Introduction

OLAP (Online Analytical Processing) [21] is a data warehouse model widely used in industry.
Recently, this model has been extended to work with uncertain and imprecise data [3, 13, 15]. In
OLAP, top-k query is the most dominating type of query. Although the semantics of top-k queries
for uncertain tuples were discussed by several authors (e.g., [23]), how to process top-k queries in
uncertain OLAP is still unexplored. This project presents a solution to the problem of answering
top-k queries in uncertain OLAP. The contributions of the project are summarized as follows:

e An extension of top-k query semantics for uncertain OLAP.
e An algorithm to effectively process top-k queries under the proposed semantics.
e A method to materialize data to speed up searching.

e An experimental evaluation to evaluate the proposed model.

In the next section, I provide a brief literature survey on OLAP and probabilistic databases to
set the context of the work proposed. I then present the semantics for top-k query in uncertain
OLAP (section 3), an algorithm to effectively process top-k queries (section 4) and a method to
materialize data (section 5). An experimental evaluation is presented to show the effectiveness of
proposed model (section 6). I finish with some conclusions and directions for future work.

2 Literature survey

2.1 OLAP

OLAP is a data warehouse model allowing data to be summarized and viewed in different views and
in an online fashion. These multidimensional views are supported by multidimensional database
technologies. Querying in OLAP is fast and easy because data are pre-analyzed in advance and
the results are stored as a part of the database. This contrasts to traditional data analysis tech-
niques called OLTP (Online Transaction Processing), in which the aggregations are calculated when
queries are invoked (i.e. managed by transactions).

The data in OLAP is typically organized in a multidimensional format called data cubes![5].
The data cubes are organized by the star schema [12], where some measures are analyzed with
respect to some interesting dimensions, representing different business perspectives. Measures are
derived from the records in the fact table and dimensions are derived from the dimension tables.
For example, a shoes company may have a sale database with {number of items} as a measure
attribute and {color, year, type} as three dimensional attributes. The OLAP model defines some
typical operations including roll-up (increasing the level of aggregation) and drill-down (decreasing
the level of aggregation or increasing detail) along one or more dimension hierarchies, slice_and_dice
(selection and projection), and pivot (re-orienting the multidimensional view of data). Those
operators help users quickly and easily retrieve the data in their dimensional range of interest. For
more details about OLAP, the readers are referred to [5].

2.1.1 Top-k query in OLAP

A common problem in OLAP is the top-k query execution. A top-k query returns k data points
satisfying some optimality criterion on dimensional attributes which are specified by the users. In
the example described above, the user may wish to find the top 3 sales made since 1995 by the
number of items.

A straightforward method to evaluate a top-k OLAP query is to compute the aggregate value
for each dimension and then select the the highest aggregation. However, it will be extremely slow
as the number of possible cubes in an OLAP may be very large. There are several approaches that
have been proposed in the literature to solve this problem. One of them is to build a spatial index
tree to store information which is pre-computed in advance. Papadias et al. [18] use an aggregate
R-tree (i.e. aR-Tree) to store aggregate results. The structure of aR-Tree defines the spatial hier-
archy of data cubes. Using this structure, Kalnis et al.[17] propose a branch-and-bound algorithm
that accesses a minimal number of tree nodes in order to compute the top-k groups. A variant
of using spatial index tree is to use RD-Tree [7], an index structure for sets, instead of R-Tree, to
model the data hierarchy.

Another approach to efficiently execute top-k query in OLAP, as proposed by Loh et al.[16], is
to partition data cubes into sufficiently small cells and to pre-compute the top-k aggregate values
in each partition. These values can then be used to compute the top-k results in query regions that
cover multiple cells. The partition factors and the number of pre-stored values can be estimated
through statistical analysis.

