Training with Less: How People Select Data with Higher Value for Al
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Figure 1: A subset selection activity illustrating how a participant (P41) in our study subsequently chose their “best” subsets of
20, 5, and 1 images across their 3 objects of choice for training a 3-way image classifier to be “robust”.

Abstract

People are increasingly made aware of the importance of data
for AIL. They are often called to make conscious decisions
around the use of their own photos, text, and interactions for
improving models overall or fine-tuning them to their needs.
Understanding the value of their data can play a critical role
in these decisions. Yet, it is unclear how those who may not
have machine learning expertise can tell which of their data
are of value for training models. We conduct a crowdsourc-
ing study and publicly share a dataset called CrowdTeaMa,
where participants (N = 100) are called to fine-tune a 3-way
classification model with their own image data and select con-
secutively smaller data subsets that they deem to be of higher
value to the model. Our results highlight six unique patterns
in participants’ subset selection strategies, which outperform
random. However, when comparing them to other computa-
tional methods for selection that employ submodular func-
tions and generative Al it isn’t always a clear win. These
findings demonstrate the potential of computational meth-
ods for supporting people in decisions around their data and
their value. We examine this promise in a new context, ma-
chine teaching in accessibility, where blind people are called
to fine-tune image recognition models with their own photos
without being able to visually inspect their data.

Introduction

The increasing recognition of the pivotal role that data plays
in artificial intelligence (Al) is evident as it becomes inte-
gral to training Al models. Individuals are now conscious of

the fact that they leave valuable data traces when interacting
with technology, that can be stored and repurposed for Al
training. This awareness has made it to the public conscious-
ness, emphasizing that individuals, not just companies, can
leverage their data to train, fine-tune, and enhance Al mod-
els. Examples of this are data privacy concerns in health and
fitness apps (Mink et al. 2022), virtual assistants (Chen et al.
2023), and social media algorithms (McHatton and Ghazi-
nour 2023). This shift in consciousness spans from early
machine teaching endeavors like object recognizers (Hong
et al. 2020) to contemporary applications such as personal-
ization in generative Al, showcasing a growing understand-
ing of the potential inherent in personal data. Despite this
increased awareness, a notable gap persists in comprehend-
ing how individuals lacking expertise in Al and machine
learning (ML) value their data for training these models.
The conventional understanding of Al development involv-
ing offline training phases remains opaque to end users,
limiting their insight into the system’s behavior. Bridging
this knowledge gap becomes crucial in ensuring responsi-
ble Al usage, particularly as Al becomes more pervasive in
user-centered applications. Integrating Interactive Machine
Learning methodologies, which empower users in the ML
model training process, emerges as a potential solution to
democratize access and enhance understanding, emphasiz-
ing the need for a holistic approach to Al development that
involves and educates the general public. Given the impor-
tance of fine-grained object recognition and the need to un-



derstand how people who have no expertise in ML value data
for training Al, we propose a solution that leverages crowd
workers as a proxy to control the study and get a larger sam-
ple. Our approach involves an iterative data subset selection
task for machine teaching that allows us to identify the most
important features of selected data for an object recognition
model. Why machine teaching?: Machine teaching aims
to reduce the number of examples a teacher needs to pro-
vide to a learner (Goldman and Kearns 1995; Shinohara and
Miyano 1991). In certain contexts, this can be viewed as the
task of optimal data subset selection. Aligned with our re-
search questions, machine teaching serves as an effective
proxy by providing an opportunity to gain deeper insights
into how people perceive and interact with these systems,
and what types of data they consider most valuable for train-
ing models. We developed a web-based testbed for a mobile
teachable object recognizer, inviting participants to train and
evaluate it using three objects of their choice within a spe-
cific object category (e.g., cereal, drink, snack, spice, etc.).
After testing their model, we asked them to consecutively se-
lect smaller data subsets of 20, 5, and 1 from the 30 images
that they took of each object. We asked them to select the
subset of photos that make the model more robust. We also
implemented 3 different algorithms for data selection: Ran-
dom selection, Facility Location-based selection, and Copi-
lot selection. By calculating image similarity metrics across
these different subsets, and model’s performance across dif-
ferent subsets, we gain insights into how humans select data
with higher value for AI. We also explore human data sub-
set selection in a novel context: machine teaching for acces-
sibility. Here, blind individuals are tasked with fine-tuning
image recognition models using their own photos, despite
being unable to visually inspect their data.

