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Abstract—Visualization recommendation systems such as Voyager [40], VizDeck [20], SeeDB [37], and Foresight [11] have become
popular in recent years. These systems use a variety of metrics to recommended visualizations to end users (e.g., data scientists and
analysts). However, due to high variability in the design of recommendation algorithms, evaluations of these systems are often done in
isolation, and lack standardization, potentially leading to biased outcomes. In this paper, we present a new framework to evaluate the
recommendations these systems produce in a standardized, usable and unbiased manner. Our framework produces a score from 0 -
100, thereby allowing the user to make a determination as to which system they believe provides results most relevant to their work.
Our framework incorporates a range of metrics derived directly from the visualization literature. Every component of the framework
can be configured to better match different analysis scenarios and user goals. We present results from evaluating our framework
through both individual case studies and surveying visualization experts, demonstrating the efficacy of our framework in practice in five
different visualization cases. We highlight lessons learned through the development and evaluation of our framework, and propose
future research directions to further our goal of designing a robust, customizable, and easy-to-use metric for evaluating visualization

recommendation systems.

1 INTRODUCTION

The analysis of large datasets has become a necessary process across a
many disciplines where visualizations enable more efficient interpreta-
tion of this data. While users of visualization tools (e.g., researchers,
analysts) often have research questions and hypotheses planned a priori,
sometimes they are interested in exploring the data first for the purposes
of hypothesis generation. A thorough approach to exploration involves
a systematic search of the entire data set, considering all permuta-
tions of data attributes [27]. However, given the size of many modern
data sets, this is a difficult task to accomplish unaided. In response,
several recommendation systems have been developed to reduce user
effort in exploration tasks by automatically suggesting visualizations
of potential interest as the user explores.

These recommendation systems vary in their methodology for pro-
ducing recommendations. For example, Voyager puts most of its em-
phasis on following Mackinlay’s design principles [23] while covering
a large breadth of the data. This system produces visualizations en-
compassing every combination of the attributes in the data set while
maintaining expressivity and effectiveness [40]. On the other hand, the
VizML system uses machine learning to make its recommendations
by collecting information about the most frequently used visualization
designs to predict which visualizations the user will want to see next for
the current data set [16]. In contrast, SeeDB recommends visualizations
based on different criteria: “interestingness.” SeeDB’s creators define
interestingness as proportional to deviation in the data. To this end,
SeeDB uses a deviation-based metric to produce visualizations that it
thinks analysts and data scientists will find interesting [37].

While the variability in these recommendation algorithms allows
for flexibility, it in turn makes comparing new and existing recom-
mendation systems difficult for researchers and developers because
there is no standardized evaluation process by which to assess them.
For example, suppose Carol, a graduate student in visualization, has
developed an algorithm called NewRec to help analysts save time in
generating reports by suggesting common standard visualizations. Now
she wants to compare NewRec to existing methods. One possibility is
to conduct a user study to compare NewRec to existing systems such as
SeeDB, VizML or Foresight. However, when she reviews the tasks and
metrics of the reported user studies for these systems, she realizes that
because these systems optimize different recommendation metrics, it is
unclear how to compare them to NewRec. Specifically, Carol is unsure
how to design an evaluation that would allow her to argue for which

of these methods performs “the best” for the target analysis context.
Ultimately, we need a standardized process for evaluating visualization
recommendation systems.

However, in order to formulate a standardized—and eventually an
automated—evaluation process, we first need a starting point for evalu-
ating the individual recommendations themselves in a consistent way.
In a review of current evaluation practices, we find that many recom-
mendation systems evaluate their recommendations in isolation [11,37]
or use some metric that measures a benchmark that their system already
optimizes for [20,37,40]. None of the current evaluation methods help
researchers and developers gain a clear understanding of the trade-offs
between different visualization recommendations, making it difficult
to determine whether these recommendations are truly as effective
as claimed. We need a consistent methodology for comparing one
recommended visualization to another. This methodology could con-
sider multiple recommendation objectives, such as adhering to known
graphic design principles, which affect the interpretability of recom-
mended data, but also the analysis context, such as an analyst’s goal(s)
in using the recommendations. Such a methodology could provide a
strong foundation for more sophisticated evaluation frameworks for
comparing collections of recommendations.

We aim to address this evaluation challenge by introducing a stan-
dardized, yet configurable, framework for evaluation of individual visu-
alization recommendations. Our framework calculates a single score to
measure the efficacy of visualizations produced by different visualiza-
tion recommendation systems. Our framework draws primarily upon
known measures used from existing recommendation systems [37,40].
To demonstrate the flexibility of the framework, we also incorporate
evaluation methods that have not yet been used to assess recommenda-
tion systems but are well-known in the visualization community [7,35].

We have provided a software implementation of the framework, but
manual input is still required to calculate scores. Some of the incorpo-
rated metrics are objective (e.g., evaluating visual encodings), while
others may be more subjective (e.g., evaluating the presence of chart
junk). However, our framework is data driven and designed such that by
collecting feedback from more users, the framework’s results become
more objective and precise. Furthermore, we plan to automate the
framework in the future to minimize required human intervention.

To demonstrate the use of our framework, we present two case
studies where we calculate scores for two real-world examples of vi-
sualizations from the web. We also present results from a survey of
n = 15 visualization experts evaluating five different visualizations. We
find that experts use a variety of heuristics to evaluate visualizations
for usefulness, clear and detailed labels, and chart junk. For useful-



ness, experts aimed to address questions like “does the visualization
convey the data well?” to determine whether they would consider the
visualization to be useful. To determine whether a visualization had
clear and detailed labels, experts used proxies along the lines of “does
the label accurately describe the data at hand?” or “are the labels easy
to find and understand?” Lastly, when deciding if a visualization con-
tained chart junk, experts evaluated visualizations by determining if the
visualization contained any unnecessary elements.

We have made several observations that could prove valuable in
the design of future recommendation algorithms and evaluations. In
varying the assignment of weights in our framework to favor different
criteria (e.g., favoring good encodings, graphical excellence, or “in-
terestingness”’), we see marked shifts in output scores. These results
suggest that favoring a single criterion may lead to biased recommen-
dations. As such, we argue that recommendation systems should be
evaluated along multiple diverse criteria. Furthermore, we argue that
it is critical to align the weights of any evaluation framework with
the user’s evaluation goals. With the myriad of weights within the
framework, this task could seem daunting to users. However, we see
in the literature that certain tasks occur frequently during visual anal-
ysis [8]. Using preset configurations for common analysis scenarios
could reduce the complexity of evaluation. Automation could further
reduce the burden of framework configuration and ultimately evalua-
tion. Specifically, automation could enable broader and more rigorous
testing of evaluation techniques for visualization recommendation sys-
tems. We have begun the automation process by providing code to
calculate recommendation scores, available as part of the Supplemental
Materials.