Here “cube” is just used as an abstraction, it doesn’t necessarily refer to a three dimension space

2.1.2 OLAP over uncertain and imprecise data

Recently, the traditional OLAP model has been extended to deal with uncertain and imprecise
data [3, 13, 15]. In this project, I focus on the model proposed by Doug et al. [3]. In their
model, the assumption that all facts must be points is relaxed to allow facts to be regions (i.e.
more ambiguous). The authors formalize the ambiguous OLAP by transferring several concepts
in the traditional OLAP to ambiguous versions which are uncertain domain, imprecise domain,
hierarchical domain, fact table schemas and instances, regions and cells. A process called allocation
is proposed to transform a ambiguous OLAP database into a form, called the Extended Database,
that can be used to answer aggregation queries. This can be done by a scalable and efficient
algorithm proposed in a later work [2]. In their latest work, they augment their model with a
domain constraint language to present correlations between attributes [4].

2.2 Probabilistic Databases

The existing database systems are working with exact “facts” that can be considered certain. How-
ever, there are more and more real-world applications today producing large amount of uncertain
data[20]. This has led to the development of a new database model that can handle those uncer-
tainty in databases - the probabilistic databases. The database systems are no longer modeled by
classical logic but by probabilities to represent the uncertainty and by laws of probability to process
the data [9].

There are two levels of uncertainty in probabilistic databases: tuple level and attribute level.
In tuple level, all attributes are exactly identified whereas the existence of the tuples is uncertain.
In attribute level, on the other hand, the existence of all tuples are certain where as the values
of attributes are vague. The uncertain OLAP model mentioned in section 2.1.2 belongs to the
attribute level uncertainty class.

2.2.1 Challenges in managing probabilistic data

As probabilistic data is a fairly new research area there are a lot challenges and open problems in
the field. The two main problems are (1) how to represent complex data in a concise way without
losing its expressibility, and (2) how to efficiently process query using such data representations.

Data representation In its most general form, a probabilistic database is a probability space
over all possible instances of the database, called possible worlds. A tuple is now associated with
a possibility of existence in the database. This leads to the explosion of possible worlds. A lot of
research in probabilistic database now is involving how to choose the most relevant possible worlds.
One approach is extracting the correlations between tuples in database and the bring them into
query processing. Sen et al. [20] propose a method using graphic models to capture such correla-
tions. Another approach is to store extra information such as lineage/provenance [24] along with
the data to capture the tuple correlations supporting for its uncertainty. This information may be
assigned to data in advance or determined during the data lifetime. Also, from the attribute level
uncertainty view point, Cheng et al. [6] propose a method to associate each attribute with proba-
bility distributions. However, as of now, there is no consensus on how data should be represented
in probabilistic database.

Query processing Since in probabilistic database, each tuple is associated with a probability,
the answer SQL query is no longer a single answer but rather a set of probabilistic answers. Query

processing now involves in evaluating the probability distribution over the answer tuples. This
problem is an instance of the probabilistic inference problem, which has been known to be notori-
ously hard [1]. To process large scale probabilistic data we need to develop specific probabilistic
inference techniques that can be integrated well with SQL query processors and optimizers, and
that scale to large volumes of data. Fuhr and Rolleke [11] propose using tuple-level probabilities
to present the intensional and extensional query evaluation techniques. Dalvi and Suciu [9] define
safe query plans to be those for which extensional and intensional query evaluation produces iden-
tical results. Lakshmanan et al. [14] attempt to combine these different approaches by associating
probability intervals with tuples.

Another open issue is how to generate query answers. In many scenarios, when the input data
is uncertain or imprecise, an approximations is sufficient. In this case, an approximate strategy
should be used to speed up the query processing. Also, a mapping to data sources or some form of
meta data [10] might be included to provide the context where the answers are derived from.

2.2.2 Top-k query processing in probabilistic databases

Top-k query processing in uncertain databases is semantically and computationally different from
traditional top-k query processing. In the possible world, we have to deal with two variants: query
score and uncertainty at the same time. It is hard to apply traditional techniques in probabilistic
databases. The main challenge for top-k query processing in probabilistic database is how to prune
un-related returned tuples in query plan. To my awareness, the number of work on this area is still
limited.

In [23], Soliman et al., with an assumption that there are scoring functions associated with every
tuples, propose a measurement for tuple ranking. The semantics of top-k query is represented by
two values:

e U — Topk: return the most probable top-k answer set that belongs to same possible world.
This measure is the combination of possible world and traditional top-k semantics and fits in
the scenarios where we need all top-k tuples in the same world.

e U —kRanks: return the most probable ith —ranked tuples (i = 1,2,..., k) across all possible
worlds. This measure does not care about possible worlds and fits in the scenarios where we
do not need to restrict returned tuples in the same world. A more detailed explanation of
U — kRank can be found in [22].

