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Abstract— Hyperdimensional Computing (HDC) is an emerg-
ing neuroscience-inspired framework wherein data of various
modalities can be represented uniformly in high-dimensional
space as long, redundant holographic vectors. When equipped
with the proper Vector Symbolic Architecture (VSA) and
applied to neuromorphic hardware, HDC-based networks have
been demonstrated to be capable of solving complex visual
tasks with substantial energy efficiency gains and increased
robustness to noise when compared to standard Artificial
Neural Networks (ANNs). HDC has shown potential to be used
with great efficacy for learning based on spatiotemporal data
from neuromorphic sensors such as the Dynamic Vision Sensor
(DVS), but prior work has been limited in this arena due
to the complexity and unconventional nature of this type of
data as well as difficulty choosing the appropriate VSA to hy-
pervectorize spatiotemporal information. We present a bipolar
HD encoding mechanism designed for encoding spatiotemporal
data, which captures the contours of DVS-generated time
surfaces created by moving objects by fitting to them local
surfaces which are individually encoded into HD vectors and
bundled into descriptive high-dimensional representations. We
conclude with a sketch of the structure and training/inference
pipelines associated with an HD classifier, predicated on our
proposed HD encoding scheme, trained for the complex real-
world task of pose estimation from event camera data.

I. INTRODUCTION

The increasing volumes of rich data generated by the
sensors edge devices such as mobile phones and other
appliances under the purview of the Internet of Things
(IoT) present a desirable avenue for the application of ma-
chine learning algorithms to solve complex cognitive tasks.
However, the strict and uncompromising computational and
memory limitations typical to these edge devices make the
prospect of running the high-complexity machine learning
processes generally used on non-edge devices equipped
with significantly greater processing power unfeasible; it is
possible to send edge-borne data to the cloud for processing,
but this solution suffers from lack of scalability and response
delay. An alternative method of learning capable of running
on less powerful edge devices without sacrificing accuracy,
robustness, or generalizability is required.

A more efficient method of applying machine learning to
edge devices would be especially utile for visual tasks such
as motion segmentation, object recognition, object classi-
fication, and pose estimation, which generally require the
invocation of very high-cost networks such as Convolutional
Neural Networks (CNNs). In search of the tools to effect
such a method, we turn our attention to the animal brain,
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which is capable of perceiving motion from optical data with
high speed and extreme energy efficiency. Hyperdimensional
(HD) computing is a framework which attempts to replicate
the animal brain’s method of encoding information sourced
from a variety of disparate sensors in a standardized format
[1], [2]. HD computing is designed for performing efficient,
low-power, complex calculations by first encoding concepts
and values into uniformly-sized, high-dimension vectors.
These HD vectors are often sparse, and have the useful
properties of being holographic, insofar as they distribute
information across many bits and redundant, insofar as
they repeat encoded information, two qualities that make
them very robust against noise. They are also type-agnostic,
allowing data from a variety of different modalities to be
encoded in the same format, and ultimately bound together.

Here we address the following questions: How can the
binding and bundling methods proposed by existing HD
algebras be properly adapted to create a new HD encoding
scheme tailored specifically for capturing the spatiotemporal
information that defines event-based data? What could an HD
classifier predicated on this encoding scheme look like, and
how may it be used to perform the difficult real-world task
of pose estimation on multiple objects in a scene captured
by a monocular event camera?

II. EVENT-BASED DATA AND HD COMPUTING

A. Event-Based Data

Whereas traditional cameras record frames at some fixed
frame rate and integrates input from all pixels synchronously,
event camera record the polarity of logarithmic intensity
changes at each pixel asynchronously, transmitting data not
as a complete image but as a series of information packets
called events each corresponding to a change in brightness at
a particular spatiotemporal coordinate in the full event stream
produced by the camera. The trigger rule for an event to be
propagated is

|| log(It+δ t,x)− log(It,x)|| ≥ τ (1)

where (It,x is the brightness of a pixel at timestamp t
and pixel location x, δ t is some small time increment, and
τ is the the trigger threshold beyond which an intensity
change is considered significant. Events can be formulated
as tuples of the form (x, t, p) where p ∈ {−1,1} denotes the
direction of brightness change of the pixel. The entire event
stream produced by an event camera over some window is
denoted by (t, t+δ t) = {ei}N

i=1 [5]. In this paper, we explore
an encoding scheme predicated on the bipolar VSA, i.e. a
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VSA over a space of bipolar N-hypervectors H = {v|v ∈
{−1,1}D}; this VSA has the desirable property of being a
“pure” VSA wherein bits are reduced to the simplest possible
form, a single integer. In addition to this property, unlike
many conventional VSAs this bipolar VSA has operations
which preserve the sparsity [2] of the hypervectors involved,
avoiding issues with vector degeneration and allowing for
sparse preservation of information conducive to low-power
computations on constrained hardware.