2 RELATED WORK
2.1 Principles of Visualization Design and Evaluation

There has been much prior work in the space of determining how best
to create effective visualizations. Bertin proposed theoretical principles
for visually encoding data by deriving several different graphical objects
and relationships between them. He defined several different encoding
techniques for data [7]. This work was furthered by Mackinlay, who
automated the ideas put forth by Bertin to create the APT system and
a visual design language. Mackinlay posited that there should be two
main criteria for this language: expressiveness and effectiveness. A
graphical language is expressive if it shows all the data the user wants
to see and only the data the user wants to see. A graphical language
is effective if a user can interpret the graphical representation with
optimal accuracy. Mackinlay organized the encoding channels put
forth by Bertin from least to most effective as far as what users are
able to perceive from the data [23]. Shneiderman extends Mackinlay’s
work by including data types that were not covered in APT such as
multidimensional data, trees, and networks [32].

Tufte also proposed several guidelines to consider when designing
effective visualizations. The focus of our study centers around two of
Tufte’s main ideas [35]: graphical excellence and graphical integrity. A
visualization upholds graphical excellence if the visualization portrays
the greatest number of ideas, in the shortest amount of time, with the
least ink, in the smallest space. A visualization upholds graphical
integrity if it is an accurate representation of the underlying data. From
these main ideas, Tufte offers five design principles [35]:

1. Tell the truth about the data (reduce the lie factor)

2. Minimize the data-to-ink ratio

3. Provide clear and detailed labels and annotations

4. Show data variation and not design variation

5. Avoid chart junk
Our framework was designed to incorporate the design principles of
Bertin, Mackinlay, Shneiderman, and Tufte. We use their ideas, not to
create good visualizations, but to determine if visualizations created by
recommendation systems adhere to good graphical design principles.

Other prior work pursues a more holistic evaluation. Through means
of a literature review, Lam et al. collated seven principles to guide
the evaluation of visualization systems in general [22]. We used their
work to gather insight on how to best to go about the more specific
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task of evaluating visualization recommendation systems. Specifically,
their work on evaluating visual data analysis and reasoning aided in
the selection of criteria for use in our evaluation algorithm. While
Lam et al.’s work focuses on evaluating visualization systems as a
whole, our work extends this prior work in part, focusing specifically
on recommendation systems.

2.2 Heuristic Evaluation of Visualizations

A range of heuristics have been developed to support general-purpose,
but low-level evaluation of visualizations. Kim et al. discuss ways
to evaluate the effectiveness of basic visualization designs across 12
encoding channels, for different low-level tasks and dataset character-
istics [21]. Wall et al. propose the ICE-T methodology, which uses
four categories of low-level heuristics to assess the value of various
visualizations [38]. Sakert et al. evaluate the effectiveness of basic visu-
alization designs for a range of specific analysis tasks [29]. The context
in which a visualization is used is critical to tailoring an appropriate
evaluation, a principle which we also incorporate into our framework.

These heuristics are related to our own research goals, and we in-
corporate several of these concepts within our framework. However,
our focus is to integrate these concepts into a broader evaluation of
visualizations that also considers the design goals and optimization
objectives of existing visualization recommendation systems. For ex-
ample, we utilize a similar approach to Wall et al. [38], but specifically
for metrics that have been explored in visualization recommendation
contexts, which includes one’s understanding of the data as investigated
by Wall et al., but also others such as whether a user actually finds the
visualization interesting or useful for future analysis.

2.3 \Visualization Recommendation Systems

Visualization recommendation systems utilize a wide array of eval-
uation metrics to make suggestions to the user. Wongsuphasawat et
al. used Mackinlay’s principles within their system, Voyager, to make
recommendations to the user, prioritizing recommendations based on
the breadth of data the visualization(s) covered [40]. Vartak et al. use
an “interestingness’” metric based upon deviation in the data to make
recommendations to their users [37]. Jayachandran et al. determine
what recommendations to make to users in their system, DICE, by
predicting what queries the user will make and then uses sampling to
rapidly answer these queries [18]. Battle et al. utilize a similar predic-
tion approach to pre-fetch relevant data for exploration [3]. Demiralp et
al. use a ranking scheme to decide which visualizations to recommend
in their system, Foresight. They rank visualizations based on the most
relevant attribute tuples related to the insights of the user [11]. Hu et al.
use machine learning to make recommendations to their users in their
system, VizML. VizML first learns the most used visualization designs
from a large corpus of data sets and their associated visualizations. The
system then makes recommendations based upon the data set input by
the user [16]. All of these recommendation systems utilize completely
different metrics to determine which visualization to recommend to the
user, but provide a strong list of candidate measures to consider for our
evaluation framework.

The Draco system by Moritz et al. enables users to generate rele-
vant visualizations by formulating their desired design features (e.g.,
the design principles described above) as rules passed to a constraint
solver [25]. Our proposed framework provides a convenient approach
for assessing visualizations produced by Draco and other visualization
recommendation systems.

Finally, there has been some work focusing specifically on evaluat-
ing recommendation systems. Vartak et al. detail key design decisions
that should be considered when creating and making recommenda-
tion systems in the future. They offer guidelines along three axes:
recommendation axes, recommendation criteria, and architectural con-
siderations. They suggest considering data characteristics, semantics
and domain knowledge, user preference and competencies, visual ease
of understanding, and intended task or insight when selecting the recom-
mendation axes. When selecting recommendation criteria, the authors
suggest considering the relevance, surprise, non-obviousness, diversity,
and coverage of the recommendation system [36]. While we do not



focus on all of the suggestions put forth by Vartak et al., we chose
to incorporate the consideration of data characteristics, visual ease of
understanding, and intended task or insight into our algorithm when de-
termining recommendation axes. We incorporated relevance, surprise,
and non-obviousness into our algorithm when determining recommen-
dation criteria. While the authors make valuable suggestions, their
advice has never been concretely realized in an evaluation framework.
Our contribution is to fill the current gap in implementation of these
suggestions in an actionable and robust manner.

2.3.1

Note that many recommendation systems exist outside the context of
data visualization, and are subject to similar pitfalls that exist in the
visualization space: deciding which one is most relevant to a particular
domain is not a simple task. Gunawardana and Shani address the di-
versity of recommendation algorithms, and provide insight in how best
to set up an offline experiment to determine which of these algorithms
is most suited to the user’s purposes [12]. Despite the diversity in rec-
ommendation algorithms, many produce item rankings based on some
measure of similarity to user queries. Hurley et al. argue against this
trend in favor of items that may seem novel or unusual, i.e. diversifying
the recommendations produced by a system, akin to SeeDB’s measure
of “interestingness” [17,37].

Further, Gunawardana and Shani stress the importance of selection
of the proper evaluation metric (error-, precision-, or utility-based),
warning that the use of an unsuitable metric may lead to choosing
an algorithm that is suboptimal for the given task [12]. Bellogin et
al. survey two error- and three precision-based evaluation metrics
and find that four our of the five give comparable results, whereas the
final one reliably overestimates performance [6]. These techniques
focus primarily on user behaviors (e.g., what people buy or click on),
ignoring contextual knowledge (e.g., perception, analysis task, user
goals, etc.). In contrast, our framework combines a range of metrics
that take analysis context into account.