Another approach to evaluate top-k query in uncertain database based on the probability asso-
ciated with each query answer. In [19], Re et al. run Monte-Carlo simulations for each candidate
answer. The top-k tuples are extracted based on the probabilities to satisfy query in all possible
worlds.

3 The Semantic of Top-k Queries

To process top-k queries in uncertain OLAP, we first have to understand the semantic of top-
k queries in an uncertain context. Since in uncertain OLAP, there is the intervention of three
concepts “most probable”, “top-k” and “summarization”, we have several ways to interpret the
meaning of a top-k query. Using the classification of top-k queries semantics for tuples proposed
by Soliman et al [23], the top-k queries semantics for OLAP may be interpreted in three different
ways:

1. The “top k” query regions? (wrt an aggregation) in the “most possible” world
2. The “top k” query regions over all possible worlds

3. The set of “most probable top-i**” query regions over all possible worlds

The first and the third semantics are quite straight forward since they are similar to the seman-
tics of top-k queries for probabilistic tuples proposed in previous work [23]. However, for the second
semantic, since we may either summarize or rank the aggregations first, there are two possible ways
to understand the semantic of this options:

2.1 Summarize the uncertain OLAP by calculating the expected aggregate values for all regions
first (i.e. the semantic proposed by Burdick [3]) and then take the top-k results

2.2 Summarize aggregate values for regions in each individual possible world first and then take
the most possible top-k query regions.

The semantic 2.1 is, on the surface, similar to the semantic of top-k queries in certain OLAP.
However, using this semantic, duplicate tuples that refer to the same entity can be counted in several
cells at the same time. In the real world, those tuples should be considered mutually exclusive.
Thus, this semantic does not quite make sense. Especially in the ranking situation, if there is an
uncertain tuple having a very large aggregate value, it is most probably that all regions covered
by that tuple will be selected as the final top-k answer. For that reason, I propose just to use the
semantic 2.2 to represent the semantic 2: “top k” query regions over all possible worlds. Formally,
the semantic 2.2 is defined as follow:

Definition 1. Let O be an uncertain OLAP with a set of possible worlds PW = {PW1!, ... PW"}.
Let R = {R',...,R™} be a set of k-length region vector where (1) regions in each R are ordered
according to a scoring function F on aggregated values, and (2) R’ is the topk answer for a non empty
set of possible worlds PW (RY) in PW. The top-k answer for O is argmaz gic (X we pw (riy (W))

4 Processing Top-k Queries

The top-k query processing on semantics 1 is similar to that on certain OLAP since we just have
to summarize and rank in only one unique world. There are several solutions for this problem such
as using R-tree, aR-tree to pre-computed and store some aggregated values in advance [17]. Those
values are later used as bounds for branch pruning in the query region search tree.

For the semantics 2 and 3, the task is much harder since we have to consider all possible worlds.
A naive approach is to brute force search over all possible worlds and take the most probable answer.
However, as the number of possible worlds exponentially increase with the number of uncertain
tuples, it is infeasible to do so. In this section, I propose an effective algorithm to search for top-k
answers. Moreover, as the problem for semantics 2 and 3 is essentially similar (although it is a
bit harder for semantic 3), I just consider the top-k query processing for semantic 2. The detailed
algorithm for semantic 3 is left for future work.

2Basically, a query region is a set of cubes or cells in uncertain OLAP forming a certain shape. A more formal
definition of this concept can be found in the original uncertain OLAP paper [3]

4.1

The algorithm scope

Processing top-k queries in uncertain OLAP in general is a hard problem. In this project, I am
just interested in this task with several assumptions:

4.2

The query type I am particularly interested in here is cells searching query. In general, the
query regions needed to summarize can be in arbitrary and complex shapes. However, as the
number of possible shapes in an OLAP space is exponential, trying to find answers in such a
general case is extremely hard. I put this general case outside the scope of this project.

