Uniform Parameter Scoring System

Yehuda Katz

Abstract

System administrators are usually trusted to be experts on the sys-
tems they control, yet security breaches and performance problems can
often be traced to improper configuration by these same administrators.
These configuration mistakes aren’t made deliberately and certainly not
maliciously, but are usually due to a lack of information about the con-
sequences and interactions of these settings. We call this Uninformed
Configuration. Existing research focuses on ensuring users don’t make
security mistakes or helping developers/engineers validate their systems
meet security and performance targets, but there is little research focusing
on the system administrator who bridges these two groups, taking systems
from developers and maintaining them for the end user.

The Common Vulnerability Scoring System is used to assist adminis-
trators in understanding the actual risk of a security vulnerability and
the impact the particular vulnerability can have on their systems. We
present a scoring system that can be used to label settings for a program
to explain the severity and potential impact of changing each setting.

Background

The Common Vulnerability Scoring System (CVSS) is the most well known
standard for evaluating the severity of security vulnerabilities. CVSS has received
a lot of criticism for its accuracy and effectiveness and other scoring systems exist,
but performance of CVSS has been studied [12] and CVSS continues to be used
as the main scoring system for vulnerabilities in the Common Vulnerabilities
and Exposures (CVE) database. The initial CVSS standard was created under
the stewardship of the National Infrastructure Advisory Council, an advisory
group under the United States Secretary of homeland Security. The initial CVSS
version 1 was released in 2005 with no peer review, but has since been managed
by the Forum of Incident Response and Security Teams and has undergone
regular updates. CVSS version 4 was released in November 2023, but as of this
writing has not been adopted/integrated into existing vulnerability reporting
systems.

CVSS in its own words [1]

The Common Vulnerability Scoring System (CVSS) captures the
principal technical characteristics of software, hardware and firmware

vulnerabilities. Its outputs include numerical scores indicating the
severity of a vulnerability relative to other vulnerabilities.

System administrators are usually trusted to be experts on the systems they
control, yet security breaches and performance problems can often be traced
to improper configuration by these same administrators. These configuration
mistakes aren’t made deliberately and certainly not maliciously, but are usually
due to a lack of information about the consequences and interactions of these set-
tings. We call this Uninformed Configuration. Because many vulnerabilities,
as well as performance problems, are caused by Uninformed Configuration, we
explore what a standard might look like that could inform administrators about
the effects of making settings changes. We model this standard on the CVSS
version 3 because it will be familiar to system administrators and already defines
many of the primitives we need for our Uniform Parameter Scoring System
(UPSS, pronounced OOPS).

Comparison to other fields

A complex software package can have thousands of settings that will change
how the program functions in ways ranging from trivial to extremely beneficial
or catastrophic. After a complex software package, an area that might have
the next highest number of “knobs and switches” - and an area where improper
configuration certainly has a more-immediate impact on life and death - is a
modern jet airplane cockpit [2]. Sherry, et al. [14] and Singer [15] describe
a standard design language for a modern airplane and research into how to
evaluate cockpit system usability. A lot of the design of modern cockpits is the
result of hindsight after various disasters, but many disasters result in additional
checklist items that pilots must do rather than changes to the design of the
airplane. There does not appear to be a written standard across the industry for
switch/knob design (although the European Aviation Safety Agency Certification
Specification 25 addresses the issue [6]), but we can flag some things that are
universal that will give us a greater understanding of evaluating risk [11]. For
example, if a toggle switch can do two actions, the safer action is usually towards
the bottom. If the action of a switch is not reversible or could cause significant
negative impacts to flyability, the switch will be covered or require multiple
hand motions to activate (e.g. turn and pull). Karpanos, et al. show that people
evaluate the quality of a product or system based on the perceived quality of
the control knobs [13]. We can’t directly apply these switch design paradigms to
software configuration because changing one setting in a text file is just as easy
as changing any other setting - there isn’t a simple way to put a virtual “cover”
over a dangerous configuration option.

At the opposite extreme, alert fatigue is a well studied and understood condition
in which receiving too many warnings, especially warnings that claim to be
serious, can cause users to completely ignore all warnings. The same applies to
having too many settings that can be changed [16] and certainly to attaching
warnings to every single knob. Do you know anyone who looks at a California

Proposition 65 warning and takes it seriously? If you had to acknowledge that a
coat hanger can be dangerous and should not be given to children every time
you went to use a coat hanger, most people would probably dump their coats on
the floor.