Recommender Systems at Large

3 DESIGN GOALS

Our primary design goal was to prioritize both good graphical design
and the utility of recommended visualizations. Given that many works
mentioned the visualization rules of Bertin, Mackinlay, Tufte, and
Schneidermen, we felt it was best to use their metrics in our evalu-
ation algorithm to evaluate the graphical design of the visualization.
Furthermore, since we are not simply evaluating visualizations but are
evaluating the visualizations put forth by recommendation systems,
we felt it was important to emphasize criteria necessary to a good rec-
ommendation: usefulness and interestingness. This broader goal was
refined to create a set of concrete metrics, ultimately resulting in the
inclusion of five main evaluation criteria in our framework:

C1 Effective use of encoding channels

C2 Adherence to Graphical Excellence and Integrity principles
C3 Visualization “Interestingness”

C4 Visualization “Usefulness”

C5 Configure-ability and Ease of Use

Furthermore, we wanted to emphasize the usability of this tool for our
user base. We specifically created this tool to be used by researchers or
developers who are looking to create a recommendation system. We
see our algorithm as being a tool for creators of new systems to measure
their recommendation system against existing systems.

Encoding Channels (C1): This criterion focuses on determining
the effectiveness of the encoding channels used in a given visualization.
It incorporates design principles put forth by Bertin [7] and Mackin-
lay [23] (see §2.1). On a high level, this includes ensuring the encoding
channels and mark types for each visualization are best suited to the
particular type of data being displayed. It is essential that each dimen-
sion of data encoded in the visualization be displayed in a way that is
easy for humans to perceive, and that this is done in a way that is effec-
tive for that data type. The use of suboptimal encoding channels and
mark types can make a visualization unreadable or misleading, making
this an important criterion for inclusion in our framework. Inclusion
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of these encoding principles is also supported by the literature and
past research, as Voyager explicitly attempts to include Mackinlay’s
principles within its design [40].

Graphical Excellence and Graphical Integrity (C2): Tufte’s prin-
ciples provide one approach to assessing the usability of a graphic based
on its design. This criterion considers how well a given visualization
upholds Tufte’s graphical excellence and graphical integrity princi-
ples [35]. We consider adherence to graphical excellence and integrity
because it provides a useful measure of whether a visualization is: (a)
hard to interpret or perceive, and (b) misleading to the user. Tufte pro-
poses five main principles (see §2.1), which prioritize ensuring that the
visualization is visually pleasing and that the design of the visualization
does not take away from understanding the underlying data. For the
purposes of this work, we chose to focus on two of these principles:
“clear and detailed labels and annotations” and “avoiding chart junk”.
Our rationale for selecting these two principles is discussed in §4.4.

Visualization “Interestingness” (C3): The third criterion involves
the evaluation of “interestingness,” i.e. whether or not a given visu-
alization is “interesting” to the user. C3 was inspired by SeeDB’s
deviation-based utility metric, which tries to produce interesting visu-
alizations by prioritizing the display of data that deviates from some
reference data set [37]. However, a deviation-based metric has too nar-
row of a view of “interestingness” to be effective in a general-purpose
framework (discussed further in §4.5). Nonetheless, we desired to
include some measure of interestingess in our algorithm, because it is
crucial to the effectiveness of a recommendation system. If a platform
recommends visualizations that are uninteresting to the user, then the
system will fail to capture the user’s attention. We define a visualization
to be interesting if it relays something novel about the data to the user;
specifically, whether the system produces a visualization the user may
not have necessarily thought of themselves. To this end, we derived a
metric for our framework to assess the novelty of a visualization based
on how likely the user was to to come up with the visualization on their
own (without the aid of a recommendation system).

Visualization “Usefulness’ (C4): Our fourth criterion was the eval-
uation of usefulness, i.e. whether or not the visualizations being pro-
duced by a system are useful to the user. For the purposes of this project,
we define usefulness as a measure of how helpful the recommended
visualization is for answering the user’s research question(s). This
criterion complements C3 since it is possible for a visualization to be
interesting without being useful, or vice versa. Without incorporating
both criteria, our framework could potentially award high scores to
visualizations that were unhelpful to the user’s end goals. Thus, it was
important to us that we include usefulness in our formula.

Configurability and Ease of Use (C5): No single metric or formula
will perfectly match any and all visual analysis goals. Rather than
complicating the process by creating yet another metric by which to
compare systems, we take a broader view that considers how existing
metrics can be combined to provide a more holistic measure. In the
next section, we provide recommendations on how existing metrics
can be folded into a single score, and how weights can be assigned to
different parts of the scoring mechanism (in this case, a formula) to
address different user needs and goals. By providing a single score, we
aim to make it easier for users to assess whether a recommendation
system is providing effective visualizations for the given context.

4 METHODS

In this section, we describe the scoring mechanism for our framework
which incorporates multiple criteria into a single formula for scoring.
The formula uses the design considerations discussed in §3 to compute
a score from O to 100. This range was chosen because it is simple for
users to understand scores that are formatted like percentages, allowing
for very easy-to-understand evaluation of relevant systems. We also
note that this formula is flexible, allowing for easy re-weighting of any
and all components to adjust the scores to better match user goals and
needs, addressing design criterion C5.



4.1

First we present the full formula and provide a high level breakdown of
its constituent expressions:

Evaluation Formula

g 1, e
s=wa- Y z Wapq+ Y. z woro+ X, z wepc]+ (D)
i=1qg= j=lo=
we - [wipr +wapa]+ (@)
We3 * p3+ 3
Wed * P4 C))

Parts (1) and (2) evaluate the graphical design of the visualization,
whereas parts (3) and (4) evaluate the utility of the visualization as a
means by which to convey some message about the data. The suggested
(relative) weighting of each criterion is discussed in §4.2. Part (1)
pertains to effectiveness of encoding channels (design criterion C1),
and is discussed in §4.3. Part (2) pertains to adherence to graphical
excellence and integrity principles (design criterion C2), discussed in
§4.4. Part (3) pertains to the interestingness of the visualization (design
criterion C3), discussed in §4.5. Part (4) pertains to the usefulness of
the visualization (design criterion C4), discussed in §4.6.

4.2 Relative Weighting of Criteria

As mentioned in §3, there are four main evaluation criteria. However,
not all criteria should necessarily be weighted the same in each evalu-
ation scenario. In our example with Carol, the focus is on producing
recommendations that will be useful for generating reports. In this case,
Carol will likely care more about well-chosen encodings (C1), graphi-
cal excellence (C2), and the usefulness of the resulting visualizations
(C4), and care less about interestingness (C3). As such, Carol will want
the weights of the framework to reflect these goals. This necessitates
the ability to assign weights to each of the criteria in a context-specific
manner. Here, we present three different weighting schemes, or presets,
implemented in our framework, described below (see Table 1).

Preset Wel  We2  We3 Wea
Basic (default) 25 25 25 25
Encodings 70 10 10 10
Interestingness 10 10 70 10

Table 1. Suggested weighting schemes, or presets.

Basic Preset: The simplest configuration is to assign weights uni-
formly. We use this configuration as a default for the framework.

Encodings Preset: In this preset, we consider a scenario where the
scoring is focused primarily on encoding choices, an important factor
in other systems [23,40]. This configuration gives encodings seven
times the weight of any other criteria (w.; = 70).

