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Towards Flexible Classification: Cost-Aware
Online Query of Cascades and Operating Points

Brandyn White, Andrew Miller, Tom Yeh, and Larry S. Davis

University of Maryland: College Park

Abstract. We propose a method that uses off-the-shelf binary classifiers
and combines them in real-time to achieve quality, time, and cost charac-
teristics that satisfy user-provided constraints; moreover, it shares inter-
mediate computation (e.g., features, classifiers, kernels) between classes
to reduce time and cost. An important distinction between this approach
and others is that the primary focus of this work is on improving flexibil-
ity, operation on a wide range of operating points, as opposed to quality
or speed; however, we show that the proposed approach achieves perfor-
mance comparable to the state-of-the-art on the scene recognition task
for the SUN397[1] where we attain a mean AUC of 0.9625 compared to
0.9573[1], 0.8426 [2], 0.9227[3], and 0.9343(based on [4]). Additionally,
we show that human annotators can be naturally integrated into the
approach to produce hybrid human/algorithmic classifiers.

1 Introduction

As the field of computer vision advances, outside research fields, industry prac-
titioners, and average developers will increasingly seek to use vision algorithms
as ‘black boxes’ to solve problems that may arise with visual data. What traits
should a vision algorithm have to accommodate these users? The most obvious is
high quality, which is the focus of the majority of work in the field. However, the
best performing methods are often not fast enough for many practical use cases,
which necessitates a focus on speed (e.g., gpus, approximate methods). When a
task needs to be both fast and perform with high quality, it is common to enlist
humans to help (e.g., Amazon Mechanical Turk - so called “turkers”). Meth-
ods that use excessive computation, exotic hardware, large datasets, or humans
bring up the practical issue of cost. Most approaches develop a solution with
respect to one of these traits; however, to be useful as a ‘black box’ the ability
to interpolate between these traits is essential. We refer to this requirement as
flexibility and it is the focus of this work.

Our primary contribution is a method for producing multiple binary clas-
sification algorithms, in the form of rejection-chain cascades, in real-time that
satisfy specified quality, time, and cost constraints. A user’s specification of the
quality, time, and cost constraints is referred to as a “query”. The approach
re-uses features, kernels, and classifier computations amongst the binary clas-
sifiers. Our method consists of three phases - a training phase, a query phase,
and an execution phase. We start from the premise that resolving a query (i.e.,
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constructing an appropriate cascade of binary classifiers) must be efficient com-
pared to the time required to perform the actual vision computations specified
by the query resolution. Moreover, in order to support batch computation we
seek a method that can resolve queries using only the provided constraints, in-
dependent from the input testing data. To enable this we shift the majority
of the computation (i.e., construction of rejection cascades for per-class recog-
nition) to an offline training phase, enabling query resolution to involve only
simple database look-ups. We focus on scene recognition as an initial task due
to its wide applicability; however, our approach is applicable to a wide range
of binary classification tasks in vision (e.g., localization, segmentation, image
classification). For binary classification tasks, the primary metrics of interest are
execution time and those derived from binary confusion matrices (e.g., precision,
recall, accuracy). After a “training phase” (see below) each cascade is stored in a
cascade database and is indexed by precision, recall, accuracy, F-1 (i.e., harmonic
mean of precision and recall), time, and cost. By combining multiple classifiers
for a class in a rejection chain cascade, we dramatically increase the number of
operating points (see Section 4.3), which provides flexibility during query reso-
lution. While cascade stages are often created using specific families of features
(e.g., Haar) and classifiers (e.g., decision stumps), our approach allows for het-
erogeneous off-the-shelf features and classifiers to be used (see Section 3.1).

2 Related Work

This work is related to existing classification methods that trade-off quality vs.
time and share computation between classes. We now compare our approach to
these methods.

There have been a variety of computer vision approaches[5][6][7] for auto-
matically tuning algorithm parameters to improve quality and/or speed. The
majority of these approaches operate on classifiers. Brubaker et al.[8] provide
a principled method for designing and training boosted cascades to meet tar-
get recall and false positive rates for face detection. Bourdev and Brandt [9]
introduced the Soft Cascade for face detection, which allows individual cascade
stages to reject without causing the overall classifier to reject. Their algorithm
is ‘calibrated’ after training; given a target detection rate and execution time, it
minimizes the false positive rate. They reported that the calibration process takes
up to 5 minutes, which is unsuitable for online queries. Visentini et al.[10] pro-
posed a scheme to tune asymboost cascades for face detection. In their scheme, a
trade-off between accuracy and complexity is made for each cascade stage. Our
method differs from these in that ours (1) weighs trade-offs in less than a second
(enabling online selection), (2) supports fine-grained performance specification
(i.e., precision, recall, accuracy, F-1, time, cost), (3) optimizes across multiple
classes, and (4) operates on heterogeneous features and classifiers.