The aggregate functions considered here are monotonic functions (e.g. SUM, COUNT, etc).
This limitation means when you add more tuples in one region, the aggregation will be
changed monotonically (either increase or decrease). It will let us use a branch and bound
strategy to prune the search tree (described in section 4.2).

All attributes and entities are treated as independent. In a recent work, Burdick augmented
their model with some domain constraints to capture the attribute dependencies [4]. In
another work, Sen et al. proposed to use a graphical model to represent the tuple correlations
[20]. It is reasonable to account for those constraints since the entities falling in one cell may
strongly depend on each other. However, it will largely complicate the problem we are trying
to solve in this project. For that reason, I just assume the tuples from one entity are mutually
exclusive and assume all the entities are independent.

Searching top-k answers

In this section, I propose an algorithm to process top-k query. For a clearer explanation, I first
define some terminologies for uncertain OLAP as follow:

A dataset D is a set of tuples either certain or uncertain.

A dataset D’ is called a descendant of a dataset D if we can get D by specifying some tuples
in D. Also D is called an ancestor of D’

A region is a set of cells in the OLAP. A certain region is a region that do not have any
uncertain tuple falling in it and an uncertain region is a region which is not certain.

A cell ¢ is called certain with regard to a dataset D if there’s no uncertain tuples in D falling
in ¢. Also, a cell ¢ is called uncertain w.r.t a dataset D if it is not certain w.r.t D.

The upper bound of a cell ¢ in dataset D with regard to an aggregate function F'is F(t1, to, ...t,)
where t;(1 < ¢ < n) are all tuples in D may fall in ¢ (i.e. with a probability greater than 0).
Here, we treat all ¢; as certain tuples. Due to the monotonic property of F', the upper bound
always greater than the true value of ¢ in all possible worlds generated from D. Also, if D’ is
a descendant of D then ub(c, D') < ub(c, D). Since the aggregate function is unchanged for
all D, for simplicity, I denote this upper bound as ub(c, D). This upper bound is also called
an abstract aggregation of cell ¢ with regard to a dataset D.

Normally, for each dataset D there are always two regions in the corresponding OLAP: certain
region and uncertain region. Searching in an uncertain region always much harder than searching
in a certain one. The key idea of my approach is to put the priority of searching on certain region
first. If all cells needed (i.e. top k cells) can be found in certain region then we do not have to look

into the uncertain one. Otherwise, if no cell or just a part of the answer are in certain region, we
will dig deeper to the uncertain region to make a decision. The evaluation of cells here is done by
using the real aggregations for certain cells and the abstract aggregation for uncertain cells. This
idea is inspired by the of zoom-able interfaces [8], a kind of computer-user interface, developed by
HCIL group in UMD. Often, we work on an abstraction of all items and we only zoom in when
there is something in doubt and we need to investigate in more details. An interesting point here
is when zooming in, we just focus on the in-doubt part and ignore other areas of the interface.

The algorithm 1 explains the details of my approach. The granularity of the OLAP are reflected
by the granularity of the dataset D. Dgeptain i the certain part of D and Topi_certain 1S a set of
top-k cells in Dertain. TOp—certain Will later be used to compete with the cells found in uncertain
part. To make a dataset D less uncertain, we select the highest uncertain cell ¢; (i.e. the most
suspect cell) and splitting all uncertain tuples may fall in it. By this way, in the descendants D’
of D, there is at less one more cell (c¢;) become certain and the chance to find the answer becomes
higher.

Algorithm 1 Top (Rank k, DataSet D) — ({c1, ..., cx }; prob)
Find top k cells in D ranked by upper bounds — {ub(ci, D) > ... > ub(cx, D)}
if Vie{l,..,k}, ¢ is certainin D then
Top <+ ({c1,...,ck}; 1)
else
Assume j is the min index such that ¢; is uncertain and Vi < j, ¢; is certain
Decertain <+ The certain part of D
Topkfcertain — TOp(k, Dcertain)
T < Set of all tuples may fall in ¢;
C <+ Set of all cells may affected by T
PT + All possible tuple sets from T'
for all ts € PT do
Dy < D Uts \ (Dcertain U T)
Top(k — j, Dv) = (Top(.—jyr+, probr:)
Top(k, Topk—certain U Top(kfj)T/) — Topyr
end for
Topy, + Most possible T opr
prob < ZTOka/:TOp probr:
end if