This paper presents three main contributions. First, the
primary contribution is empirical which arises from an ex-
amination of how people select subset of data that they con-
sider of higher value for training machine learning algo-
rithms. As another empirical contribution, we present a col-
lection of qualitative findings about different user groups’
strategies in selecting data and their comprehension (or lack
of comprehension) of the data value. From these insights,
we derive a set of implications for the design of Interactive
Machine Learning systems tailored to novice users. Last,
we have compiled and publicly released the CrowdTeaMa
dataset, which we collected from crowd workers during our
study.

Related Work

There is a rich literature in subset selection. We review a
sample of prior work over the last decade through the lenses
of (selector — consumer) pairs with the data selector being
a human or an algorithm that chooses the subset and data
consumer a human or an algorithm that uses the subset. As
shown in Table 1, we identify four distinct patterns.

Prior work under the first pattern includes studies where
both the selector and consumer is an individual (i — i).
The focus here is in understanding how people select sub-
sets of data so that the resulting selection is more meaning-
ful to them. This work is typically in the context of photo

and video albums where people select photos that capture
interest (Walber, Scherp, and Staab 2014; Payne 2017), pho-
tos that best represent a collection (Kuzovkin et al. 2018),
or human-interpretable concepts about images that supports
them to reason about classification models (Barker et al.
2023). The ultimate goal for all is to learn how to auto-
mate this process to generate smaller visuals that allow for
more efficient and pleasurable experience. We also observe
this pattern in the context of data analysis tools, where users
select subsets of tabular data from large datasets to gener-
ate meaningful visualizations (Narechania et al. 2023). The
goal here differs, as the work aims to support users in better
valuing parts of a dataset for increasing validity, appropri-
ateness, and utilization from others for analytical tasks. The
majority of this prior work incorporates user studies with
30 to 36 participants sometimes recruited from crowdsourc-
ing platforms like Prolific (Barker et al. 2023). In all stud-
ies the total number of options was bound but the subset
selection size was usually up to the participants (Kuzovkin
et al. 2018; Narechania et al. 2023; Barker et al. 2023) with
one exception (Walber, Scherp, and Staab 2014). Interest-
ingly, the level of familiarity that the selectors had with the
data differs some being familiar (Walber, Scherp, and Staab
2014; Payne 2017; Barker et al. 2023) and others not (Ku-
zovkin et al. 2018; Narechania et al. 2023). Contrary to our
study, participants were not the ones collecting the sets.

A second pattern seen in prior work that expands on the
first (hence some of the overlap), leverages algorithmic ap-
proaches as the selector with people as consumers (¢/> — §).
The focus here is to select subsets for supporting humans
under specific constraints. At an individual level, cases in-
clude selecting a single representative sign language facial
expression from a corpus for generating understandable and
natural animations (Kacorri et al. 2016), selecting a sub-
set of human-interpretable concepts to minimize cognitive
load (Barker et al. 2023), and capturing meaningful mo-
ments with a few video clips (Payne 2017). At an organi-
zation level, efforts focus on selecting subsets for archival
purposes that aim to optimize storage efficiency given based
on space constraints (Davidson et al. 2022). Often, these ef-
forts do not report user studies with participants evaluating
the final subsets. When evaluated, they use similarity and
performance metrics, an approach that informs our work.

The most common pattern involves prior work where
both the selector and consumer are algorithmic approaches
(</> — </>). Here, efforts typically fall under the broader
data-centric Al paradigm, where the focus is to select suit-
able data to impact model effectiveness and efficiency (Jaku-
bik et al. 2024). These studies span a spectrum of selection
objectives and data types. Few focus on selecting a represen-
tative subset to enable faster experimental iterations for in-
stance, to improve image classificatione.g. (Singh, Virmani,
and Subramanyam 2019). Typically, the goal is to capture
more relevant and high quality data points such as video
frames for improving semantic segmentation in autonomous
driving (Das et al. 2020), utterances from non-native speak-
ers that better support ASR personalization (Kothyari et al.
2021), and utterances of higher quality for automatic speech
recognition (Raza Syed and Mandel 2023). Other contexts