Interestingness Preset: This preset is meant to reflect our original
inspiration from the SeeDB system [36, 37], where interestingness
is the most important factor and thus weighted most heavily (w.3 = 70).

‘We emphasize that these presets should only be considered helpful
suggestions for using our framework, to be modulated as one’s goals
and requirements are further refined. We stress that all framework
weights are fully customizable: the weights are easily accessed and
modified through JSON-formatted configuration files in our code.

4.3 Encoding Channels (C1)

The quality of a visualization can be greatly affected by the encod-
ing channels used to render each attribute of the data. Inappropri-
ate encodings may drastically reduce the ability of a visualization
to convey meaningful information about the data it represents. We
ground our ranking and relevant weighting of encoding channels in the
well-established principles of Bertin and Mackinlay, introduced in [7]
and [23], respectively.

Because the number of data attributes represented in a visualization
may vary, we opted to compute the average score over all encodings
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present in the visualization. We begin by adding the scores for all data
attributes being encoded. The expression

g 1y ne

Z qupq+z, ZWoPoJr Z Zwch

i=lg= j=lo=

in the final formula accomplishes this by splitting the encodings into
three different sums representing well-recognized data types: quantita-
tive data, ordinal data, and nominal (or categorical) data, respectively.
The ngy, n,, and n. terms represent the number of encodings present for
each respective data type. Then, for each data attribute encoded by the
given data category, we sum over all 11 encoding channels considered
by our framework!. The Pg> Po» and p. terms are binary parameters
that take a value of one if the given encoding channel is used for that
data attribute, and zero otherwise. The wy, w,, and w, terms are the
weights assigned to these encoding channels, which are discussed in
§4.3.1, §4.3.2, and §4.3.3.

After summing all the possible encodings, we finally divide by 7, the
total number of attributes represented, to compute an average ranging
from O to 1 (note that n = ng +n, +n¢). This value is then multiplied
by w, to obtain the final encoding channels score.

We incorporated the graphical design principles of Bertin and
Mackinlay in our assignment of suggested initial weights and scor-
ing functions for encoding channels. The weights are currently linearly
distributed within the range from O to 1, and are based primarily on
existing rankings [7,23]. Factors we took into consideration when
devising scoring functions included but were not limited to:

* Does the effectiveness of the channel decrease with an increase

in the number of unique values (or categories) in the data?

* Does the channel provide too little or too much granularity for

the data type in question?
All components of the encodings score can be configured in our frame-
work code by adjusting the associated JSON-formatted configuration
file and other framework parameters (e.g., image width).

4.31

For quantitative data, we assign constant weights to each encoding
channel (see Table 2), which we base on existing perceptual rankings.
For example, position, being the best channel to encode quantitative
data, earns the maximum weight of 1, while texture and shape, being
incongruent (and arguably ineffective) channels to encode quantitative
data, earn scores 0.1 and 0.0, respectively.

Quantitative Data

Quantitative Encoding Channel ~ Weight (w,)
Position 1.0
Length 0.9
Angle 0.8
Slope 0.7
Area 0.6
Volume 0.5
Density 0.4
Color Saturation 0.3
Color Hue 0.2
Texture 0.1
Shape 0.0

Table 2. Encoding channel rankings, and corresponding weights for
quantitative data.

4.3.2 Ordinal Data

For ordinal data, we also assign weights to each encoding channel
based on prior research as to which channels are most effective for
ordinal data (see Table 3).

We recognize that many channels become less effective as the cardi-
nality of the given data attribute (7.4 ), or the number of unique values
within this attribute, increases. Note that we assume that n.4 takes a

Note that although they appear in Mackinlay’s original paper, we omit the

“connection” and “containment” channels, as our initial focus is on evaluating

visualizations of relational rather than graph data.



Ordinal Encoding Channel Weight (w,)

Position 1.0*min[1, lllogp(nca,)]
Density 0.9*min[1, 1/logs(ncar)]
Color Saturation 0.8*min[1, 1/logs(ncar)]
Color Hue 0.7*min[1, 1/1ogs(n¢ar)]
Texture 0.6*min[1, 1/logs(ncar)]
Shape 0.5*min[1, 1/logs(n¢ar)]
Length 0.4*min[1, lllogp(nca,)]
Angle 0.3*min[1, 1/1ogs(n¢ar)]
Slope 0.2*min[1, 1/1ogs(ncar)]
Area 0.1*min[1, lllogp(nm,)]
Volume 0.0*min[1, 1/10gp(nw,)]

Table 3. Encoding channel rankings and corresponding weights for
ordinal data, where n., is the cardinality of the data attribute (i.e., total
unique values observed), and p is pixel width/height of the visualization.

default value of 5, informed by prior visual perception work (e.g., for
color encodings [13]). To account for this decay, we use an inverse log
function to modulate the weights, based on Stevens’ power law [34].
The base of the logarithm denotes how many categories we believe to
be reasonable to distinguish between for that particular channel before
comprehensibility is compromised. For example, because we believe
it is reasonable for humans to distinguish five different lengths rep-
resenting ordinal data at a glance, the base weight for shape (0.5) is
multiplied by min[1,1/logs(ncq )], meaning a penalty is incurred once
the number of categories in the data being encoded surpasses five.

According to prior work, position is the best channel for encoding
ordinal data (receiving a base weight of 1.0). However there is a
limitation on the effectiveness of position based on the pixel width
of the visualization in question, hence the base of the logarithm is
p, i.e. pixel width. Since the weights are modulated by inverse log
functions, they will approach zero as n., increases. Note that all
bases and weights can easily be configured through JSON-formatted
configuration files for our framework code.

4.3.3 Nominal Data

‘We use the same inverse log function scheme for nominal (or categor-
ical) encoding channels as for ordinal encoding channels, since the
effectiveness of the channels can decrease when too many categories
are represented in the data (n¢q).

The full assignment of weights can be seen in Table 4. Position is
the best channel for encoding for nominal data (receiving a base weight
of 1), and is modulated using the same scheme as seen with ordinal
data. Color hue is close behind, with a base weight of 0.9.

Nominal Encoding Channel Weight (w,.)

Position 1.0*min[1, lllog[,(nca,)]
Color Hue 0.9*min[1, 1/1ogs(ncar)]
Texture 0.8*min[1, 1/logs(rcar)]
Density 0.7*min[1, 1/1ogs(ncar)]
Color Saturation 0.6*min[1, 1/logs(ncar)]
Shape 0.5*min[1, 1/logs(ncar)]
Length 0.4*min[1, l/log[,(ncm)]
Angle 0.3*min[1, 1/logs(ncar)]
Slope 0.2*min[1, 1/1ogs(ncar)]
Area 0.1*min[1, l/logp(nwt)]
Volume 0.0*min[1, l/log[,(ncm)]

Table 4. Encoding channel rankings and corresponding weights for
nominal data, where n., is the cardinality of the data attribute, and p is
pixel width/height of the visualization.

4.4 Graphical Excellence and Integrity Principles (C2)

Recall the main principles for graphical excellence and graphical in-
tegrity in visualization design, described in §2.