5 Data Materialization

Since the cost for calculating cell upper bounders are quite expensive, I propose to materialize and
store them in disk. Figure 1 shows an example of a materialize table. This table is similar to an
OLAP table except that the aggregate values are replaced by the upper bounds of them. To support
searching cells in different levels, each cell is stored in different levels of dataset granularity. More
specifically, 3 more columns Level, PWp and Prob are added in the materialize table as indicated
in Figure 1. When processing top-k queries, instead of calculating the cell abstract aggregation, we
may refer to this table (at different levels) to save time and effort.

Auto | Loc | Bound | Level | PWip | Prob
Sierra | NY 500 0 1 1
Sierra | MA 200 0 1 1
F150 | MA 100 0 1 1
F150 | NY 250 0 1 1
F150 | MA 0 1 1 0.4
F150 | NY 150 1 1 0.4
F150 | MA 100 1 2 0.6
F150 | NY 250 1 2 0.6

Figure 1: An example of materialize table.

6 Experiments

This section present the experiments to evaluate my proposed techniques to deal with uncertain
OLAP. More specifically, I am interested in answering following questions:

1. What are differences between a probabilistic database and a traditional database?

2. Can proposed algorithm effectively process top-k queries? And what is the relations between
query characteristics and query processing effort?

3. What is the relation between uncertainty level and query characteristics?

4. What is the cost of using materialize data?

6.1 Experiment Setup

Although there are several OLAP API available such as Olap4j or Oracle OLAP, it is not easy to
tune their source code to make an uncertain OLAP version. For that reason, I chose to develop
a new uncertain OLAP API from scratch. Microsoft Access was used as underlying DBMS. The
database API used to connect with the DBMS is JDBC.

In this project, I took the sample data warehouse in Olap4j called Mondrian Food Mart as
experimental data. Moreover, because of the limitations of hardware available for experiments, I
was only able to pick a small portion of this data warehouse for the experiments.

The experiment process consists of 2 main steps:

1. Re-implement the previous work by Burdick et al. to get a probabilistic database

2. Evaluate the proposed techniques using generated data.

6.2 Threats to Validity

Using the above experiment setup, there are several threats to validity. We need to keep them in
mind when evaluating the results.

First, the amount data used here was quite small, thus it is hard to evaluate the scalability of
my techniques. Also, picking a small portion of data may change the distribution of it. Second, the
probabilistic data is synthetically generated and the hierarchy of domain is constructed as a uniform
distribution. Normally, it is not the case in the reality. Third, the uncertain OLAP was built based
on an existing DBMS. The uncertain queries were evaluated based on the built-in algorithms for

certain top-k query provided by the DBMS. Using this approach leads to some risks as I do not
actually know how the top-k queries for certain database is implemented. The similar risk may
rise when I used JDBC as an intermediate method to communicate with the DBMS. I am also not
sure if a Java API can work smoothly with a Microsoft DBMS. The last threat is I tried to run
all experiments with a limited hardware resource. Normally, the algorithms for database should be
run in an independent DB server. Testing the algorithm in a personal computer, I do not know if
the programs existing in my computer (like Antivirus, MS Office) can affect the results. Also, it is
hard to address if there is any issue with parallelism, catch, etc.

6.3 Experimental results

The first step in my experiment is to generate a probabilistic database. Basically, in this step
I re-implement what proposed in Burdick’s paper [3]. The data domain used here consists of 3
dimension, each has a 3 level hierarchal domain. Every inner nodes in domain have 10 children.
Thus we have in total a space of 10°cells.

To get the uncertain database, I randomly select some records from a certain database and
generalize some (i.e. 1,2,3) of their dimensional attributes into a higher level in the domain hierar-
chy. T started with a small certain database with only 253 records. Figure 2(a) shows the results
of probabilistic data generation. As we may see, although the starting database is very small, the
uncertain database size may become very large, as large as 1000 times the original one. Figure
2(b) shows the record distribution in for the uncertain database having 10% of uncertainty. In this
version, an original record may be splitted up to nearly 200 pieces. This experiment answers the
questioned 1 about the characteristics of a probabilistic database.

