Toward Real Time Autonomous
Robotics Through Integration of
Hierarchical Goal Network Planning
and Low Level Control Libraries

Nicholas Fung
November 29, 2017

Abstract

Automated planning has become an increasingly influential area of
research in the realm of artificial intelligence. Task based planning algo-
rithms provide a number of advantages including the ease of human read-
ability when creating mission length plans. However, task based planning
algorithms are rarely implement on real world robotic systems because
they require additional domain specific knowledge to define tasks and are
generally not as flexible as other planning techniques.

This paper documents work to integrate a hierarchical goal network
planning algorithm with low level path planning. The system utilizes the
Goal Decomposition with Landmarks (GoDeL) planner for plan genera-
tion at an abstract level and the Searched Based Planning Library (SBPL)
for low level control. The system is used to direct a robot through an office
setting within a simulation environment. We then discuss incorporating
an ”in the now” approach to the GoDeL algorithm to make the system
more robust to a dynamic environment. The resulting algorithm is more
suited for use in real time applications such as autonomous robotics.

1 Introduction

Automated planning is a powerful tool in the field of artificial intelligence that
generates a sequence of actions in order to accomplish a specific goal. Planning
techniques are often used when creating intelligent systems and are of partic-
ular interest for the implementation of autonomous robotic platforms that can
utilize set action patterns in a specific order in order to accomplish complex
tasks. Within the field of autonomous planning, task planning has a number of
advantages including the ability to form long, human readable plans. However,
they have largely remained in the area of theoretical because of the challenges
encountered when integrating into a complex, autonomous system. Ghallab, et

al. [2] [3] show that tight coupling between planning and acting is necessary in
order to bring such planning algorithms into practical application.

We utilize the Goal Decomposition with Landmarks (GoDeL) algorithm,
created by Shivashankar, et al. [9] to perform mission planning through goal
decomposition. We interface this symbolic mission planning algorithm with
a navigation system that utilizes the Search-Based Planning Library (SBPL)
[6] to interface with the motor controllers of an autonomous robotic platform.
The resulting system is able to create symbolic mission plans that are readable
by a human operator, but is also able to control the robotic platform without
occupying the user. We look into the shortcomings of utilizing this system in
a dynamic environment and develop an approach to mitigate these risks. An
”in the now” approach to planning and acting is integrated into the GoDeL
algorithm. In this system partial plans are executed before a complete plan is
created. The goal of this approach is to make efficient use of time in a dynamic
domain that will likely require alterations to the initial plan. The algorithm will
also be more resilient to any disruptions in execution of the plan.

2 Background

2.1 The Planning Problem

We use formalisation of the planning problem from Ghallab, et al. [1]. A
planning domain D consists of a finite sets of states S, a finite set of op-
erators O, and a state transition function . A state s € S quantifies the
current configuration of the system. An operator is defined as a triple o =
(head(o), precond(o), ef fects(0)). head(o) contains the name and argument
list of 0. precond(o) are the ground atoms that the state must satisfy for the
operator to be executed. ef fects(o) are the ground atoms that become true
through the execution of the operator. A ground instance of an operator is
known as an action. The state transition function ~ defines the change in the
system that occurs upon execution of an operator.

A planning problem P consists of the triple (D, sg, gn) where D is the plan-
ning domain, sy is the initial state of the system, and gn is a goal network
consisting of a pair (T, <). T is a finite nonempty set of nodes, each containing
a goal g; in disjunctive normal form, and < is an ordering over T.

A solution plan 7 under goal network gn is a sequence of actions (ay, ..., a)
such that each action a; is executable on s;_1 (where s;_; is the state attained
after execution of action a;_;) and each subgoal in gn is satisfied within the
sequence of states subject to <. A planning algorithm is sound if it returns a
plan 7; it is a valid plan that solves the intended planning problem. A planning
algorithm is complete if it returns a valid plan 7 for the intended planning
problem if such a plan exists.