We currently evaluate two principles in our framework (“clear and
detailed labels” and ““avoiding chart junk™) which complement our
other framework components rather than duplicate them. For example,

“showing data variation and not design variation” is largely dependant
on the utilization of proper encoding channels and good design princi-
ples, both of which are already addressed with our existing criteria.

Of the principles included in our framework, we believe clear and
detailed labels to be the more critical of the two. The reason for this
is that clear and detailed labels are a necessary condition for effec-
tively interpreting the data being presented. If labels are ambiguous or
nonexistent, it becomes a challenge for users to glean anything from a
visualization, making it a bad recommendation.

Tufte points out that avoiding chart junk is important for making
interpretation of visualizations a fast and efficient process, but chart
junk generally does not completely impede one’s ability to interpret a
visualization. However in contrast, poor or missing labels can prevent
users from interpreting a visualization. For this reason, we suggest
that wy, the weight for clear and detailed labels, should be set to 0.7,
and wy, the weight for avoiding chart junk, to 0.3. Of course, there
may be situations where one may need prioritize reduction of chart
junk (or other criteria). Our framework is designed to allow for easy
re-weighting of any component to accommodate these situations (e.g.,
by updating the corresponding configuration file in our code).

Evaluating Clear and Detailed Labels: When evaluating the effec-
tiveness of labels in a visualization, we consider five possible categories
of labels: title, subtitle, x-axis label, y-axis label, or data (per-mark)
labels. We consider each of them separately, because it is possible to
have effective labels in some categories while having ineffective labels
in others, necessitating some degree of granularity.

We score labels by asking users (e.g. analysts, data visualization
experts) to rate whether each of the five label types are clear and detailed
using a three-point Likert scale: yes (assigned a score of 0.2), somewhat
(0.1), or no (0.0). The median is taken for each label category across
all users, and these five medians are then summed to yield the value for
p1 (with a maximum of 1). Note that if a label is correctly absent (such
as axes labels on a pie chart), users are to select “yes” = 0.2. Then p;
is multiplied by the corresponding weight w; to return the final score
for clear and detailed labels.

Evaluating Chart Junk: To evaluate chart junk, we ask users (e.g.
analysts) to identify the degree of chart junk present in a visualization,
also on a three-point Likert scale: excessively (assigned a score of 0.0),
somewhat (0.5), and none (1.0). The median across all users is taken,
and this value is assigned to parameter p,. Then p; is multiplied by the
weight wy, yielding the final score for avoiding chart junk.

Combining Labels and Chart Junk Scores: Once we have a final
weighted score for evaluating labels and a final weighted score for
evaluating chart junk, we add these two scores together. This sum re-
turns a value between 0 and 1, depending on how well the visualization
adheres to the aforementioned principles. Lastly, we multiply this value
by the overall criterion weight of w,, discussed in §4.2, to calculate
the overall graphical excellence/integrity score of the visualization.

4.5

The interestingness criterion was inspired by SeeDB’s deviation-based
interestingness metric [37], however their exact approach raises some
concerns voiced in recent work [43]. In particular, such an approach
may encourage users to p-hack. Moreover, large deviation is not neces-
sarily what the user is interested in, so the use of such a metric precludes
the recommendation of visualizations that may show little deviation,
but still communicate something novel about the data.

Instead, we define a visualization as interesting if the attributes (and
encodings) are non-obvious. Most data sets will have a set of “default”
visualizations that users will immediately think of constructing on
their own, but encouraging users to explore non-obvious visualizations
may ultimately lead to a deeper understanding of the data and more
nuanced hypotheses or findings. This approach is also considered in
other recommendation systems, such as Voyager, which encourages
users to interact with new, unexplored attributes [40].

We score our interestingness criterion by asking users (e.g., analysts,
visualization experts) whether they would have come up with a par-
ticular visualization for a given data set on their own. If most users
would create the visualization unprompted, this suggests that it is an
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obvious and therefore uninteresting visualization; if most users would
not consider the visualization until it is recommended to them, then
it may be an interesting one to recommend. In particular, a user rates
how likely they would be to come up with a given visualization using a
four-point Likert scale: extremely unlikely (clearly novel), somewhat
unlikely, somewhat likely, extremely likely (clearly not novel). We
propose two methods for converting this feedback into a usable score.

Method 1: Median In this method, we assign numerical scores
to the Likert ratings as follows: extremely unlikely = 1.0, somewhat
unlikely = 0.75, somewhat likely = 0.25, and extremely likely = 0. We
then calculate p3 as the median score across all users (see §4.1).

Method 2: Proportion In this method, we collapse each Likert
scale rating into a binary score: “extremely unlikely”” and “somewhat
unlikely” map to “unlikely”, and “extremely likely” and “somewhat
likely” map to “likely”. To calculate p3, we subtract from 1 the pro-
portion of users responding with “likely.” Thus, if no one would have
thought of the given visualization unprompted, p3 = 1, and if everyone
would have thought of the visualization, p3 = 0 (see §4.1).

Method choice is flexible, and can be adjusted depending on user
preference. Either way, to obtain the final interestingness score, the
value of p3 is multiplied by the weight of w3, as discussed in §4.2.

4.6 Usefulness (C4)

Our usefulness criterion was designed to complement our interesting-
ness criterion, because the interestingness criterion is unable to capture
whether the recommended visualization is actually useful to the user.
For example, it may be the case that a visualization is non-obvious
because it is not very helpful to begin with. This component of the
evaluation framework was implemented by assigning a score based on
how many users (e.g., analysts) either bookmark the visualization for
later use, or rate it pertinent to the research question(s) they are trying
to answer. In particular, a user rates how likely they would be to save a
visualization for future reuse on the following four-point Likert scale:
extremely likely (clearly useful), somewhat likely, somewhat unlikely,
extremely unlikely (clearly not useful). We propose similar methods
for scoring feedback as our interestingness criterion.

Method 1: Median We assign numerical values between 0 and
1 for each Likert rating: extremely likely = 1.0, somewhat likely =
0.75, somewhat unlikely = 0.25, and extremely unlikely = 0. We then
calculate p,4 as the median score across all users (see §4.1).

Method 2: Proportion here, we also collapse the Likert scale to
a binary ranking. We then calculate p4 by subtracting from 1 the
proportion of users responding with “unlikely” (see §4.1).

For consistency, we suggest using the same scoring method for both
interestingness and usefulness. To obtain the final usefulness score, the
value of p4 is multiplied by the weight w4 (see §4.2).

4.7 Assessing Interestingness and Usefulness

To test our interestingness and usefulness criteria, we formulated sev-
eral example research questions, and utilized two evaluation strategies:
1) polling the current research team on interestingness and usefulness,
discussed in §5; and 2) seeking feedback from outside experts, dis-
cussed in §6. In the future, the usefulness criterion could be tracked
automatically in systems that have a bookmarking feature, or experts
could be polled in a larger user study on a wider range of visualiza-
tion designs. In this way, collaborative filtering (CF) techniques could
leveraged to aid in the visualization recommendation process.

5 EVALUATION 1: INITIAL CASE STUDIES

To test our framework, we selected five visualizations to evaluate using
our metric. To gain an understanding how the formula works in practice,
We provide a step-by-step evaluation of two of these examples. Note
that we use the basic preset (weighting scheme) described in §4.2.