180
160
25000 140

/ s
- /]
5000 / 2 V'_/\IA\J — IL" \\\II‘ AN

60
3 9 18 23 33 53 72 85 107125134141157171188203211219239247

30000

number of split

0% 5% 10% 20% 30% 40% 50% record range

(a) Database size. (b) Record distribution.
Figure 2: Probabilistic database generation.

Using the synthesized probabilistic data above, my next experiment is to evaluate the effec-
tiveness of my top-k algorithm. I picked the 10% uncertainty database version for my experiment.
The experiment was run with different values of k. The results are shown on figure 3. The results
indicate that for k£ small, the running time is still acceptable. However, when k is large, the running
time increases dramatically. In fact, I tried to run this experiment with & large than 11 but I had
to interrupt the experiment as it took too long.

There are two breaking points in figure 3, at £k = 4 and k£ = 11, that the graph slope is
suddenly changed. After examining the data, I figured out that at these points, the queries met
some uncertain cells and thus they had to explored deeper (i.e. splitting cells) to get the answer.
This experiment answers my research question 2.

To answer research question 3, I tried to run a top-3 query in different levels of database

time (s)

800

700

600

500

400

300

200
100

top cells required (k)

Figure 3: Algorithm effectiveness.

time (s)

2500

2000

1500

1000

500

2% 3% 4% 5% 6% 7% 8% 9% 10% 11%

uncertaint level

Figure 4: Uncertainty vs. time

10

uncertainty. I selected top-3 query in this experiment because in the previous experiment top-3
query didn’t take too long even though £ is large enough. So I hoped I wouldn’t have to interrupt
in the middle as in the experiment to evaluate the query effectiveness. The results are shown in
figure 4. A very interesting observation here is it is not always that querying in a less uncertain
database will take less time. As we can see, even a query in the 7% uncertain database can take
longer than a query in the 11% uncertain database. This observation is somewhat unusual but after
looking in to the database I figured out that the query runtime does not only depend on the data
uncertainty but also depends on the nature of data. In the case the uncertain portion of a database
is large but the values of uncertain tuples are small, it is likely that those uncertain tuples will be
pruned by the algorithm (as their abstract aggregations are small). On the other hand, even if the
uncertain portion of a database is small the runtime can still be very large large. It may be the
case that there is one or two uncertain tuples having large values and the query, in order to find
the final answer, must split cells containing them, search in many different possible worlds.

30000 180
160

25000 140 /
20000 120 //
o 100
& 15000 s /
10000 / " /
5000 40

20 /

time (s)

o 1 2 3

Level
level

(a) Database size. (b) Generating time.
Figure 5: Material data generation.

Figure 5 presents the size of materialized data and time to generate it. As we can see, from a
relatively small database, after several level, the size of materialized data is dramatically increased.
It’s because the number of possible words splitted from an “uncertain” cell is very large. This
experiment answers question 4 and also suggests that in future, we need to develop a mechanism
for selecting possible worlds to materialized.

7 Conclusion and Future Work

This project has presented a complete solution for top-k queries in uncertain OLAP. The experi-
mental work showed that this solution is feasible.

There are several possible future work for this project. The most obvious one is to make the
searching algorithm more scalable. In this project, I just executed the experiments on a very
small dataset with a small level of uncertainty. One possible solution is to use a R-tree to group
cells and use an abstraction of a region instead of a cell like proposed in this project. Also, some
approximation approaches may be useful in speed up the query processing.

8 Acknowledgements

The author would like to thank Professor Amol Deshpande for his discussion on this project.

11

References

1]

2]

[14]

[15]

D. BarbarB, H. Garcia-Molina, and D. Porter, The Management of Probabilistic Data, IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4 (1992), no. 5.

Doug Burdick, Prasad M. Deshpande, T. S. Jayram, Raghu Ramakrishnan, and Shivakumar,
Efficient allocation algorithms for olap over imprecise data, VLDB '06: Proceedings of the 32nd
international conference on Very large data bases, VLDB Endowment, 2006, pp. 391-402.