2.2 Hierarchical Planning

A hierarchical task network (HTN) is a structure used to create plans to ac-
complish specific goals. The graph structure is created by breaking down tasks
into subtasks using actions and methods that are defined within the domain.
A sample HTN in the Blocks World domain can be seen in Figure 1. A task
defines an advancement of the system state to attain a specific subsequent state
and is of the form task(literall,literal2,...) for any number of literals. For ex-
ample, the task pick-up(apple, kitchen_table,right_hand) and represents the act
of picking up an apple from the kitchen table with your right hand. A primitive
task is a task that can be accomplished by a single operation. An action is
an operator that accomplishes a primitive task. A complex task is a task that
requires more than one operation. A method is similar in application to an
action, but is applied to a complex task. The method breaks down the complex
task into multiple subtasks, and requires the subsequent application of multiple
actions or methods. Complex tasks can continually be broken down through the
application of methods until only primitive tasks remain. These primitive tasks
are then accomplished through application of a sequence of actions, defining a
plan that satisfies the goal of the planning problem. Because each task and each
literal can be named according to the user defined domain documentation, the
plan can easily be interpreted by a human reader. Similarly, a system state is
equally readable, making it easy for a human to issue goals to the planner.

Create Stack(A,B.C)

/ Build Stack(A,B)

Create Stack(B,C) _ o
/ \ Pickup(A) Stack(A,B)
Begin Stack(C) Build Stack(B,C)
Make Clear(C) Put Down(C) Make Clear(B) Stack(B,C)
Unstack (C,A) Pickup(B)

Figure 1: HTN of a Sample Problem in the Blocks World Domain

Under an HTN planning problem, we make a distinction between actions
and methods. An action a = (name(a),precond(a),ef fects(a)) is a ground
primitive operator that can accomplish a primitive task. An action a is applica-
ble to a task ¢ if name(a) =t and the current state s = precond(a). Execution
of a produces the resulting state v(s,a) = (s — ef fects™(a)) Uef fectst(a). A
method m imparts knowledge to the planner in order to plan for a series of ac-
tions and is defined as m = (name(m), task(m), subtasks(m), constr(m)). The
name(m) is of the form n(z1,...,zx) where n is a unique method symbol and
(21, ...,x)) are all of the variable symbols that occur in m. The task(m) is a
nonprimitive task to which the method can be applied. The subtasks(m) are
a set of tasks that are constrained by constr(m) that, when accomplished, will

satisfy task(m).

Hierarchical goal networks (HGNs) [10] differ from HTNs through the use
of subgoals rather than subtasks. While HTN planners break down tasks into
subtasks and actions, an HGN breaks down goals into subgoals. This structure
requires different definitions of actions and methods. For HT'N planners, actions
are applied to complete primitive tasks and methods are applied to decompose
complex tasks into subtasks. In HGN planners, actions achieve a specific goal
and methods are applied to decompose a specific goal into multiple subgoals.
The planner iteratively plans on each goal in the graph structure. Each subgoal
is assigned an action to achieve this subgoal or is decomposed into more subgoals.
When each subgoal can be accomplished through the execution of a single action,
this sequence of actions is a valid plan to attain the overall goal.

An HGN method m can be applied as other operators according to precond(m).
Each method contains a sequence of subgoals sub(m) = (g1, ..., gx) and a post-
condition post(m) = gi rather than an ef fects function as would be contained
in an action. Although a method shares similar structure to an operator, it
is not directly executed upon the system, but instead is used in the planning
process to produce subgoals. The planner creates plans to achieve each subgoal
through application of actions.

One of the difficulties in applying HTN planners to complex domains found
in real world scenarios is that the domain must be explicitly defined. Tasks,
actions, and methods must be defined with preconditions and expected outcomes
so that the planner can determine which operations can be applied in a specfic
state and what the outcome of the operation will produce. This work may
require a significant amount of a priori work by the user. HGN planners can
minimize this work through the use of more loosely defined methods that are
more similarly defined to operators with pre and post conditions. This allows
for less effort by the user in constructing HGN methods as opposed to HTN
methods that require additional construction of tasks. In addition, this planning
structure affords the planner more freedom to apply low level operators to attain
subgoals rather than being tied to specific subtasks. Shivashankar, et al. show
that their Goal Decomposition Planner (GDP) [10] is both sound and complete.