Sharing computation between classes is a popular approach taken by sys-
tems that operate on multiple classes. Computation that is commonly shared
between classes includes classifiers[7], features[6][11], and kernels[12][13]. There
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are two primary reasons to exploit sharing between classes (1) to reduce com-
putation and (2) to operate given few training examples for a class[14]. Each
classifier stage of our approach has explicit class independent computation. Af-
ter training, it generates a representative set of classifier schematics that can
be efficiently queried to enable sharing between classes to reduce computation;
moreover, it allows for re-using classifiers between classes (e.g., outdoor/indoor
for scene tasks) which enables operation when few training examples are pro-
vided. This sharing is performed such that user-provided quality, time, and cost
constraints on the resulting classifiers are met.

Gao and Koller[6] developed a multi-class classification system that actively
evaluates which feature/classifier provides the most value given the outputs of
previous stages. This is similar to ours in that it operates directly on classi-
fier confidence values; however, our method differs in that the constraints are
optimized independently from the input, where their method adds significant
per-image computation (reported at 10ms for an image). Additionally, new clas-
sifiers can be added in our method without fully retraining. Gao and Koller
previously presented an approach[7] that produces a multi-class classifier using
a hierarchy of binary classifiers. Both of these approaches are similar to ours in
that they explore the combination of heterogeneous classifiers, exploit sharing be-
tween classes (features[6] and classifiers[7]), and enable adjusting speed-accuracy
trade-offs; however, ours differs in that (1) it allows for directly specifying de-
sired classifier characteristics (e.g., accuracy, time, cost) where they use a trade-
off parameter, (2) it produces binary classifiers that share computation between
classes and theirs produces a multi-class classifier, and (3) our goal is to improve
classifier flexibility by presenting a wide range of operating points, where theirs
has a single operating point controlled by a trade-off.

Schwing et al.[15] proposed a multi-class classification approach that allows
trading-off accuracy and speed without re-training. This is similar to our work
in that the trade-off can be performed without re-training; however, they as-
sume that each “expert” is equally knowledgeable and their trade-off selects the
number of “experts” to consult, where our method selects from a heterogeneous
set of classifiers with associated operating points.

3 Overview

We propose a method for selecting multiple binary classifiers in real-time given
quality, time, and cost constraints. The binary classifiers produced by this method
are rejection-chain cascades where the individual stages are heterogeneous, bi-
nary, and make their prediction independently, allowing each stage to be trained
independently. This approach offers four advantages: (1) a large range of oper-
ating points (flexibility), (2) early rejection and reuse (speed), (3) combination
of information sources (quality), and (4) straightforward analysis (simplicity).
The cascade is not boosted because boosted stages can not be reordered at
will, reducing expressivity and query performance. Fig. 1 provides an overview
of the method and illustrates how the three datasets are used: training (train
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Classify Validation Data
Threshold Selection
Cascade Selection

Cascade Simulation

Trained Stages Validation Data

Training (offline) Query (online) Execution (online)

Class Cascade Selection
Joint Cascade Selection Cascade Prediction

Test DataUser Query

Cascade
DB

Execution
Plan

Fig. 1. Overview of our approach. The product of the training stage is a cascade
database which is queried online during cascade selection. The cascade selection pro-
duces an execution plan that specifies which cascade to execute for each class. The
order of execution is top-to-bottom and left-to-right.

cascade stages), validation (build cascade database), and testing (query cascade
database). The query and execution phases are separated to emphasize that the
execution plan is independent of the test data. Thresholds are selected for each
cascade stage that characterize their performance over their operating range.
We construct cascades using off-the-shelf cascade stages (see Section 3.1) with
prediction confidence values for each image in the validation set. Each cascade’s
validation set predictions are then efficiently simulated over a range of thresh-
olds. The result is a cascade database representing the joint performance of all
cascades and thresholds. Each entry in the database is an operating point corre-
sponding to a cascade and thresholds. We index the cascade database, allowing
sub-second algorithm and operating point selection. Finally, we optimize con-
straints for multiple classes to minimize overall cost. Our primary contribution,
then, is a method for generating multiple binary classifiers in real-time given
desired quality, time, and cost constraints.