Fof<P i< <> < Data Type Selection Purpose
(Walber, Scherp, and Staab 2014) . image interestingness
(Kacorri et al. 2016) ° facial expressions representativeness
(Payne 2017) ° ° video interestingness
(Bullard, Chernova, and Thomaz 2018) ° object classification performance
(Kuzovkin et al. 2018) ° image representativeness
(Singh, Virmani, and Subramanyam 2019) ° image representativeness
(Kaushal et al. 2019) ° image experimentation efficiency
(Das et al. 2020) ° video semantic segmentation performance
(Kothyari et al. 2021) ° speech relevance for personalization
(Killamsetty et al. 2021) o text, image robustness & efficiency
(Davidson et al. 2022) ° image storage efficiency
(Narechania et al. 2023) ° ° tabular quality filtering
(Barker et al. 2023) ° concept interpretability
(Gong et al. 2023) . network data storage efficiency
(Raza Syed and Mandel 2023) ° audio quality filtering
This study . image classification performance

Table 1: Characteristics of prior work on subset selection divided into four categories based on data selector and data consumer:
human for human (§ — ¥), machine for human (</> — ¥), machine for machine (</> — </>), and human for machine (¢ — </>).

include online data selection for federated learning e.g.,
in mobile networks (Gong et al. 2023) and data selection
more broadly e.g., for efficient learning (Killamsetty et al.
2021; Kaushal et al. 2019). The subset selection approaches
employed also vary including generative adversarial net-
works (Singh, Virmani, and Subramanyam 2019) and data
valuation (Gong et al. 2023; Raza Syed and Mandel 2023)
to rank data points, pairwise similarity to remove redundant
data points (Das et al. 2020), and submodular functions to
optimize for relevance (Kothyari et al. 2021; Killamsetty
et al. 2021; Kaushal et al. 2019). Approaches are contrasted
to random as a lower baseline. Informed by this prior work,
we contrast our participants strategies against a series of sub-
set selection approaches employing generative models, and
submodular functions along random.

A fourth pattern that has received less attention involves
humans as the selector with algorithmic approaches as con-
sumers (§ — <[%), the focus of this paper. The goal is typi-
cally to understand humans and their interactions with ma-
chines either for the purpose of building Al literacy or sup-
porting efforts in human control or personalization. In one of
closest studies to our work, participants are asked to select
important objects from different groups to teach a grocery
classification task to a robot learner (Bullard, Chernova, and
Thomaz 2018). Similar to our study, overall set and selection
sizes were fixed across participants; participants selected 3
objects out of 15 per category for a total of 4 categories.
In contrast to our study, the larger set of objects were de-
fined by the researchers. In our study, participants have more
degrees of freedom. They can choose both the objects they
want to train the algorithm on as well as define the larger
set of pictures for training from which they are tasked to se-
lect subsets. Another difference lays in the participants. Par-
ticipants (N=30) were recruited locally as people who had
some expertise in machine learning (Bullard, Chernova, and
Thomaz 2018). In our study, participants (N=100), recruited
via Amazon Mechanical Turk, vary in their level of exposure
to machine learning with the majority having no expertise.

Crowdsourcing Study

To examine how non-experts select data that they deem to
have higher value for training a machine learning model,
we conduct a crowdsourcing study (IRB # <anonymized>),
where participants are recruited via Amazon Mechanical
Turk. Our methods build on prior work leveraging crowd-
sourcing for behavioral and perception studies such as (Heer
and Bostock 2010; Buhrmester, Kwang, and Gosling 2011;
Jacques and Kristensson 2021) and those exploring human
interactions with machine learning in (Vaughan 2018).

Specifically, we incorporate subset selection tasks in
a web-based object recognizer for mobile phones (our
testbed), where participants are asked to train, test, and re-
train an image classification model to identify three objects
of their choosing. For each user, the testbed creates a new
convolutional neural network based on Google Inception
V3 (Szegedy et al. 2016), pre-trained on ImageNet (Deng
et al. 2009). Each time a user provides a teaching set, the
last layer of the pre-trained model is replaced with a new
softmax layer and re-trained with the user’s images for
500 steps using a gradient descent learning rate of 102,
Models are trained in real-time on our 8-GPU server asyn-
chronously, allowing the app to continue running and col-
lecting open-ended feedback from participants during the
training process. The web interface communicates with the
server through the Flask API (Pallets 2024).