One of the primary difficulties in integrating an HTN or HGN based planner
with a low level acting agent on a robotic platform is in translating the actions
generated by the planner. Because tasks and how they are decomposed into
action, methods, and subtasks are user defined specifically for a particular do-
main, they are typically complex concepts. For example, an action may be ” pick
up box A”. While this instruction is easily understandable by a human, this
requires numerous motor control instructions for a robot to execute. If instead
actions are defined at the motor control level, the action definitions would too
complex for a human author. This paper documents efforts to integrate an HGN
planner with a navigation system on a robotic platform within a simulation en-
vironment. The HGN planner is used at a high level to form an overall mission
plan. The navigation system uses a low level search based action planner in
order to form the motor control signals.

3 Planning and Acting System

3.1 GoDeL Planner

The GoDeL planner, is an HGN planning algorithm that utilizes landmarks
to break down goals into subgoals. GoDel. operates as an HGN planner as
described in section 2.2 with additional rules to aid the planner under sparse
domain information. As in generalized HGN planners, the algorithm assigns
actions to achieve goals and breaks down goals into subgoals using methods
when applicable. However, when a goal cannot be attained directly through an
action or decomposed by a method, GoDel. will work to decompose the goal
using landmarks. A landmark is a specific state that must be satisfied in any
valid plan to attain a specific goal. For example, any plan to put an object
down must at some point contain the state of holding the object. GoDeL uses
the LAMA [8] algorithm to identify landmarks for a given subgoal. If the
algorithm encounters a goal that does not have an a relevant action or method
and cannot be decomposed into landmarks, the state space is searched through
nondeterministic action chaining. Through this progression, GoDeL utilizes
whatever information it has to limit the search space and run more efficiently.
However, with limited access to useful methods, the algorithm will still search
through the entire search space and will find a valid solution plan if it exists.

3.2 Search-Based Planning Library

The GoDeL mission planning system is paired with a navigation system through
a waypoint instruction interface. The waypoint navigation system works to
provide semi-autonomous capabilities to a robotic platform. The system takes
in a goal orientation, known as a waypoint, consisting of a map coordinate and
pose. A path to this goal orientation, consisting of a series of poses, is then
generated. The robot attempts to follow the path as closely as possible in order
to obtain the goal pose.

The path is obtained through the use of the SBPL. This library contains a
generic set of domain independent graph search planners, meant to be applicable
to a variety of systems. This waypoint navigation implementation makes use of
the ARA* any time planner. The system takes in a goal location and orientation
and uses the SBPL to generate a series of motor control instructions to the robot
in order to follow the path and obtain the goal.

3.3 Test Bed Implementation

The integration of the planner and navigation system was implemented under
the Robot Operating System (ROS) software architecture. ROS is an open
source project that is widely utilized on robotic platforms to provide a flexible
architecture to integrate code for autonomous platforms. We use the integrated
planner and actor code to operate a robotic platform within a ROS simulated
environment. The simulated robot, modeled after the iRobot Packbot platform,

Algorithm 1 GoDeL Algorithm

—
=4

11:

: Procedure GoDeL(D, s, gn, M,)
. if gn is empty then

return 7
end if

: nondeterministically choose a goal formula g in gn without any predecessors
. if s = g then

return GoDeL(D, s, gn — {g}, M,)
end if

: U + {operator and method instances applicable to s and relevant to g}

U <+ U— used_methods|s]
while ¢/ is not empty do
nondeterministically remove a u from U
if u is an action then
resl < GoDeL(D,~(s,u),gn, M, 7 o u)
else
add u to used_methods[s]
set subgoals_inferred to false
res]l < GoDeL(D, s, subgoals(u) o gn, M,)
end if

. end while
. if subgoals_inferred # true then

subgoals_inferred + true
lm « Infer — Subgoals(D, s, g)
if Im # () then
res2 < GoDeL(D, s,lmogn, M,)
if res2 # failure then
return res2
end if
end if

. end if
- A « {operator instances applicable to s}
. if A =0 then

return failure

: end if
: nondeterministically choose an a € A
: return GoDeL(D,~(s,a),gn, M, o a)

navigates its way through a known area in order to attain the specified mission
goals.