There are two fundamental operations associated with HD
algebra, and we briefly define these operations in the general
case before providing our particular implementations of them
below:

B. Binding with the Discrete Fourier Transform

Hypervector binding is the HD analogue for multiplica-
tion, and is used to associate two hypervectors X ,Y with
one another as a key-value pair. For our purposes, this pair
of vectors is made up of a position vector which encodes
the ”location” in some sense of a piece of information and
a description vector which encodes the actual information
found at this position. The process of encoding position and
description in the context of spatiotemporal data is explained
in detail in the following section.

Our bipolar VSA uses the following binding scheme
predicated on the discrete Fourier transform to associate two
equal-dimension hypervectors:

XY = F−1(F (X)◦F (Y ))

Where F denotes the Fourier transform, and ◦ denotes the
computationally-efficient Hadamard product, which by the
Fourier convolution theorem is equivalent to convolution
in the Fourier domain. This binding method is specifically
chosen out of various potential methods including the tensor
product because of the significance of the Fourier transform
in the computation of the brain—it has been observed that
the collation of information in the neurons of the entorhinal
cortex (responsible for, among other things, memory, percep-
tion, and navigation) can be described mathematically by a
formulation similar to the inverse Discrete Fourier Transform
[9].

This binding method preserves the bipolarity and sparse-
ness of X and Y in their product, making these properties
invariants of the VSA. We also present the complementary
unbinding operation, accomplished by binding a vector that
is itself the binding of two other vectors with one of its
component vectors to retrieve an exact reconstruction of the
other component vector:

Z = XY =⇒ X−1Z = Y

Where X−1 denotes the inverse of X with respect to convo-
lution, i.e.

X−1 = F−1(F (X))

It is also possible to use the pseudoinverse X+ of X
with respect to circular convolution to obtain an approximate
reconstruction of Y from Z, which is useful in cases where

optimization is needed rather than exact retrieval, such as in
target propagation.

C. Bundling with the Stochastic Sign Function

Hypervector bundling is the HD analogue for addition,
and is used to collect an indefinite number of hypervectors
X1,X2,X3, . . . into a single HD memory which encodes some
number of related vectors, such as a population of class
vectors in the case of HD associative memory or a population
of samples with some discrete feature value in the case of
HD item memory.

Our bipolar VSA uses the following bundling scheme,
which preserves bipolarity and approximately preserves vec-
tor sparsity: an arbitrary number of vectors can be bundled
to produce a vector composition

Y = sgn(∑D
i=1 Xi)

where sgn(z) is the stochastic sign function, which returns
1 when z > 0, −1 when z < 0, and 1 or −1 with equal
probability when z= 0. The stochastic nature of the bundling
operation introduces random noise, but the aforementioned
noise resistance of VSA vectors make them robust against
this and empirical tests show component vectors can be
queried with very high accuracy through unbinding per-
formed on long vector bundles comprised of thousands of
component vectors, when the hypervector dimension is high
enough [2].

III. ENCODING SPATIOTEMPORAL DATA IN HD

An arbitrary hyperdimensional computing framework may
be formulated as the product of some codebook, Ψ, such
that any given identifier, value, function, or other article of
information x can be translated into high-dimensional space
as a unique vector v = Ψ(x). To draw an analogy to the
realm of conventional CNNs, a codebook can be understood
as the HD computing analogue to a convolutional kernel or
filter—like a kernel, the codebook is permuted with input
data to produce meaningful encoded patterns, and, thus, the
choice of what codebook to use in a given HD computing
paradigm is of great importance.

Typically, codebooks are created by sampling some distri-
bution over the HD space H or some subspace thereof [3],
[4]. The identity of the distribution sampled and the details of
the encoding method determine a) the properties of encoded
values that are preserved through encoding and b) the degree
to which relations between encoded values are preserved
after encoding. The ideal codebook for spatiotemporal data
preserves the maximal amount of information with respect
to spatial and temporal patterns in data.

We propose a novel HD encoding scheme intended spe-
cially for encoding dense DVS event cloud data while
retaining spatiotemporal patterns. We process event cloud
data by segmenting each cloud into a short event stream
(generally < 0.2 seconds in length) and then passing a small
(generally < 4x4 pixels over the spatial axes) kernel over
the stream to calculate the average surface normal vector of
the surface contained in that segment of the stream. These
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TABLE I
COMMON HD ENCODING SCHEMES

Name Mechanism Dim
Uniform [3] All values random 0
Thermometric [3], [4] Higher values denser 1
Permutational [7] Permuted positions 2
Moving Matrix Binding [8] Additive matrix positions 2
Fractional Power Encoding [2] Exponentiated positions 2

Fig. 1. Left: An event data slice containing the spatiotemporal surface
generated by some object moving through space (EV-IMO [10]), in blue.
Right: The local surface normal vectors computed along this spatiotemporal
surface, in violet.

average surface normals represent the approximate surface
direction of event stream in that region, and by using a
small stride (generally < 3 pixels) the total population of
average surface normals accurately and succinctly describes
the spatiotemporal contours and patterns inherent in this
subset of the event cloud data. An example of these vectors
is displayed in Figure 1.