3.1 Cascade Stages

At a high level, a cascade stage S takes an image I and a set of classes L from
which it produces a sparse confidence vector xS . For the single class case in
Fig. 2(a), this is a single image feature f and a single binary classifier c1 which
produces the confidence vector xS as xS1 ← c1(f(I)). For the general form in
Fig. 2(b), a single feature f is shared by many classifiers and xS is produced as
∀l ∈ L, xSl ← cl(f(I)). We now provide a definition for a cascade stage S where
I is an image and L̂ is the set of all supported classes (represented as positive
integers).

1. The cascade stage is defined for all L where L ⊆ L̂.
2. xS ← S(I,L) where S may be non-deterministic and xS is a real-valued

sparse vector with a value xSl defined if l ∈ L and undefined otherwise.
3. ∀l,m ∈ L, confidence value xSl is independent of m ∈ L or m /∈ L where
l 6= m.

4. Larger values of xSl signify higher confidence that the input belongs to class
l.
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(b)

I

f

x

c1 c3 c5 c8

(a)

I

f

x

c1

(c)

I

f

x

c1,3... c2,4...

Fig. 2. The input to each cascade stage is an image I, and a subset of the available
classes, L ⊆ L̂. The cascade stage performs a class-independent computation f (e.g., a
feature or a kernel), which may be shared between classes, followed by one or more class-
specific computations (e.g., binary classifiers). The output is a vector xS of confidence
values for each class in L. Example instantiations of our cascade stage model for a (a)
single feature/classifier with L = {1}, (b) single feature shared by four classifiers with
L = {1, 3, 5, 8}, and (c) all classes using the same classifier f with L = {1, 2, . . . } (used
in Section 5). While only the classifiers needed (specified by L) are shown, each stage
is defined for all classes L̂. See text for details.

Observe that #3 ensures that the computation of xl is independent from
other classes in L. Cascade stages are given the set of classes L ⊆ L̂ (#1 above)
to allow for prediction on only the classes required as an optimization. A signif-
icant advantage of this approach is that it allows for a wide variety of cascade
stages. In the previous example f was described as an image feature; however,
it could also correspond to a kernel matrix that is shared amongst the classifiers
(used in Section 7). While our approach produces binary classifiers, the classi-
fiers, represented by c, can themselves be multi-class classifiers. For example, a
cascade stage S using a k-nearest neighbor classifier can output the # of nearest
neighbors as xSl for l ∈ L.

In Section 5 we show that a human on Amazon Mechanical Turk (AMT) can
be modeled as shown in Fig. 2(c) where all classes are scenes and belong to either
outdoor (odd) or indoor (even). In this example, the ‘turker’ is represented as
f and outputs a scalar confidence value for the outdoor class. The c1,3... is an
identity function, it outputs the confidence value (xSl ← f(I)), and c2,4... negates
the confidence value (xSl ← −f(I)). This shows that a classifier (i.e., a turker
represented by f) can be used by multiple classes with the c’s merely orienting
the confidence values. ‘Turkers’ can produce different results for the same image;
however, this is supported as the cascade stages can be non-deterministic (#2
above).

In the previous examples, we have used f to represent an image computation
that is performed for all classes (e.g., image feature, kernel matrix) and c to rep-
resent a computation that is specific to each class (e.g., classifier). We then define
τS,f to represent the time to compute f for a cascade stage S and τS,cl

as the time
to compute c for class l. Additionally, we denote λS,f and λS,cl

to represent the
monetary cost (e.g., computational resources, AMT) for class-independent and
class-dependent computation respectively. In Section 6 we employ these quan-
tities to query the cascade database by time and cost; moreover, we show how
multiple queries can be satisfied such that their overall cost is minimized.
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4 Training Phase