Labeling too many settings as critical for security or performance will reduce the
overall usefulness of the entire system. Not labeling all the settings that really
make a difference, or not explaining the potential outcomes properly, will mean
this scoring system is not useful. The key is to be able to find the settings that
really matter and to communicate their true impacts appropriately. We also
can not create a framework to prevent people from purposely doing dangerous
things. When you purchase a trampoline, it does not come with a warning that
says “Do not install next to the opening of a running wood chipper”. [8] The
purpose of UPSS is to assist administrators in understanding the impacts of
their choices and prevent uninformed choices, but not to prevent all security and
performance problems.

Simplification and Demonstration of Need

Xu, et. al. [16] suggest guidelines for simplifying configuration options by
eliminating unnecessary parameters and reducing the possible settings for the
remaining parameters. Anecdotally, developers and administrators are resistant
to the appearance of the removal of granularity as administrators believe that
they are competent to control all the possible parameters. Xu, et. al. conclude
that existing search options for understanding available configuration options
are not sufficient, including noting that naive keyword search, Google search (or
other search engines), and Natural Language Processing-based querying are not
sufficient general solutions. A standardized scoring system for the importance of
each parameter will improve the chances of an administrator finding the knobs
that are actually important.

How Configuration Affects Performance and Se-
curity

It seems obvious that changing operational parameters can cause significant
changes to the operation of a program, but we need a strong framework to
evaluate the types of changes in order to draw conclusions about the changes
to the settings themselves. We will create our initial framework using a generic
web server as our subject.

In all of the documentation we consulted while writing this paper, configura-
tion options are listed in alphabetical order which no attention drawn to the
importance or consequences of changing specific settings. Some programs have a
getting started document which may say something like “The primary server is
fairly resource intensive, and must be installed on a robust, dedicated server.” [7],

?

but no specific notes about performance, or might have a “Performance Tuning’
document [3] buried in alphabetical order with the rest of the settings.

"Effect Categories" of Settings

1. Settings which only affect a Display value (someone says “Hey,
that’s weird.”) (GUI)

This includes any value which is only displayed to a user, but does not change
any part of the way the program runs. These settings are generally not critical
in any way to the operation of the program, although they can have external
effects. These will generally have the lowest score.

Example: Administrator’s email address - The Apache HTTPD Server exposes
the ServerAdmin configuration value as an environment variable for CGI appli-
cations and also prints the value on error pages. This value is not used anywhere
else in the server. If an administrator includes an email address in this value,
there is a risk that it will be harvested by spammers, but that is completely
external to the operation of the program.

2. Settings which affect the output of the program, but not perfor-
mance or security (the client says “Hey, it’s broken!”) (OUT)

This includes any value which materially changes the operation of the program
from the perspective of the user, but does not actually change the code paths
the program runs or the system resources being used.

Example: Wrong backend - The HAProxy load balancer allows the creation
of multiple frontend servers, each pointing to one or more backend servers.
HAProxy itself doesn’t care which backend you connect to for each frontend, but
choosing the wrong backend will present the web client with the wrong website.
(Note: For this example, we are assuming that the backend applications handle
their own security or are intended to be public, but in either case are not relying
on the frontend proxy for security purposes.)

3. Settings which affect core functionality (the administrator says
“Hey, it’s broken!”) (FNC)

These are settings which will make the program obviously broken if they are
set wrong, but are not tied directly to major performance or security changes.
These setting could cause other settings to be more important for security or
performance, but don’t make a difference by themselves.

Example: Socket Bindings - If a service is intended to be exposed to the network,
it must be exposed to the correct network interface and port or it will not be
accessible. Alternatively, if the program is intended for internal use and is bound
to a TCP port instead of a Unix Domain Socket, it adds overhead of TCP
connections with no benefits. This can affect performance in minor ways, for

example, network traffic overhead or kernel autobind limits (the modern Linux
kernel has a limit of 22° which is more than enough for most current use cases,
but some systems can have a lower value and having a large number of entries
can cause performance problems or denial of service when approaching the limit).

Example: Dynamically Loaded Extensions - Many programs load extensions
through Dynamically Linked Libraries (Windows)/Shared Objects (Linux). With-
out these extensions, the server might not start at all, or might show errors (for
example, if an unrecognized configuration directive is present) or unprocessed
code (if no extension is loaded to process a particular file type) instead of proper
web pages.