Participants

We recruited 143 participants over 10 days. However, data
from 43 participants were excluded — 7 helped in piloting, 1
used the same object for all classes, 3 took photos of objects
in display screens, 2 took photos with no objects. The other
30 had technical problems by attempting the task simulta-
neously with our system failing to distribute them across the
GPUgs, losing data from 12 and interrupting the task for other
18; all were compensated and the bug was fixed. The 100
participants who were included in this paper were 20 to 60
years old (1 = 32.6, 0 = 8.3). Almost half (49) identified as



man, 50 as women, and 1 as non-binary. The majority (90)
reported being right-handed, and no one reported visual or
motor impairments. Most participants used mobile devices
to take photos on a weekly basis, but only a few used object,
food, or plant recognition applications. Regarding partici-
pants’ familiarity with machine learning, 6 participants had
never heard of it, 45 had heard of it but didn’t know what
it does, 48 had a general understanding of its purpose, and
only one reported having extensive knowledge.

Procedure

The subset selection task in this study is part of a broader
series of tasks where participants trained and tested an object
recognition model, described here for more context.

Initially, the testbed gathers background information,
technology experience, and familiarity with machine learn-
ing from participants. It then presents five object category
options: bottle, cereal, drink, snack, and spice, with three
sample icons for each category representing the preferred
shape. These categories are inspired by previous research on
personal object recognizers (Kacorri et al. 2017) and are de-
signed to prompt the selection of everyday objects that vary
in size, shape, color, material, and function. To ensure that
object shape or size does not contribute to any observed in-
consistencies between classes, participants are instructed to
use three objects within the same category.

After that, participants are taken through a guided expe-
rience with the web-based teachable object recognizer on
their mobile phones, including 5 tasks. In test 0, partici-
pants are asked to take photos of their objects to see if the
existing non-personalized model can recognize them. This
task helps to familiarize participants with the interface and
to collect evaluation examples unbiased from one’s teach-
ing experience that is to follow. In train 1, participants are
given instructions to train the object recognizer with the aim
of making it robust enough to identify their objects ‘in any
location and for anyone’. They take 30 photos of each ob-
ject for training. This process is repeated three times, once
for each of the randomly assigned objects. As a result, the
first teaching set involves a total of 90 photos (30 photos per
object). While the model was being trained on their photos,
participants were asked to review their training sets and se-
lect the best 20 out of 30 training photos per object, 5 out
of 20, and 1 out of 5, as shown in Figure 1. In test 1, par-
ticipants are instructed to take photos of their object and test
the trained object recognizer to evaluate its robustness. In the
subsequent tasks (train 2 and test 2), participants are given
an opportunity to re-train and test the model from scratch.

During our pilot sessions, we estimated that participants
could successfully complete the study in 30 to 40 minutes.
Based on a compensation rate of $15 per hour (Hara et al.
2018), all participants received a total of $10 upon com-
pleting the data collection. To motivate participants, we im-
plemented a performance-based payment system (Ho et al.
2015), where the total of $10 was divided into a $5 flat par-
ticipation fee, a $2 bonus for first training, and an additional
$3 bonus for improved performance in the second training.
Closely aligning with our estimates, participants spent on
average 35.57 minutes (0 = 12.85) on the testbed.

Subset Selection Approaches

To better characterize our participants subset selection
strategies we contrast them to random, a baseline approach,
as well as computational methods for selection that employ
submodular functions and generative Al. The choice behind
these methods is informed from recent literature surveyed in
Related Work.

Submodular Functions: Facility Location

A submodular function (Edmonds 2003), f : 2V 5 R, as-
signs values to a subset from a finite ground set V' and satis-
fies the following property for any S C S’ C V,u ¢ S”:
fFSU{u}) = £(8) = f(S"U{u}) = f(5) (D)
In our scenario, V' is the pool of photos taken by a par-
ticipant, S and S’ are candidate subsets, u is a photo under
consideration, and f is valuation function measuring qual-
ity of the subsets. The submodular property 1 states that the
marginal benefit of adding a photo to .S is at least as high
as the marginal benefit of adding u to the superset S’. Intu-
itively, it captures the notion of diminishing returns and al-
lows us to find a maximally valued subset for training given
an appropriate submodular function, in our case, the Facil-
ity Location function. This particular submodular function
aims to choose examples that effectively represent the data
space by maximizing the pairwise similarities between data
points. In our study, this translates to the selection of diverse
images within a set, taking into account pixel-by-pixel data.
For this approach, we utilized Apricot (Schreiber, Bilmes,
and Noble 2019), a submodular optimization package.