Given cascade stages S (see Section 3.1) trained on the training set, we predict
each class l ∈ L̂ using each cascade stage S ∈ S producing a confidence vector
xS for each of the N validation images xS ← [S(I1, L̂), S(I2, L̂), . . . , S(IN , L̂)]
where the confidence matrix xS has |L̂| rows and N columns. We illustrate our
approach on the scene recognition task, where each image belongs to exactly
one class and the groundtruth g is a matrix of the same shape as xS with
values ∀i ∈ {1 . . . N}, gl,i ∈ {−1, 1}. For each cascade stage S the threshold
selection (Section 4.1) produces a set of thresholds T Sl that are representative of
that cascade stage’s performance. The cascade selection (Section 4.2) produces
Cl ⊆ P(S) where P(S) is the powerset of the set of cascade stages S. Finally
the cascade simulation (Section 4.3) simulates each cascade C ∈ Cl using the
thresholds selected T Sl where S ∈ C. The simulation is an efficient method
of evaluating the performance of the cascades and produces operating points
(i.e., confusion matrices, times, and costs) that are then stored in the cascade
database. This training phase operates on each class l independently and, for
notational convenience, we let g = gl, xS = xSl , T S = T Sl , and C = Cl.

4.1 Threshold Selection

Given a trained cascade stage S and a validation set, our task is to find a set
of thresholds T S that compactly represents its operating points. The threshold
selection occurs independently for each class and cascade stage S. We wish to
minimize the number of thresholds |T S | to reduce the cascade simulation com-
plexity (see Section 4.3), where a confidence value xSi is positive if xSi ≥ t where
t ∈ T S . The initial set is T Su = XS ∪{∞}, where XS is the set of confidence val-
ues of xS . Including infinity ensures that at least one point has no false positives.
This set is sufficient as any other threshold produces a redundant partition; how-
ever, it is not necessary as thresholds which produce “worse” confusion matrices
may be present (by Definition 3). We seek a subset of T Su that is both necessary
and sufficient.

Given a confidence value xSi and ground truth label gi for each image i in the
validation set, we sort them ascending by confidence value with positive ground
truth instances listed before negative ones for the same confidence values. The
resulting vectors x̄S and ḡS can be partitioned (Definition 1), representing the
positive and negative predictions made at that threshold level. Observe that
the secondary sorting eliminates ‘overestimated’ confusion matrices that can
result from näıve generation of confusion matrices with the same confidence value
but different ground truth polarities[16]. The method described in Section 4.1.1
will implicitly remove ‘underestimated’ confusion matrices. As this process is
independent of the stage S, we let ḡ = ḡS , x̄ = x̄S , and X = XS . When
operating on the vector ḡ, ḡi represents the ground truth polarity at position
i, with x̄i as its associated confidence value and ḡi−1 as its neighbor in the
descending direction.
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4.1.1 Exact Thresholds Our goal is to find the minimum number of thresh-
olds Te required to exactly represent the performance characteristics of the cas-
cade stage. We show that using the selected thresholds for each stage there is
no degradation in the overall cascade performance. A binary confusion matrix
captures the cascade stage’s performance at a specific threshold and we define a
partial order over confusion matrices.

Definition 1. Mt,x̄,ḡ is the confusion matrix computed at threshold t (i.e., all
≥ t are positive), sequence of confidence values x̄, and ground-truth ḡ. 1

Definition 2. A weak partial order over the set of binary confusion matrices

Mt ≤Mt′ ≡ (TPt ≤ TP t′) ∧ (TNt ≤ TNt′)

where TPt and TNt refer respectively to the number of true positives and
true negatives from confusion matrix Mt. This relation describes ‘better’ per-
formance: a confusion matrix Mt′ is better or the same as Mt if Mt′ makes no
fewer correct predictions and no more errors. Note that the total number of
positive and negative ground truth values is constant (i.e., TP + FN = P and
TN + FP = N) as they are created by partitioning a fixed sequence x̄.

Definition 3. A strict partial order over the set of binary confusion matrices is

Mt < Mt′ ≡ (Mt ≤Mt′) ∧ (Mt 6= Mt′)

We seek a subset of the thresholds such that: no threshold outside of the set
is > (sufficient condition) and no threshold in the set is < another in the set
(necessary condition). We now specify a predicate Keep to select the thresholds
Te = {x̄i ∈ X : Keep(x̄i)} and show that it produces a necessary and sufficient
subset.