The system architecture can be seen in figure 2. The ROS code base provides
protocols to pass data between nodes. We utilize the existing communications
and integrate the GoDeL code into a ROS node that we call the GoDeL. Node.
The GoDeL code produces a symbolic action plan that is transferred to the
GoDeL to Navigation Node. This node translates the symbolic plan into nav-
igations calls that can be interpreted by the Path Planning Agent. The Path
Planning Agent is code that interfaces with the SBPL. This code was authored
by the US Army Research Laboratory as part of its efforts to research au-
tonomous behaviors to be implemented on Army robotic platforms. The Path
Planning Agent then interfaces with the robotic platform to provide motor con-
trol and move the robot according to the plan provided by the Path Planner.

GoDelL to Navigation Node
GoDeL Symbolic Action Plan
| = toPath Planner
Symbolic
Action Plan
Path Plan

GoDelL Node
Path Planning Agent
Symbolic
Goal \ ﬁ
Motor Control Environmental
Commands and Motor
Control Control Feedback
System ‘
Execution

Platform

Figure 2: System Architecture: Integrating GoDeL with the SBPL

In the simulated scenario, a robot is tasked to move between areas of the
environment. Practical applications could be to patrol an area of the building
while continuously taking sensor measurements. Doors that may be open or
closed are incorporated within the scenario to increase complexity in addition
to movement actions. While the waypoint navigation planner can create paths
between open rooms, closed doors may block a valid path from being created.
In order to create a complete plan, the simulated robot must make use of an
additional action to open doors. Although the system does not include motor
control functions for the Packbot to open doors, the simulated robot was given
this ability to increase the complexity of the problem. This could have a real
world analogy of using a remote control to open an electronic door or signaling
a person to open the door for the robot.

The test domain is specifically kept to a small number of actions because this
system is designed as a proof of concept. The available actions are move(robot,locationl,location2)
and open(robot,door). A method traverse(robot,locationl,location2) is also in-

cluded in the domain and is designed to address the movement of the robot
across several rooms with closed doors. The method is applied to a location
goal (e.g. robot-at(robot,location)) and breaks the goal down into subgoals of
the robot at intermediate rooms and open doors between these rooms. GoDeLi
uses these actions and methods to create an action plan consisting of move and
open commands. This queue of action commands is interpreted by C++ code
contained in the Navigation Node. The behaviors of this node is tailored by
the user for this specific domain. It translates move actions into waypoints to
be sent to the waypoint navigation system. The node executes open actions by
directly manipulating the environment, clearing the path between two rooms,
simulating the act of opening a door.

In this manner, the system demonstrates additional capabilities that are
added to the waypoint navigation planner. The HGN planner is able to create
move and open commands to establish a valid plan. These commands are
applied through the system into autonomous selection of waypoints and door
opening commands. The HGN planner is also extended in its ability to carry out
actions. While a command to move(robotl,locationl) is abstract in the literal
sense, the system is able to translate this into a waypoint. It can then use the
waypoint navigation planner to provide motor control actions to the robot.

4 Simulation

Initial State: Plan:

at(robotl,locl) | 1:move(robotl,locl,loc2)
closed(doorl) | 2:open-door(robotl,doorl,loc2,loc3)
3:move(robot1,loc2,loc3)

Goal State: 4:move(robot1,loc3,loc4)
at(robot1,loc5) | 5:move(robotl,loc4,loch)

Table 1: Sample Plan From Simulation

We implemented the planning and acting system within a simulation envi-
ronment to operate a robot within a known environment. The GoDeL Node
is able to create valid plans consisting of move and open actions and utilize
the traverse method to guide the action search. Table 1 depicts a sample run
generated by the GoDeL Node. The planner utilized a traverse method during
formulation to guide the search and generate the action plan. The system then
translates the actions into instructions and utilizes the SBPL to derive motor
control commands for each action. A screen shot of the simulation visualized
in RVIZ can be seen in Figure 3. This figure demonstrates the robot moving
along a path created by the navigation system to a waypoint selected by the
HGN planner. This system successfully provides a proof of concept that justifies
continued work in this direction.