5.1 Visualization Example 1

Consider the scenario of a company that sells fruit juices, and we are
interested in identifying the juices that brought in the most revenue.
Suppose that some recommendation system suggested the visualization
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Fig. 1. A sample visualization from an existing visualization corpus [4, 5].

presented in Fig. 1 for this analysis. Together, three of the authors
evaluated this visualization using each of the four criteria.

Encodings Score: This chart encodes two data attributes: one quan-
titative encoded by length (revenue), and one nominal encoded by
position (type of juice) resulting in a final encoding channels score of:

[Z qupq+ Z ZWOP0+Z chl’c]
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Graphical Excellence and Integrity Score: Three authors eval-
uated this visualization on graphical excellence/integrity. All three
agreed that both the title and data labels were clear and detailed.
Thus these two categories receive the maximum of 0.2. All three
authors found the subtitle to be somewhat vague (“Last year” is
ambiguous), along with the y-axis label (“Amount” is ambigu-
ous), yielding a score of 0.1 for both categories. All three au-
thors rated the x-axis label as not being clear and detailed, as-
signing it the minimum score of 0. Summed together, this yields:

=02+0.1+0+0.1+02=0.6.

All three authors concurred that this visualization includes
chart junk. Though distracting, it does not prevent the user
from understanding the message the visualization aims to con-
vey, resulting in a unanimous score of p, = 0.5. This visual-
ization receives an overall graphical excellence/integrity score of:

0.7-0.64+0.3-0.5=10.57

Interestingness and Usefulness Scores (Using Method 1): One
author thought they were extremely unlikely to have come up with
this visualization on their own (they found it interesting), while the
other two thought they were somewhat likely to have done so (they
found it somewhat uninteresting). These results dictate a value of
p3 = median[0.25,0.25,1.0] = 0.25

When considering usefulness, one author said they were some-
what likely to save this visualization for future use (they found it
somewhat useful), while the other two said there were extremely
unlikely to do so (they found it unuseful). This yields a value of
p4 = median[0.0,0.0,0.75] = 0.0.

Interestingness and Usefulness Scores (Using Method 2): Ap-
plying our proportion-based method to the above scores leads to an
interestingness score of p3 =1— % = 0.33, and a usefulness score of
pa=1—%=033.

Final Score If this bar chart were suggested by a visualization
recommendation system, it would be awarded a final score of:

25-0.95+25-0.57425-0.25+25-0.0
=23.75+14.2546.2540.0=44.25.
if using Method 1 for C3 and C4, or:
25-0.95+25-0.57425-0.33+25-0.33
=23.75+14.25+8.33+8.33=54.67.

if using Method 2. Both scores line up with our intuition for the overall
value of this visualization as a potential recommendation. While the
data is presented faithfully, the confusion caused by the abuse of Graph-
ical Excellence/Integrity principles lowers the final score significantly.

]: 0.95



The final scores above reflect the use of the basic (default) preset
described in §4.2. These scores were also recalculated using the other
presets (encodings and interestingness, see Table 5). For completenesss,
both methods for scoring interestingness and usefulness (median and
proportion) are addressed. The encodings preset yielded the highest
scores by a large margin, which is expected given the optimal use of
encoding channels to represent the data. The interestingness preset
yielded the lowest score. With the exception of the encodings preset,
the scores generated using methods 1 and 2 were about 10 points apart.

Preset Method 1 Score  Method 2 Score
Basic 44.25 54.67
Encodings 74.7 78.87
Interestingness 32.7 41.87

Table 5. The distribution of scores for Fig. 1 using the presets in §4.2.

5.2 Visualization Example 2

We now repeat our scoring process for visualizing the popularity of
baby names starting with“Ki” over time. Suppose a recommendation
system recommends the visualization in Fig. 2 for this analysis. All
four authors evaluated this visualization.

Baby Name > ki

1880s  1890s  1900s  1910s 19205 1930 1960s  1970s  1980s 19905  2000s 2017

Fig. 2. A visualization showing the popularity of baby names starting with
"’Ki” over time, taken from [2].

Encodings Score: This visualization encodes four data attributes:
one is quantitative data encoded by position (birth year), one is quan-
titative data encoded by area (number of babies), one is quantitative
data encoded by color saturation (popularity of the name), and one is
nominal data encoded by two distinct color hues (gender associated
with name). Using our formula, we arrive at a final encodings score of:

1
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o S
Graphical Excellence and Integrity Score: All authors agreed
that both the title and y-axis labels were clear and detailed (both
receive the maximum of 0.2). There is no subtitle in the visu-
alization, but no subtitle is needed (also receiving 0.2). One au-
thor found the x-axis to be unclear (0.0), two found it somewhat
clear (0.1), and one found it to be clear and detailed (0.2), pro-
ducing a median of 0.1. Two authors found the data labels to be
somewhat clear (0.1); the other two found them to be clear and de-
tailed (0.2), yielding a median value of 0.15. The final result is:

p1=02+4+02+0.1402+0.15=0.85
All authors agreed this visualization includes no chart junk, resulting

in a unanimous score of p; = 1.0, and a final score of:
0.7-0.854+0.3-1.0 =0.895

] —0.70
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Interestingness and Usefulness Scores (Method 1): One author
thought they were extremely likely to have come up with the visualiza-
tion on their own (i.e., found it uninteresting), while the others would
have been somewhat unlikely to create this visualization on their own
(i.e., found it somewhat interesting). These results dictate a value of
p3 = median[0.0,0.75,0.75,0.75] = 0.75.

When evaluating usefulness, three authors said they were ex-
tremely likely to save the visualization for later use (i.e., found it
useful), while the other said they were somewhat unlikely to save
it for later use (i.e., somewhat unuseful). This produces a value of
p4 = median[0.25,1.0,1.0,1.0] = 1.0

Interestingness and Usefulness Scores (Method 2): Proportion
scoring produces an interestingness score of p3 = 1 — % =0.75,and a

usefulness score of py =1 — % =0.75.
Final Score: If this visualization were suggested by a recommenda-
tion system, it would be awarded a final score of:

25-0.704+25-0.895+25-0.754+25-1.0
=17.5+22.38418.75+25.0= 83.63.

if using Method 1 for C3 and C4, or:

25-0.704+25-0.895425-0.754+25-0.75
=17.5+22.38+18.75+18.75=77.38.

if using Method 2. Both scores support our intuition for the value of
this visualization as a recommendation, especially relative to the case
study in §5.1. While it is not perfect (e.g., data labels were hard to
read, etc.), this visualization is overall an effective way to communicate
the data to the user. This is readily apparent from the scores for C2,
C3, and C4. Final scores generated using all presets are described in
Table 6. We see that the encodings preset resulted in the lowest scores,
but also note that the distribution of scores across presets is narrower
than seen in §5.1. This is due to the fact that all four criteria scores
were somewhat evenly distributed, unlike in the previous case study:
encodings were well executed, but the visualization suffered greatly
in C2, C3, and C4. These discrepancies are amplified by the weights
assigned to the criteria in different presets.