Definition 4. Keep(x̄i) is true when ḡi−1 is not positive and ḡi is not negative,
where possible values are positive (i.e., IsPos(ḡi)), negative (i.e., IsNeg(ḡi)),
or nil (i.e., IsNil(ḡi)). Nil values occur past either end of the sequence.

Keep(x̄i) ≡ ¬IsPos(ḡi−1) ∧ ¬IsNeg(ḡi)

We now show how this simple rule produces a subset of points that meet our
conditions.

Theorem 1. For each threshold we either 1.) Keep it and it is not < any other
or 2.) Not keep it and there exists a threshold that is > than it that we do keep

∀x̄i ∈ X ,Keep(x̄i)⇒ ∀x̄j ∈ X ,¬(Mx̄i < Mx̄j )
∀x̄i ∈ X ,¬Keep(x̄i)⇒ ∃x̄k ∈ X ,Keep(x̄k) ∧Mx̄i < Mx̄k

Proof. See Supplementary Material

1 Mt ≡Mt,x̄,ḡ when x̄ and ḡ are clear from the context.
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In a rejection chain cascade, previous cascade stages can reject arbitrary in-
puts, resulting in a reduced set of confidence values X̃ being considered which
remains sorted and X̃ ⊆ X . Theorem 1 shows that we can produce a neces-
sary and sufficient set of thresholds. We now extend this to show that they are
sufficient for the cascade overall.

Theorem 2. Let K = {x̄k ∈ X : Keep(x̄k)} and K̃ = {x̃k̃ ∈ X̃ : Keep(x̃k̃)}.
For each threshold in K̃ there exists a threshold in K such that they have the
same confusion matrices when applied to x̃ and g̃ (corresponding to X̃ ).

∀x̃k̃ ∈ K̃∃x̄k ∈ K : Mx̄k,x̃,g̃ = Mx̃k̃,x̃,g̃

Proof. See Supplementary Material

4.1.2 Bounded approximate thresholds We can choose to relax our exact
representation by allowing for a bounded difference between the complete set of
confusion matrices and a subset that represents them. We choose to specify the
bounds in terms of maximum absolute precision and recall difference z which
results in O(1) thresholds. We seek to find the minimum subset of confusion
matrices such that for all confusion matrices Mte there exists at least one in
the subset that is within the specific bounds Mta , where Bounds is a reflexive
and symmetric relation Bounds(te, ta). Bounds can be any relation with these
properties derived from binary confusion matrices.

A set of thresholds Ta is a sufficient approximation if for all of the initial
thresholds Te (from Section 4.1.1) there is a value in Ta where Bounds is true.

SufApx(Ta) ≡ ∀te ∈ Te∃ta ∈ Ta : Bounds(te, ta)

A set of thresholds Ta is a necessary approximation if there is no subset of
Te that is smaller and sufficient.

NecApx(Ta) ≡ @Ta′ ⊆ Te : SufApx(Ta′) ∧ |Ta′ | < |Ta|

We can represent this problem as an undirected graph, where nodes are confusion
matrices and an edge is placed between all nodes where Bounds is true. Our
goal is then to find the minimal subset of nodes such that each node in the
original graph is connected to some node in the subset. This is the well known
dominating set problem which is NP-hard. We use an efficient greedy algorithm
to generate the dominating set; moreover, it produces comparable dominating
sets to the exact algorithm in practice. The greedy algorithm produces a sufficient
but possibly larger than necessary Ta.

4.2 Cascade Selection

Given a set of cascade stages S for a class i we wish to generate a set of cascades
C. However, evaluating all combinations of cascade stages is intractable if the
number of available cascade stages is large. A cascade C is defined as C ⊆ S and
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is unordered as the final cascade decision is not affected by the stage ordering.
We seek to identify a set C that provides comparable performance to P(S) which
is the powerset of S and C ⊆ P(S). A simple approach is to limit the length of
the cascades as C` = P`+1(S) resulting in ∀C ∈ C`, |C| ≤ `. However, there are∑
l∈1...`

(|S|
l

)
such cascades, which becomes prohibitive when longer cascades or

more cascade stages are required.
An important piece of information we have not yet considered is the infor-

mation gained by adding another cascade stage to a given cascade. This concept
was explored recently in [6] where the value added by additional classification
is computed. While their method computed this value during classification, we
seek to identify a similar quantity beforehand. When comparing the confidence
vectors for two stages, if the confidence values are correlated they will tend
to produce little gain when combined in a cascade. This is because the stages
will reject a similar set of images for any given operating point, making the
additional stages ineffective. However, a randomly performing classifier would
produce uncorrelated predictions, but would result in the cascade having no ad-
ditional discriminative power. We seek a method that satisfies two properties (1)
the confidence values between cascade stages are uncorrelated and (2) cascade
stages are significantly better than random.