Generative Al: Copilot

Since the emergence of large language models (LLMs),
there has been significant interest in comparing their perfor-
mance to that of humans across various tasks (Mgller et al.
2024; Li et al. 2024; Martin et al. 2024). For our compari-
son, we utilized Microsoft Copilot! in Bing chat (Microsoft
2024). Specifically, to maintain consistency with the instruc-
tions given to participants and to accurately replicate the
task, we provided a photo grid containing 30 images that
each participant took of a specific object. Each image was
labeled with a number from 1 to 30. We then gave the fol-
lowing prompt in the chat: "In this grid of images, there are
30 images of an object, each labeled with a number. Imagine
we want to train an object recognizer with 20 out of these 30
images to recognize this object later. Which image do you
think is the best for this task? Please provide the number of
the image you choose in brackets ’[]” and explain why you
chose it.” We used SydneyClient (vsakkas 2023), a Python
client for Copilot, to retrieve responses from the chat. After
collecting the numbers of the selected images, we created a
new image plotting these selected images in a grid. We then
input this newly generated image to Copilot with the same
prompt but asked it to select a smaller subset (5 out of 20),
and similarly, for a final selection (1 out of 5).

'In contrast to other open-source LLMs we experimented with
at the time, Copilot could handle a grid of images similar to those
shown to our study participants. Additionally, its implementation
in Bing Chat supported some privacy options.



Analysis

Our analysis includes two datasets. The first, called
CrowdTeaMa, includes a total of 22500 photos from our
crowdsourcing study with 100 participants and is used to
explore how people who may not have expertise in machine
learning select subsets of data for training Al and how their
strategies compare to computational methods. We are now
publicly sharing this dataset at [anonymous link].

To gain insights into selection patterns in this dataset, we
first analyzed performance trends. We trained the testbed
model on each of the human/algorithm-selected subsets of
images from 100 participants. We utilized data from our
four subset selection approaches: Human, Facility Location,
Copilot, and Random. Each approach was applied to three
different subset sizes—20, 5, and 1—plus the original set of
30 images taken by each participant, resulting in a total of
1300 models. For each model, we measured the F1 score us-
ing two different test sets. The first set, Test 1, included pho-
tos that participants took immediately after selecting their
subsets. The second set encompassed all of Test 0, 1, and 2,
which consisted of a larger set of photos taken before, im-
mediately after, and long after the subset selection.

Another aspect employed in our analysis that provided
more context for the observed patterns was the presence of
diversity among the images taken by the participants. As a
subjective approach, one researcher from our team annotated
the visual distinctiveness within each of the participants train
and test sets. The researcher assessed variation across three
categories: the background behind the object, the object’s
size, and object viewpoint, and calculated an overall varia-
tion score within each train and test sets as a percentage. For
a more objective approach, we employ the Structural Simi-
larity Index (SSIM) (Wang et al. 2004), a metric utilized for
quantifying image similarity. We computed SSIM values be-
tween the training and testing sets to evaluate the degree of
similarity between the two per participant.

We also examine the promise of computational methods
to support non-experts in machine teaching within a new
context: accessibility. Here, blind people are called to fine-
tune image recognition models with their own photos with-
out being able to visually inspect their data. For this analy-
sis, we leverage an existing dataset called TEgO (Lee and
Kacorri 2019). It includes a total of 10260 photos from 19
distinct objects, captured by two individuals—a blind per-
son and a sighted person—using a smartphone camera. The
data collection task is similar to our study, where the pho-
tos are used to train and test a teachable object recognizer,
with each individual creating their own training (30 photos
per object) and testing (5 photos per object) sets. The data
collection task is repeated under different settings and envi-
ronments: 'in-the-vanilla’, where an object is placed against
a plain background such as an empty desk, and ’in-the-wild’,
where an object is placed in a cluttered background among
others. We conducted a similar performance analysis on the
TeGO dataset. We created models for both sighted and blind
datasets in two different environments and tested them with
the corresponding test sets.
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Figure 2: F1 score trends across clusters of participants

Results on the CrowdTeaMa Dataset

In this section, we first examine the subset selection strate-
gies employed among our participants by looking at differ-
ent trends in model performance as subset size decreases.
We then compare these strategies against a Random base-
line and other computational approaches.