Figure 3: Screen Capture of Simulation in Progress

5 Planning in the Now

Planning in the now, as in the Hierarchical Planning in the Now (HPN) algo-
rithm from Kaelbling [4], provides more flexible planning in a dynamic envi-
ronment by avoiding commitments to actions in the long horizon. Instead, it
uses a depth first approach to refine a hierarchical plan into ground actions only
when they are needed by the system. The system is tightly coupled with an
acting module so that actions are executed as they are generated. In the case
described in section 3.3, this acting agent is the Path Planning agent that is
tied to the SBPL. The primary advantage to this approach is to allow for the
planner to adjust to unexpected outcomes from actions or dynamic events in the
environment before a complete plan is generated. This can improve efficiency
of a planning and acting system as computing power will not be consumed in
generating portions of the plan that are likely to be discarded. Levihn, et al. [5]
further the algorithm by taking advantage of reconsideration and foresight. Re-
consideration is used to optimize the plan by initiating a local re-plan when a
new, unexpected opportunity presents itself to increase efficiency. Foresight is
used to exploit the structure of abstract methods to minimize interference of
the immediate plan with future actions.

HPN is similar to other refinement algorithms such as GoDeL and Simple
Hierarchical Ordered Planner 2 (SHOP2) [7] in its hierarchical structure. The

Algorithm 2 HPN Algorithm

1: Procedure HPN (Sp0u,7, @, world):

2: p = Plan(spow, 7y, @)

3: for each (w;,g;) in p do

4 if isPrimitive(w;) then

5 world.execute(w;, Spow)

6 else

7: HPN ($pow, gi, nextLevel (o, w;), world)
8

9:

end if
end for

distinctive characteristic of HPN is that when the refinement is able to identify
a primitive action as the next operator, the action is immediately executed. The
algorithm then considers feedback from the acting agent in order to adjust its
expected state and react to the actual state. Because subsequent steps of the
plan are still at an abstract level, further refinements are created based off of
the actual world state rather than the expected world state.

The Plan procedure takes in the current world state s,.n, a goal v, an
abstraction level a, and the world model. For each action w; in the plan, the
algorithm checks whether it is a primitive action or an abstract action. In the
case of a primitive action, it is executed by the agent. Otherwise, HPN is
recursively called to continue refining the plan.

The drawback of this approach is that, in general, greedy approaches to
planning will not result in completeness. That is, the system cannot guarantee
execution to complete all subgoals. In particular, non-serializable subgoals can
cause inefficiencies or even failure. The Sussman anomaly [12] presents the case
within the Blocks World domain wherein three blocks (A, B,C) are initially
placed with on_table(A), on_table(B), and on(C, A). When planning to achieve
on(A, B) A on(B,C), a greedy algorithm will apply unstack(C) followed by
move(A, B) which will achieve on(A, B) but can then no longer achieve on(B, C')
without moving A. Alternatively, it could apply move(B,C) to achieve the
subgoal on(B,C) but could then no longer proceed without invalidating this
subgoal. HPN handles this case, albeit without optimal execution. It first
resolves the on(A, B) subgoal as above, by executing (unstack(C) followed by
move(A, B). But the algorithm is then able to resolve on(B,C) by moving A
on to the table, B on to C, and finally A on to B. Specifically, HPN uses a
depth first search and has the ability to form plan of any finite length necessary
to satisfy subgoals at each step. Without look ahead, it can create inefficient
plans by satisfying subgoals that must then be undone. However, as long as the
state can be backtracked, HPN can search through actions and still complete
the plan.