We use Spearman’s rank correlation coefficient ρ = 6
P
d2i

N(N2−1) (where di is the
difference of ranks for image i for the N validation images) which compares the
correlation of the rank indices. This measure is robust to any monotonic trans-
formation of the confidence values and naturally fits our cascade stage model
without additional assumptions. The ranks for tied values are replaced with the
the mean rank for that value. The cascades C are selected starting from each
S ∈ S and greedily adding stages that minimize |ρ| among all cascade elements.
An integer valued parameter α specifies how many different stages to select for
each level, providing a natural trade-off between cascades processed and time.

While the previous method ensures that a cascade’s stages are uncorrelated,
it doesn’t prevent poorly performing cascade stages from being incorporated. We
cannot directly compute the accuracy of a stage as we only have its confidence
values and associated ground truth; however, better confidence values will be
positively correlated with the groundtruth gi where gi ∈ {−1, 1}. As above,
we compute ρ between the confidence values and the ground truth. An integer
valued parameter β specifies how many cascade stages to consider in the previous
approach, where Sβ ⊆ S and |Sβ | = β. This represents the trade-off between
robustness to poor performing cascade stages and accuracy compared to P(S).

4.3 Cascade Simulation

Given a set of cascades C (see Section 4.2) for a class with an associated set of
thresholds T S (see Section 4.1) where S ∈ C and C ∈ C, the goal is to efficiently
compute a cascade database that contains the union of all cascades in C that
can be formed over all of their thresholds. This process is a simulation as we
are not computing the cascade performance directly; rather, we find the confi-
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dence values for all stages independently and exactly compute their combined
performance. The output for each set of thresholds for a cascade includes a bi-
nary confusion matrix, stage names, stage thresholds, and % of inputs computed
by each stage (used to compute time and cost). In order to ensure sub-second
query processing time, we perform the majority of the computation offline in
cascade simulation; however, unless care is taken the task can quickly become
intractable. We avoid this by reducing the number of thresholds maintained for
each cascade stage (Section 4.1) and by efficiently simulating the cascades.

The näıve approach would apply the validation set to every possible chain
and its corresponding set of thresholds. There are a combinatorial number of
operations in the length of the cascade if every possible ordering of a single
cascade (e.g., A→B→C, C→B→A) is considered; however, the order of the
cascade stages does not effect the resulting binary confusion matrix, although
it does affect the running time. The running time for a stage is completely
determined by its own execution time and the percent of inputs that reach
it[17]. We order the stages by running time (i.e., τS,f + τS,cl

for class l), and, in
practice, we have found this to produce a near optimal ordering. By observing
that the rejection decisions for the cascades are highly redundant, we can avoid
recomputing all subsets of stages. For example, for a cascade A→B→C, we also
compute A and A→B at the same time. There may be cascades with similar
prefixes (e.g., A→B→C, A→B→D) that perform redundant computation. We
can extend our solution by generating trees rooted at their initial stage, where
stages with the same parent are all computed simultaneously.2

The computational complexity of this method is the sum of the complexity for
each cascade from a leaf to a root node. The complexity of each path is bounded
by O(N

∏
S∈C |T S |) where N is the number of validation inputs (e.g., images

for image classification). However, this worst case performance doesn’t occur
in practice as the number of validation inputs N reduces from stage to stage,
exactly as they do when passing through a rejection chain cascade. For the worst
case to occur, it would require each stage to not reject any inputs; however, in
Section 4.1 we select the thresholds in a way that precludes this. In Section 4.1.2
we showed how |T S | can be O(1) with bounded representation error. With this
constant number of thresholds t, the cost of each path is bounded by O(Ntk)
where k is the cascade length. As before, this does not take into account the
number of points rejected by previous stages; we have found cascade lengths of
` = 5 to be tractable on a single core machine (see Section 7).