Doug Burdick, Prasad M. Deshpande, T. S. Jayram, Raghu Ramakrishnan, and Shivakumar
Vaithyanathan, Olap over uncertain and imprecise data, VLDB ’05: Proceedings of the 31st
international conference on Very large data bases, VLDB Endowment, 2005, pp. 970-981.

Doug Burdick, AnHai Doan, Raghu Ramakrishnan, and Shivakumar Vaithyanathan, Olap
over imprecise data with domain constraints, VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, VLDB Endowment, 2007, pp. 39-50.

Surajit Chaudhuri and Umeshwar Dayal, An overview of data warehousing and olap technology,
SIGMOD Rec. 26 (1997), no. 1, 65-74.

R. Cheng, D.V. Kalashnikov, and S. Prabhakar, Fvaluating probabilistic queries over imprecise
data, Proceedings of the 2003 ACM SIGMOD international conference on Management of data
(2003), 551-562.

Y.D. Chung, W.S. Yang, and M.H. Kim, An efficient, robust method for processing of partial
top-k/bottom-k queries using the RD-Tree in OLAP, Decision Support Systems 43 (2007),
no. 2, 313-321.

A. Cockburn, A. Karlson, and B.B. Bederson, A review of focus and context interfaces, Tech.
report.

N. Dalvi and D. Suciu, Management of probabilistic data: foundations and challenges, Pro-
ceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems (2007), 1-12.

X. Dong, A.Y. Halevy, and C. Yu, Data Integration with Uncertainty, Ann Arbor 1001, 48109.

Norbert Fuhr and Thomas Rlleke, Hyspirit - a probabilistic inference engine for hypermedia
retrieval in large databases, Proceedings of the 6th International Conference on Extending
Database Technology (EDBT, Springer, 1998, pp. 24-38.

R. Kimball et al., The data warehouse toolkit, (2002).

J. Kiviniemi, A. Wolski, A. Pesonen, and J. Arminen, Lazy Aggregates for Real-Time OLAP,
Data Warehousing and Knowledge Discovery: First International Conference, Dawak’99, Flo-
rence, Italy, August 30-September 1, 1999, Proceedings (1999).

Laks V. S. Lakshmanan, Nicola Leone, Robert Ross, and V. S. Subrahmanian, Probview: a
flezible probabilistic database system, ACM Trans. Database Syst. 22 (1997), no. 3, 419-469.

Jungiang Liu, Min Luo, and Xiandi Yang, Deputy mechanism for olap over imprecise data
and composite measure, CIT ’07: Proceedings of the 7th IEEE International Conference on
Computer and Information Technology (Washington, DC, USA), IEEE Computer Society,
2007, pp. 65-70.

12

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

Zheng Xuan Loh, Tok Wang Ling, Chuan Heng Ang, and Sin Yeung Lee, Analysis of pre-
computed partition top method for range top-k queries in olap data cubes, (2002), 60-67.

N. Mamoulis, S. Bakiras, and P. Kalnis, Fvaluation of Top-k OLAP Queries Using Aggregate
R-Trees.

D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, Efficient OLAP Operations in Spatial Data
Warehouses, Proc. of SSTD 280 (2001).

C. Re, N. Dalvi, and D. Suciu, Efficient top-k query evaluation on probabilistic data, Proceed-
ings of ICDE (2007).

Prithviraj Sen and Amol Deshpande, Representing and querying correlated tuples in proba-
bilistic databases, ICDE, 2007, pp. 596-605.

A. Silberschatz, H.F. Korth, and S. Sudarshan, Database Systems Concepts, McGraw-Hill
Higher Education, 2001.

M.A. Soliman, I.F. Ilyas, and K.C. Chang, URank: formulation and efficient evaluation of
top-k queries in uncertain databases, Proceedings of the 2007 ACM SIGMOD international
conference on Management of data (2007), 1082-1084.

M.A. Soliman, I.F. Ilyas, and K.C.C. Chang, Top-k query processing in uncertain databases,
Proceedings of ICDE (2007).

J. Widom, Trio: A system for integrated management of data, accuracy, and lineage, Proc. of
CIDR 5 (2005).

13