HPN is specifically meant to operate in domains where all actions are re-
versible. In the above example, we see that the system is able to solve the
Susssman anomaly because it can reverse the achievement of on(A, B). If, on
the other hand, the domain includes irreversible actions, the system could enter

a failure state even if a valid plan existed in the initial state. Consider in the
above example if the end goal requires that the blocks be glued into position.
When A is moved on to B as the first action, A is permanently glued on to B. If
this stack cannot then be placed on to C, the system has entered a failure state.
Because HPN executes actions as they are established through the refinement
process, it can enter these failure states. Conversely, algorithms that form a
complete plan before execution will avoid failure states because it is looking
ahead and formulating to reach the final goal.

6 GoDeL Planning in the Now

We have shown that the GoDeL algorithm can be integrated with a motion plan-
ning agent in order to produce actionable plans for an autonomous robot agent.
We now look to adapt the GoDeL: algorithm to include the adaptability of HPN
execution to increase its suitability for operation in a dynamic environment.
We call this approach GoDeL Planning in the Now (GPN). The algorithm is
similar in operation to GoDeL with the characteristics of planning in the now.
The primary characteristic integrated into the algorithm is that when an ab-
stract action is refined into a ground action, it is immediately executed before
continuing with further goal decomposition.

By executing actions as they are established, we take advantage of several
characteristics. First, the system can more easily react to changes in the sys-
tem state that are not modeled by the transition function. As an example of
the environment changing, consider a car parked along the road that blocks a
passageway that was previously clear for traversal. Alternatively, consider un-
expected outcomes from executing an action such as attempting to pick up an
object and dropping it down a flight of stairs. Because the planner is not cre-
ating a complete plan, it can adjust and construct the next portion of the plan
based off of the actual state rather than the state expected from the transition
function. That is, plan repair and replanning in response to a broken plan will
be more localized. Additionally, the planner is able to take advantage of ben-
eficial, unexpected outcomes. If an action produces a result that unexpectedly
satisfies additional subgoals and a complete plan has already been formulated,
the agent may end up performing redundant actions to try and achieve these
subgoals that have already been satisfied. Additionally, the planner can work
to make on the spot optimizations. As an example, the planner can take ad-
vantage of the fact that a totally ordered plan has not already been completely
formulated in order to reorder subgoals into a more optimal ordering. Causal
links within the HGN structure will limited scope because much of the future
plan is still abstracted, allowing for more freedom to alter or reorder subgoals.
Another advantage is that the HGN methods used in a GoDeL inspired decom-
position are well suited to provide domain knowledge to the refinement search.
This may become very important in addressing the problems that arise from
planning in the now.

An important shortcoming that is inherent in the planning in the now ap-

proach is that, as discussed in section 5, the planner cannot satisfy completeness.
That is, the planner can lead the agent into a failure state from which it cannot
recover, even if a valid plan could have been formulated from the initial state.
In particular, systems that contain actions that are irreversible can lead to these
failure states. As an example, if the mission requires that a robot lock the door
to a room but the robot is incapable of unlocking the door, the mission could
fail if the door is locked before the robot has completely searched it.

7 Future Work
7.1 Enforce Serializability in GPN

As discussed previously, planning in the now lacks completeness. In future
work, we look to develop the algorithm and address this shortcoming by limited
compromising of the ’in the now’ technique. That is, we allow for some limited
look ahead searching before execution of actions in order to avoid entering failure
states. This poses a large hurdle, as a thorough look ahead search minimizes
the advantages of planning in the now detailed above. To avoid failure states
without constructing a complete plan, the system needs to look sufficiently
ahead so that it can avoid irreversible actions that result in failure. In this case,
the subgoals were not in a serialized ordering. In future work, we must endeavor
to maintain serializable ordering of subgoals as they are refined into a ground
state. We can alter the depth first search and refinement so that it looks far
enough ahead in the planning process to ensure a serialized ordering of goals.
How far ahead we need to search can be a difficult question to answer. Using
user defined domain knowledge (HGN methods), we can attempt to establish
enough detail in order to avoid execution of actions that result in failure states.
That is, if the user defined HGN methods contain enough knowledge to enforce
serializability in its subgoals, the algorithm will avoid failure states.