5 Human Classifiers

As the quality of arbitrary classification tasks is often lower than necessary
for practical use, human input is commonly used to augment algorithmic ap-
proaches. One difficulty is that confidence values are needed to provide control
over the resulting classifier’s operating characteristics. A potential solution to

2 Psuedo-code for the simulation algorithm is available in the supplementary material.
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this problem is to have the turkers provide an explicit confidence; however, this
would be more effort than the task itself requires. By observing that human
errors occur as a function of response time P (Time) and that some users are
significantly worse than others P (User), we are able to estimate the probability
that a turker is correct (see Fig. 3) which is our ‘confidence’. Here we assume
that Time and User are independent P (Time, User) = P (Time)P (User).

Turkers were shown a picture from the SUN397 dataset and asked if it is of
an indoor or outdoor scene. This was performed on the 39.7K images in the first
train/test split of the 397 classes. Each turker was paid 5 cents per 100 images
annotated and the mean and median of their response times was 3.3 and 2.4 sec.
respectively. The SUN397 dataset has annotations for the 397 classes in a three
level hierarchy with the top level consisting of three classes “indoor”, “outdoor,
man-made”, and “outdoor, natural”. We combine the two outdoor classes to
produce the groundtruth labels which resulted in an accuracy of 93% with no
voting or filtering applied. We integrate the turker as shown in Fig. 2(c) and
described in Section 3.1.

6 Query Phase

The training phase produces a cascade database which includes, for each cascade
C (see Section 4.3), a binary confusion matrix, stage names, stage thresholds, and
% of inputs computed PC,S . The time is computed as

∑
S∈C(τS,f +τS,cl

)PC,S for
a class l (similarly for cost). We construct indexes for precision, recall, accuracy,
F-1, time, and cost that index into the simulated cascade operating points. The
database implementation is outside the scope of this work; however, for the
experiments conducted we used a binary search-based algorithm that produced
a median response time for a single constraint of 1.1ms (see Section 7).

Given a set of constraint satisfying cascades for several classes, we only need
to select a single cascade for each class to produce valid results. The primary
method of saving time and cost is by exploiting reuse between classes that is
independent of the classes themselves τS,f and λS,f (e.g., feature computation,
shared classifiers). The classification model used (see Section 3.1) allows for
modeling these properties; however, exactly minimizing cost on novel data is not
possible as we can only estimate how many inputs are rejected after each cascade
stage by observing how they perform on the validation set. A straightforward
approach to this problem is for each class to independently select the cascade
with minimum cost. While this does not explicitly enforce reuse, in practice a
significant amount of computation is shared between the classes.

7 Experiments

We show experimental results on the SUN397[1] scene recognition dataset which
consists of 397 classes and 39,700 images split into training and testing sets
(19,850 each) (using partition #1). Fig. 4(a) summarizes the features used along
with their recognition rate for multi-class classification to enable comparison
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Fig. 3. (a) Relationship between a turker’s response time and their accuracy for that
response. This suggests that a quick response means the question is easier and even
with additional time harder questions are likely to be answered wrong. (b) Scatter plot
of F-1 values vs time for a single class. The best values for each unique cascade are
shown as stars. ‘Multi’ are cascades longer than one stage. This figure is best viewed
in color.

with other methods. We use linear and histogram intersection kernels (HIK)
for all of the features. LABhist uses the CIE L*a*b* colorspace with 4 bins
for L and 11 bins for a and b. TextonForest uses the method proposed in [18]
(trained on the MSRC dataset) to compute spatial pyramids on the maximum
label mask. Both texton and integral tree types are used with one and three trees
respectively. As proposed in [19], the TinyImage feature is a reasonable baseline
for scene recognition tasks. The image is resized to 32x32 in the CIE L*a*b*
colorspace. The ObjectBank (OB)[3] feature is a powerful method that pools
object detector predictions to produce a highly discriminative feature. Spatial
pyramids (used by HOG2x2, LABhist, and Texton) are of scales 1x1, 2x2, 4x4,
and 8x8. We find using a spatial pyramid significantly improves performance
when used with HIK at marginal additional computational cost.