Preset Method 1 Score  Method 2 Score
Basic 83.63 77.38
Encodings 75.45 72.95
Interestingness 78.45 75.95

Table 6. The distribution of scores for Fig. 2 using the presets in §4.2.

5.3 Results

These examples demonstrate that our formula can score recommen-
dations in a way that is not only intuitive to potential users, but also
robust to a variety of visualization schemes and user analysis goals.
One lesson learned from this exercise, is that the interpretation of user
feedback on interestingness and usefulness can result in markedly dif-
ferent scores. In both cases, we see clear differences in the results of the
two scoring methods (see Tables 5 and 6), though the method that pro-
duced the higher score varied by case. These results may suggest that
calculating multiple scores from the same user feedback could be bene-
ficial, providing different perspectives on the design of a recommended
visualization. However, it is unclear from these case studies whether
the two methods may be suited to specific contexts. We investigate this
question further in our user study, described in §6.

6 EVALUATION 2: SURVEYING EXPERTS

To gain a better understanding of the behavior of our framework, we
conducted a user study to gather expert feedback on criteria C2 - C4
(see §3). This was accomplished by administering an online survey
asking visualization experts to evaluate five different visualizations: our
two initial case studies, two well-known online visualization designs,
and one classic and well-known visualization design. 2

2This study was approved by our institution’s Institutional Review Board.



Method 1 (Median Scoring) Method 2 (Percentage Scoring)

C1 C2 C3 C4 Final | C1 C2 C3 C4 Final
Pie Chart [4,5] 1875 2325 6.25 1875 67 18.75 2325 8.33 15 65.33
Baby Names [2] 17.5 19.5 6.25 1875 62 17.5 19.5 10 13.33  60.33
Fruit Juice [4,5] 2375 8.75 18.75 6.25 57.5 2375 8.75 15 5 52.5
Cholera Map [33] 2417 16.25 18.75 18.75 7792 | 24.17 1625 15 15 70.42
Facebook IPO [1] 17.5 17.75 18.75 6.25 60.25 | 17.5 17.75 1333 10 58.58
Baby Names (Case Study) [2] 17.5 2238 1875 25 83.63 | 17.5 2238 1875 18.75 77.38
Fruit Juice (Case Study) [4,5] 23.75 1425 6.25 0.0 4425 | 23775 1425 8.33 8.33 54.67

Table 7. Framework scores using the Basic preset for every visualization evaluated in our case studies (§5) and user study (§6). A copy of each
image is provided in the supplemental materials. The weakest category for each visualization is highlighted in bold. We see that interestingness (C3)
and usefulness (C4) generally have the weakest scores. We also find that in most cases, proportion scoring (Method 2) leads to lower scores.

6.1
6.1.1

We sought study participants with prior experience in visualization
and/or data analytics. To this end, subjects were recruited by emailing
the researchers’ contacts in the visualization and analytics communities
and public mailing lists. Potential respondents were first directed to an
initial screening survey that assessed their expertise in the fields of data
visualization and analytics. Based on their responses, participants were
contacted at the email address they provided at the end of the screening
to complete the actual study survey. Fifteen people participated in the
study survey; participants’ expertise ranged from visualization faculty
and graduate students to industry analysts and practitioners.

User Study
Recruitment

6.1.2 Survey Design

The survey was implemented in Qualtrix, and designed to gather feed-
back on three criteria: C2, C3, and C4. To assess C2, we first asked
participants whether they considered each of the five label categories
(title, subtitle, x-axis, y-axis, and data labels) to be clear and detailed
using the three-point Likert scale discussed in §4.4. These Likert rat-
ings were processed as described in §4.4 to obtain the value of p;. To
complete our assessment of C2, we then asked participants to determine
the degree of chart junk present in a visualization, using the three-point
Likert scale also discussed in §4.4. These Likert ratings were processed
as described in §4.4 to obtain the value of p,.

To assess C3, we asked respondents how likely they would be to
have come up with a visualization on their own, using the four-point
Likert scale described in §4.5. To assess C4, we asked respondents how
likely they would be to save a visualization for future reuse, using the
four-point Likert scale described in §4.6. For C3 and C4, both proposed
methods (median and proportion) were used to obtain their respective
values of p3 and p4 (as described in §4.5 and §4.6, respectively).

The evaluations described above were completed for each of five
data visualizations by a total of n = 15 respondents.

6.2 Results

In Table 7, we present the criteria and final scores for each of the five
visualizations, calculated using the same process described in §5.1 and
§5.2. Due to space limitations, we only present results using the basic
(default) preset. Note that all scores for all presets are calculated in our
framework code examples included in the supplemental materials.

6.2.1

Figure 3 shows the spread of ratings provided by participants for the
Baby Names visualization. The results for all visualizations are pro-
vided in the supplemental materials. For many evaluation criteria, we
see relatively strong agreement across participants, represented as a vast
majority of participants providing the same rating (e.g., all participants
rating chart junk as “Somewhat” for Baby Names).

For interestingness (C3) and usefulness (C4), the inclusion of more
users in completing these evaluations reduces the gaps between final
scores. For example, in the case study of the Baby Bames visualization
in §5.2, the difference between Methods 1 and 2 was over 6 points,
whereas in the user study this difference dropped to less than 2 points.
In the user study results, we also find that Method 1 generally produces
higher scores, which differs from our case study results. These results

Differences in Case Study and User Study Results
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Fig. 3. Spread of responses (n = 15) from our study for the Baby Names
visualization (see Fig. 2).

suggest that collecting feedback from a large number of experts can
help to reduce noise in our scoring techniques.

However, we also notice a significant difference in the case study
scores and the study scores, where scores appear to move towards an
average of 65. In fact, averaging the five scores for each visualization
from the study leads to the score of 64.93 (for Method 1), and 4 out of 5
visualizations score in the 60’s or lower. Though only five visualizations
were evaluated, these results fall into a consistent scoring range of about
55 to 65 points, using the basic preset. These results may suggest that
routine visualizations tend to fall within this scoring range, however
more data is required to confirm this hypothesis.

6.2.2 The Influence of Multiple Criteria on Scoring

Our results emphasize the importance of considering multiple fac-
tors when evaluating visualizations for recommendation. Well-chosen
encodings (C1) alone do not make for an overall effective recommen-
dation, as seen with the Fruit Juice visualization, which achieves the
second best encoding score of all the visualizations. Similarly, strong
adherence to Graphical Excellence and Integrity (C2) also fails to
signal a strong visualization recommendation on its own, as demon-
strated by the Pie Chart visualization. Again, neither interestingness
nor usefulness alone signal a strong recommmendation, as seen in most
visualizations in Table 7. These results suggest that prior evaluations
clearly have blind spots, due to their emphasis on only one or two of
these criteria, such as SeeDB’s primary focus on interestingness [37].
As such, the corresponding presets should be used with care.

Our scores become particularly interesting when considering the
Cholera Map visualization. This visualization is the only one to achieve
both relatively high interestingness and usefulness scores, and rela-
tively strong scores all around. These findings seem to suggest that
our framework could provide a strong signal for good overall recom-
mendations, where we define good as: visualizations that are not only
well-designed (C1 and C2), but also show the user a design that they
may not have tried on their own (C3), and furthermore show something
the user actually wants to investigate further (C4).