7.2 Integrate GPN with Simulation

We also look to integrate the GPN algorithm discussed in section 6 into the sim-
ulation environment with the SBPL navigation library discussed in section 3.3.
With this simulation environment, we can further investigate the effectiveness
of the algorithm when implemented on a robotic platform. Planning in the now
is designed to be suited for use within a dynamic environment. This advantage
would be verified through experimentation in the simulated environment.
Additionally, the simulation environment would provide the ability to ex-
periment with a dynamically shifting domain in a controlled environment. A
domain that can change states unexpectedly increases the complexity of the
planning problem. For example, a person could close a door or a hallway could
become blocked. The simulation can provide the opportunity to test the algo-
rithm and provide experience in constructing applicable domain knowledge.
Finally, integration of the GPN algorithm with the SBPL navigation library

can lead to further capabilities through integration with other robot behavior
libraries. As an example, the Movelt! library [11] provides a number of robot
behaviors include complex manipulator control. Using Movelt! capabilities, the
GPN planner could be use to provide additional actions to our test scenario
including the ability to pick up objects and move them to other rooms.

7.3 Dynamic Domain and Goals

As an additional area of research, a complete planning system for a dynamic
system can include dynamic domain redefinitions. This capability is especially
important for operation of the system with incomplete knowledge of the domain.
For example, a robotic system working to explore an unknown building may find
an unexpected door. A robust system would be able to add this door to the
domain and invoke a replanning procedure. This may result in a more efficient
plan to accomplish the goal state.

Similarly, the system could have cause to dynamically alter its goals. In the
context of a search and rescue mission after a natural disaster, a robot could
encounter an injured person. The system would have need to dynamically add
a goal in order to rescue this person or call for aid with a high priority. A
robust planning system would be able to add this goal and invoke a replanning
procedure that would look to achieve this high priority goal as quickly as possible
before continuing with the original plan.

References

[1] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: the-
ory and practice. Elsevier, 2004.

[2] Malik Ghallab, Dana Nau, and Paolo Traverso. The actors view of au-
tomated planning and acting: A position paper. Artificial Intelligence,
208(Supplement C):1 — 17, 2014.

[3] Malik Ghallab, Dana Nau, and Paolo Traverso. Automnated Planning and
Acting. Cambridge University Press, 2016.

[4] Leslie Pack Kaelbling and Tomé&s Lozano-Pérez. Hierarchical task and mo-
tion planning in the now. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 1470-1477. IEEE, 2011.

[6] Martin Levihn, Leslie Pack Kaelbling, Toméds Lozano-Pérez, and Mike Stil-
man. Foresight and reconsideration in hierarchical planning and execution.
In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, pages 224-231. IEEE, 2013.

[6] Maxim Likhachev. Search-based planning library. [Online] Available:
http://wiki.ros.org/sbpl.

[7]

Dana S Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J William Mur-
dock, Dan Wu, and Fusun Yaman. Shop2: An htn planning system. J.
Artif. Intell. Res.(JAIR), 20:379-404, 2003.

Silvia Richter and Matthias Westphal. The lama planner: Guiding cost-
based anytime planning with landmarks. Journal of Artificial Intelligence
Research, 39(1):127-177, 2010.

Vikas Shivashankar, Ron Alford, Ugur Kuter, and Dana Nau. The godel
planning system: a more perfect union of domain-independent and hier-
archical planning. In Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, pages 2380-2386. AAAI Press, 2013.

Vikas Shivashankar, Ugur Kuter, Dana Nau, and Ron Alford. A hierar-
chical goal-based formalism and algorithm for single-agent planning. In
Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems-Volume 2, pages 981-988. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2012.

Ioan A. Suscan and Sachin Chitta. Moveit! [Online] Available:
http://moveit.ros.org.

Gerald Jay Sussman. A computer model of skill acquisition, volume 1.
American Elsevier Publishing Company New York, 1975.