How do Humans Select Subsets

As shown in Figure 2, we observe six distinct trends on
model performance as participants decrease subset size.

Constant Trend: For the majority (N=34), their models
performed roughly the same when trained with 30, 20, 5,
or 1 examples. This was not a surprise as training and test-
ing sets inhibited very little variation (<3%) and were quite
similar to each other (SSIM=79%). Thus, whatever the se-
lection strategy, it had little effect. This is the case both for
those who reported having a broad understanding of what
machine learning is and what it does (N=17) and those who
either had heard of it but don’t know what it does (N=15) or
had never heard of it (N=2).

Increasing Trend: For a few (N=5), the trend was coun-
terintuitive: smaller training size led to a better model per-
formance. What is notable about this group is that they all
trained on fine-grained objects, differing primarily in small
text written on the containers. They also incorporated some
variation among their training (17%) and test set (8%). All
selected as a single image one where the main side and logo
of the object were clearly visible.

Peak Trend: For some (N=8), we observe that perfor-
mance peaks around 20 and 5 photos. This group demon-
strated the highest variation in training and test sets (40%
and 20%, respectively) mostly changing the background
e.g., placing the object among others in a cluttered setting.
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Decreasing Trend: For about a third (N=32), model per-
formance decreased with size; a trend we would expect.
Among this group, there was a notable difference between
training and testing sets in variation (17% versus 6%). This
difference in variation was primarily due to view variation.
Participants in this group incorporated more view variation
in their training set by capturing the object from different
angles, but exhibited minimal view variation in their test set.

Belly Trend: Approximately one-tenth of the participants
(N=13) experienced a decline in their performance trend fol-
lowed by recovery on a smaller subset, primarily from sub-
set 5 to 1. Visual inspection of the images revealed that most
participants in this category faced challenges related to im-
age quality. For instance, certain participants presented im-
ages captured under poor lighting conditions or where the
objects were not clearly visible, such as transparent bottles,
or where the object was cropped within the image. In such
instances, a single high-quality image provides better learn-
ing opportunities than multiple low-quality images.

Zigzag Trend: A small group of participants (N=7) ex-
hibited a non-linear performance trend characterized by
a zigzag pattern. Upon visual inspection, we discovered
that this category encompasses participants who employed
mixed strategies in their approach. One particularly interest-
ing approach was observed in one of the participants. This
participant claimed to possess a broad understanding of ma-
chine learning concepts and its functionalities. They adopted
a multi-faceted approach by capturing images of the packag-
ing up close, photographing the emptied package, and tak-
ing pictures of the contents inside the package. This varied
approach resulted in the fluctuating trend, resembling the
model being trained with multiple objects simultaneously
rather than focusing on one object at a time.

How do Humans’ Subset Selection Strategies
Compare to Computational Methods

To see how the subset selection strategies of our participants
compare to different computational methods, we contrast the
performance of their models (F1 scores) across the same test
sets. We first compare performances on the 15 test images
(5 per object) that participants took immediately after the
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first attempt at training and selecting subsets. Surprisingly,
we observe that they tend to perform equally or better than
other algorithmic approaches even though almost all of them
have no machine learning expertise. As shown in Figure 3,
the overall trend for our participants’ models (Human) is a
barely dropping performance for 20 out of 30 (median F1
score: 0.866 for both 20 and 30) and 5 out 20 (median F1
score: 0.863) with a more prominent drop for 1 out of 5 (me-
dian F1 score: 0.736). However, as we saw in the previous
section this trend in not consistent across participants.