6.2.3

In Table 7, we highlight the lowest scoring criterion for each visualiza-
tion, both for our case study and user study results. In general, we find
that the weakest scores tend to occur for interestingness (C3) and useful-
ness (C4). In fact, out of all five visualizations evaluated, none of them

Interestingness, Usefulness, and Graphical Excellence
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have their weakest score occur in the encodings criterion (C1). We also
find that people seem to rarely find these visualizations both interesting
and useful. These results apply to both “bad” visualizations like the
juice visualization and more well-known visualizations, such as the
Baby Names visualization (originally presented by Wattenberg [39]).

These results appear to be consistent with how many visualizations
(and thus recommendation systems) are optimized for effectiveness:
they tend to focus more on well-established but low-level metrics for
graphic design (e.g., [23-25], and framework criterion C1), and less on
higher-level evaluation criteria relevant to data analysis tasks, such as
interestingness [37], usefulness and Graphical Excellence. Our results
suggest that exploring how to measure and ultimately support these
higher-level criteria could lead to more effective recommendations.

Our study can provide insight in this direction. For example, many
participants based their usefulness ratings on how quickly and easily
they could interpret the data from the visualization, suggesting a rela-
tionship between usefulness (C3) and Graphical Excellence (C2). In
the Facebook IPO example, many participants voiced concern over not
knowing what color and circle size encoded, making them question
their understanding of the data, and generally more hesitant assign
higher usefulness scores. One participant summarized the issue well:
“I don’t understand what the size and colour are supposed to encode...
That confusion makes me unsure if I would pursue this design.” An-
other commented that “it is pretty, but unclear.” Thus, even when good
encoding choices are made (e.g., using position to encode year and
public offering, using redundancy to highlight relationships), if these
encodings are not described, e.g. through clear labels and legends, users
are less likely to find these visualizations useful. These results support
existing evaluation heuristics that emphasize accurate interpretation
of the data presented [38]. Similarly, when evaluating whether labels
within a visualization were “clear and detailed,” participants empha-
sized whether the labels: were easy to find, were clear, and accurately
described the data. These results may suggest that clarity and accuracy
of the titles, labels and annotations in conveying visualization design
decisions are core metrics in evaluating usefulness.

7 DISCUSSION

Based on our results, we offer recommendations for the creation and
evaluation of visualization recommendation systems moving forward,
discuss current limitations, and highlight possible areas of future work.

7.1 Diversity in Evaluation Criteria

Though many recommendation criteria exist, visualization recommen-
dation systems are rarely evaluated on more than one criterion. More-
over during testing, researchers often emphasize the criteria they op-
timize for, potentially resulting in biased assessments. Furthermore,
recommendation systems are evaluated using many different methods
and metrics, making it difficult to directly and systematically compare
different techniques. Based on the work presented here, we recommend
that evaluations of visualization recommendations comprise a diverse
but consistent set of criteria, enabling a fairer comparison of different
techniques. Our framework provides a starting point for integrating
multiple evaluation criteria into a single, easy-to-interpret score.
Insight 1: Recommendation systems should be evaluated along
multiple diverse criteria. Further, these criteria should be consistent.

7.2 Appropriate Weighting

While selecting a diverse subset of criteria is critical, considering the
relative weight of each criterion can be equally important. We argue
that not every criterion is created equal for the purposes of evaluating
visualization recommendation systems, and some criteria should be
weighted more heavily than others in certain scenarios. Inappropriate
weighting could allow for poorly designed systems to receive much
higher ratings than they practically should in a given context.

Based on our evaluation and research, we recommend that future
evaluation metrics be designed such that the relative weights given to
the various evaluation criteria are assigned appropriately for the given
context or task. This will help ensure that a system is evaluated fairly on
the criteria included in the framework. While assigning weights to these
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various criteria is arguably a subjective process at times, this procedure
could be made more systematic by consulting analysis and visualization
experts for input on the weighting distribution. Additionally, making
more presets for the framework based on existing evaluations may fur-
ther enable users of the framework to quickly evaluate recommendation
systems for well-known and common analysis contexts.

Insight 2: The relative weights assigned to evaluation criteria
should match the given analysis context. Preset configurations for
common analysis scenarios could reduce the complexity of evaluation.

7.3 Limitations and Future Work

One limitation lies in the subjectivity of some of our criteria. First,
the selection of criteria could itself be seen as a subjective process.
This dilemma is unavoidable, but we sought to ameliorate the issue
by selecting criteria well-known within the visualization community.
We plan to incorporate more criteria in our framework, through review
of more evaluation methods, as well as through feedback from the
community. For example, we could take into account whether a system
is potentially using p-hacking [43] when recommending visualizations
and deduct from the total score accordingly.

Second, the weights assigned to various criteria could also be subjec-
tive. While these weights were chosen through a principled assessment
of existing work, and we attempted to reduce subjectivity by providing
three different presets, our weighting system could still be biased. This
evaluation space would have to be explored further in order to test
the rigor, robustness, and accuracy of our weighting system, perhaps
through additional user studies, or polling experts for feedback on the
scores produced by our framework. As such, we see our framework as
a useful starting point for evaluating recommendation systems.

An important limitation to consider our focus on static visualizations.
Interaction is considered a core aspect of information visualization [15,
28]. However, interactions make it extremely difficult to predict what a
user ultimately will glean from a visualization. As such, we follow the
work of others and use static visualizations as our starting point [24,25].
In the future, we plan to consider a wider variety of visualization
designs in our evaluation, including interactions [15].

A final limitation to consider is that we do not have a fully automated
implementation: input must still be provided directly from users. As
such, our framework is challenging to scale to large visualization col-
lections. We plan to investigate opportunities for automation, such as
applying machine learning techniques to construct proxies for some cri-
teria, or using collaborative filtering techniques to infer interestingness
and/or usefulness. We could also potentially alter the framework to take
features of the data itself into consideration, such as dimensionality
(and cardinality) of the data being rendered, and incorporate these pa-
rameters into our formula. Ideally, the end goal is to develop software
to complete the entire evaluation without requiring manual input. In
general, automation enables the testing of many more configurations
and possibilities in terms of recommendation design, influencing all
other aspects of our future work, which leads to our final insight:

Insight 3: Automation could enable broader and more rigorous test-
ing of evaluation techniques for visualization recommendation systems.

8 CONCLUSION

We have developed an evaluation framework that can be used to score
individual visualizations produced by recommendation systems. In the
past, such systems were evaluated in isolation, lacking standardization
and comparisons between systems. To ensure that it is broadly appli-
cable to multiple recommendation tools, our framework incorporates
scores for a range of criteria derived directly from the visualization
literature, such as the graphical design principles utilized within a
recommended visualization, and the utility of this visualization in
recommendation contexts. As we further develop this framework, it
can be used to advance the state of research in this area by providing
researchers with a way to systematically evaluate the output of dif-
ferent visualization recommendation systems and thereby empirically
compare different tools. While this remains a work in progress, our pro-
posed framework provides a first step towards developing a systematic
approach to evaluating visualization recommendation systems.
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