The core encoding mechanism of our proposed encoding
scheme is called limit interpolation. This process encodes a
given value x along a dimension as an interpolation of limit
vectors, i.e. a point on the spectrum of vectors produced by
replacing gradually more and more bits of Ψ with bits of Φ

until the point at which 100% of the bits have been replaced.
Vectors closer to either end of this spectrum will have low
Hamming distances from the limit vector at that end, and
high Hamming distances from the opposite limit vector,
which retains positional correlation between positions close
to one another along the range of a dimension. Explicitly,
coordinate x in a given dimension is normalized to a distance
q ∈ [0,1] by dividing it by the total length of the range, and
the last q% of the bits of the vector encoding that value are
taken from the upper limit vector Φ, the rest from the lower
limit vector Ψ. The equation representing this interpolation
can be formulated as I(q) = q%[Ψ]+ (1−q%)[Φ].

Each component (i.e. (X ,Y,T )) of an average surface
normal is encoded according to the above limit vector inter-
polation method based on uniquely generated limit vectors
that define the limits along that component’s axis. These
component vectors are bound to unique pseudoorthogonal
label vectors corresponding to each axis and bundled into a
final vectorized average surface normal, which we call the
description vector for its small region of the event stream.
The description vector for a cloud stream with axes X ,Y,T
is calculated as v = X ′ ∗ I(x)+Y ′ ∗ I(y)+T ′ ∗ I(t), where the

Fig. 2. Left: A region centered at (56,216,136) is selected from a
spatiotemporal surface and fitted using conventional means with a surface
normal vector. Right: Limit interpolation is used to encode this vector
component-wise into an HD vector.

average surface normal is < x,y, t >, I(v) is the interpolation
function, and X ′,Y ′,T ′ are label vectors for each axis.

A position vector is also created to denote the position of
the kernel at the time a particular average surface normal was
created. This position vector encodes the pixel coordinates
of the kernel in precisely the same manner as above (the
time coordinate does not need to be encoded because every
description vector is formed based on the entirety of the time
axis over the spatial region it describes, making our encoding
scheme time-agnostic). This position vector is bound to the
description vector to produce the information vector that
describes the cloud stream at one small region, and the
bundling of all these vectors is our vectorized encoding of
the stream as a whole. A visualization of this process is
presented in Figure 2.

IV. AN HD CLASSIFIER FOR POSE ESTIMATION

Finally, we sketch out how our proposed HD encoding
scheme can be used to construct an HD classifier intended
for working directly with event-based data in practice. We
explore in this section a simple architecture comprised of
an HD encoder and a single-layer HD classifier designed
for the real-world task of pose estimation [11], which we
term PoseHD. For the sake of simplicity, we formulate
pose in terms of 3-dimensional spatial translation, but this
model can be extended in a straightforward way to include
rotational motion and other quantities, provided that they
are incorporated into the codebook. Diagrams and plots
are drawn from preliminary experiments using the EV-IMO
dataset [10].

During training (Figure 3), the event stream is first seg-
mented into individual objects before being discretized into
separate dense event slices containing the spatiotemporal
time surface associated with a single object over some
interval. This time surface is fitted with a population of
normal vectors which capture the spatiotemporal contours
of the object’s path, and these normal vectors are subse-
quently encoded using the aforementioned spatiotemporal
encoding scheme to produce description vectors for each
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Fig. 3. Training pipeline for PoseHD.

Fig. 4. Inference pipeline for PoseHD.

sector of the time surface. The description vectors are bound
to their corresponding position vectors, and these position-
description bindings are bundled to produce a hypervec-
torized representation of the event slice which captures
the rich spatiotemporal contours of the object’s path in a
single vector. The translation space is discretized across each
dimension, and the set of sample vectors which correspond to
a certain discretized class vector are then bundled, producing
the final associative memory.

During inference (Figure 4), the event slices selected from
the test sequence are hypervectorized by the HD classi-
fier and HD binding is performed between these sample
hypervectors and the model’s associative memory in order
to query this memory. The output of this memory is a
queried prediction hypervector which can itself be queried
with the codebook description vectors associated with each
pose dimension to determine the model’s estimate of pose
for the sample event cloud in a given dimension. Multiple
queries generated in this way for adjacent slices can produce
a pose trajectory.

V. CONCLUSION

We have proposed an HD encoding scheme, predicated
on the favorable properties of the bipolar VSA and the
Fourier transform, that is designed specifically for encoding
spatiotemporal information. We illustrated the manner in
which spatiotemporal surfaces may be described by fitted
surface normals, and demonstrated how a large quantity of
these normals can be encoded under our scheme and bundled
into atomic hypervectorized representations of spatiotempo-
ral surfaces. We closed with some discussion of how this

encoding scheme may be incorporated into an HD classifier
for the purpose of pose estimation of moving objects.

Further experiments are required to fully evaluate the
efficacy of our encoding scheme across different event-based
datasets and for disparate vision tasks. Further investigation
is also required into alternate methods of encoding spatiotem-
poral surfaces—there are more thorough and accurate meth-
ods of fitting geometries to point clouds than local surface
normal fitting, but it remains to be determined whether or not
the tradeoff between computational cost and accuracy gain
is worthwhile.
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