At 20 out of 30, the comparison is less compelling as
all selection approaches, those adopted by our participants
and those by the algorithms tend to be similar to Random
in median F1 performance. Visual inspection of these sub-
sets indicate a lower variation being incorporated across the
Human selected subsets and higher variation across subsets
selected by Facility Location and Copilot. This is expected
since Copilot stated in all of its responses that diversity is
prioritized in its selection (Figure 5, 6). At 5 out of 20, re-
sults get more interesting. We see that the median F1 score
for Human remains relatively unchanged, as it does for Ran-
dom (median F1 score: 0.858). However, this is not the case
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Figure 7: Contrasting approaches for 1 of 5 (P1).

for Facility Location (median F1 score: 0.787) and CoPilot
approaches (median F1 score: 0.786). As shown in figure 5,
visual inspection of the subsets revealed that, particularly in
smaller subsets (5 and 1), humans tend to filter out lower-
quality images, such as blurred or cropped ones. In contrast,
the Facility prioritizing diversity does not always filter out
images based on these criteria, same as the copilot. However,
these patterns were not consistent in the images selected by
Random.

At 1 out of 5, these splits in performance are more strik-
ing though the order is preserved. Human withstand at the
top (median F1 score: 0.736), Random (median F1 score:
0.663) approximates Facility Location (median F1 score:
0.654) and at the bottom stands CoPilot (median F1 score:
0.555). As shown in Figure 7, the top images that humans se-
lected tend to be images where the brand name and primary
features are clearly visible to the camera.

These results are surprising. Are people, even without ma-
chine learning expertise, much better at valuing data of im-
portance for models to learn? Given that Random is the sec-
ond best approach, we hypothesize that this observation is
instead explained by the testing images, testing with similar
photos to those participants selected as being the “best”.

To explore this hypothesis, we expand the testing set to
also include images that participants took even before train-
ing or after a subsequent training attempt. As shown in Fig-
ure 4, the trends remain roughly the same for Human and
Random. However, given a more challenging testing set,
CoPilot outperforms them both for 20 out of 30 and 5 out

Environment: In-the-vanilla
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Figure 8: Comparing subset selection algorithms F1 score
for the Tego Dataset, in-the-vanilla environments. The gray
line indicates the F1 score for subset=30

of 20 but quickly drops to being last for 1 out of 5, and Hu-
man performing the best. Our hypothesis is supported by the
observation that subsets with greater diversity perform better
when tested against a more varied test set. However, when
it comes to selecting a single best image, humans remain at
the top. They excel at choosing images that clearly depict
the object from an optimal perspective.

Results on the TEgO Dataset

Technologies such as teachable object recognizers, enable
blind individuals to personalize algorithms and train them to
locate or recognize objects of interest. This presents a com-
pelling case study where subset selection becomes impor-
tant. In prior research (e.g., (Kacorri 2017; Morrison et al.
2023; Lee et al. 2019), researchers have explored various
methodologies within this domain. Our analysis aims to ex-
tend this inquiry by examining how the relationships ob-
served between the subset selection methods in the previous
section, generalize to the realm of accessibility.

In-the-vanilla environment, where objects are placed
against a plain background: For subsets 20 and 5, we
observed that algorithmic approaches had comparable
performance levels. However, in subset 1, Copilot out-
performed Facility and Random, contrasting with our
observations in CrowdTeama tested by both test 1 and test
0, 1, 2, where Copilot displayed the lowest performance
among the existing approaches. The same pattern is seen for
the photos taken by the sighted and Blind.
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In-the-wild, where objects are placed against a clut-
tered background: Performance patterns in cluttered en-
vironments shows Copilot declining performance. Upon
closer examination of the images, we observed that in this
set, Copilot frequently chose images from non-prominent
areas of objects, such as the top, where significant brand ele-
ments were lacking. This trend was particularly pronounced
in wild environments. Also, Copilot seems to favor images
where the object is closer to the camera, yet it falls short in
effectively filtering out excessively cropped ones.

Conclusion

We conducted a crowdsourcing study where MTurk par-
ticipants selected three objects from their environment and
trained a model to distinguish between them in real-time us-
ing the camera on their mobile phones, and finally selecting
smaller subsets from their data that they deem to be of higher
value for Al This allowed us to investigate a subset selec-
tion problem with a large participant pool (N = 100), where
many non-experts acted as the oracle. After analyzing the F1
scores of our teachable object recognition model, which was
trained separately on different subsets selected by both hu-
mans and algorithms, we made several observations on how
humans value data for Al, and expanded these findings to the
accessibility context. We have also laid out a thorough de-
scription of our test bed and made the CrowdTeaMa dataset
publicly available to allow for study replicability and future
comparisons.
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