We use 20% of the training set as a validation set to learn the cascade
database with the classifiers trained on the other 80%. As we are evaluating
binary classification performance, we use the mean area under the curve over all
classes (mean AUC). To gain further insight we compare the number of classes
with AUC better, same, or worse for each result compared to [1] (rounded to two
decimal places before comparison, as [1] did). The result from [1] was trained
on the entire training set Fig. 4(b)(#0); however, our proposed method, with
classifiers trained on 20% less data, produces a significant gain using similar fea-
tures, classifiers, and kernels Fig. 4(b)(#7). It is clear that this gain is from the
cascade design as the mean AUC using just the features Fig. 4(b)(#6) is signifi-
cantly less. Moreover, we are able to calculate an upper bound for our method by
identifying the optimal cascades and thresholds on the test set Fig. 4(b)(#4-5);
the proposed approach has near ideal performance.
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Rec. Rate
Name Dim. Lin. HIKP

F Kernels[4] - 22.5 29.0
OB[3] 44604 18.7 25.1

HOG2x2[1] 6321 17.2 26.5
GIST[2] 960 10.5 12.7
LABhist 41140 3.6 10.4

Texton[18] 1785 3.1 6.5
AutoCorr.[20] 256 4.8 5.9
TinyImage[19] 3072 2.1 5.0

(a)

Mean # AUC [1] Sim. Mean #
# Method AUC > = < (sec.) |T | |C| |DB|
0 SUN397[1] 0.9573 0 397 0 - - - -
1 GIST[2] 0.8426 1 0 396 - - - -
2 OB[3] 0.9227 15 26 356 - - - -

3
P
F Kernels[4] 0.9343 23 28 346 - - - -

4 U.B. ` = 1 0.9540 91 117 189 0.021 40 16 639
5 U.B. ` = 2 0.9685 216 138 43 2.148 40 136 117K

6 Te,1,D 0.9492 59 94 244 0.023 41 16 651
7 Te,2,D 0.9625 157 130 110 2.439 41 136 123K
8 Te,2,S2 0.9559 105 112 180 0.157 41 19 8135
9 Ta,.05,1,D 0.9381 25 40 332 0.010 13 16 201

10 Ta,.05,2,D 0.9491 64 78 255 0.235 13 136 12K
11 Ta,.05,2,S2 0.9423 34 58 305 0.024 13 18 1095
12 Ta,.05,3,S2 0.9442 42 63 292 0.156 13 28 6296

13 Te,2,D 0.9649 175 135 87 2.629 41 153 146K
14 Ta,.05,2,D 0.9504 69 87 241 0.276 13 153 14K
15 Ta,.1,5,S1 0.9250 5 19 373 0.103 8 21 1761

(b)

Fig. 4. (a) Features used along with their recognition rates for linear and HIK kernels.
(b) We compare against existing methods (#0-3), the upper bound on our method (#4-
5) (see text), and (#6-15) variations of our method in the form (threshold method,
max cascade length `, cascade selection method). The threshold selection methods (see
Section 4.1) are Te and Ta,z (with z as p/r relation bound). The cascade selection
methods (see Section 4.2) are dense (D) and sparse (Sα) with β as half of the provided
stages. The only runs that make use of mechanical turk are (#13-15). The best run
without turkers is bold.

To evaluate query performance, for all classes and for constraints of length 1
to 6 (i.e., p, r, t, a, F-1, cost) we compute 100 random example queries with a cap
of 100 returned cascades using the cascade database produced by Fig. 4(b)(#14).
The median query times (in ascending order from 1-6) are: 1.1, 3.5, 1.0, .1, .09,
and .07 all in milliseconds. The query time decreases with length as the additional
constraints reduce the search space dramatically. This is fast compared to the
feature/classifier computation and is only performed once per execution, not per
image as in[6]. Computation for run-times shown is performed on a single core
of a 2.2GHz Xeon processor.

Fig. 6 shows the relation between time and F-1 for the ‘fishpond’ class on
Fig. 4(b)(#14). Note that this method is responsible for the ‘multi’ values; more-
over, this shows that the proposed method (1) produces better performance than
the base classifiers it is provided and (2) dramatically increases the flexibility as
seen by the diverse operating points. Note that this figure is a 2D projection of
the cascade database for this class, additional projections can be found in the
supplementary material.

8 Conclusion

We propose a method that focuses on improving flexibility while achieving state-
of-the-art results on the SUN397 dataset compared against standard methods
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and an upper bound on the method’s performance. Our method efficiently gen-
erates a cascade database that can be queried with user provided constraints.
Additionally, we demonstrate that human annotators can be naturally incorpo-
rated into this model.3
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