Deciding if a setting qualifies for this group While it again depends on
the specifics of the program, you might think that loading extensions would
affect security and performance because more code is potentially being executed.
For purposes of this example, loading an extension in the web server to allow
processing dynamic web pages (i.e. PHP) is a core part of the functionality
required and the server can not be considered functioning without it, so the
extension itself is assumed to be properly programmed and loading of the
extension itself is considered to not affect performance. However once the
extension is loaded, other settings become more important; for example, if PHP
is loaded as an Apache HTTPD module, it adds settings which can change its
behavior and affect performance or security, but loading the extension itself is
safe and performant.

4a. Most critical (performance) (PRF)

These settings may directly affect the amount of system resources a program is
allowed to use or apply limits to the amount of resources used by any particular
portion of the program.

Example: Number of sockets, number of threads, memory limit, concurrency
limit - HAProxy will open file descriptors for each connection in and out of the
load balancer. By default, HAProxy limits the number of inbound connections
to a small number to make sure it will work on all systems and it sets the kernel
ulimit to prevent opening more sockets than it expects to use. It appears to
an administrator that the service is being limited by a low socket limit and
the administrator might try to raise the limit using standard service controls
(i.e. SystemD Unit File); because the server is controlling that value, it won’t
resolve the issue. The same issue can happen with low defaults for maximum
number of threads, especially as some programs are originally created without
thread support and add threading “experimentally” as they are developed, so it
is not enabled by default and the program doesn’t take advantage of the large
number of processor cores available in modern servers. The reverse is also true
- a program with no memory limits or no concurrency limits can bring down
an entire server running multiple services if a single service runs away with its
resource usage.

4b. Most critical (security) (SEC)

These settings will directly affect the security of a system. These are arguably
the hardest category to find (especially as we are excluding problems arising
from improper coding and any setting that would break core functionality of the
program).

Negative Example: Heartbleed - The Heartbleed security vulnerability was
caused by OpenSSL not validating the length of data requested by a client,
allowing it to return data from memory outside the expected location. Most
software linked with vulnerable versions of OpenSSL did not provide a way to
disable heartbeats as a workaround to the vulnerability, so the only “workaround”
was to disable SSL completely. Because there was no setting an administrator
could change that would not break the server, this issue would not fall into this
category.

Negative Example: Hiding Version Numbers - Many vulnerability scanners report
security vulnerabilities solely based on the version a program announces (for
example, through a Server or X-Powered-By header). Internet bounty seekers
and script-kiddy attacks also commonly use these values before checking for
actual vulnerabilities as the check or exploit can be difficult or expensive. Hiding
the version number of the software might mask these security vulnerabilities
from low-skilled attackers, but does nothing to change the actual state of security
of the program.

Possible Example: Symlinks - Apache HTTPD lets the administrator configure
whether it will follow symlinks on the file system when serving data. On a
multi-user system, symlinks can be abused to load protected files that a regular
user is not allowed to read, but that HTTPD might be able to read if it is
running as a privileged user. HI'TPD has a workaround that makes this harder:
the administrator can enable SymLinksIfOwnerMatch which will only allow the
server to serve the file if the source and target of the link match. [4] This check
is susceptible to a race condition if the destination of the symlink is changed
between when the ownership is checked and when the file is opened for reading.
(Possible) Example: AllowOverride - Apache HTTPD lets the administrator
configure whether it will read configuration files from all directories, and if so,
which directives to allow. This allows an unprivileged user to fundamentally
change the operation of the server.

All of the above settings could be flagged as impacting security by someone
knowledgeable about the software, but might be hard to find using an automated
tool.

Example: SSL/TLS/etc. Ciphers - Most programs allow the administrator to
select which ciphers will be used for client connections. Many, if not most,
administrators accept the default values unless they have problems making
connections or run an auditing tool which flags outdated ciphers, but the default
values shipped by application developers are often outdated or are just as
uninformed. Software packages that ship from operating system maintainers

are often even further behind because they don’t backport upstream changes
regularly.

Assumptions

Determining the correctness of application code is outside the scope of the
scoring system, therefore we will assume that a program is properly coded and
changing a setting will not cause a security or performance issue due to improper
coding. For example, it is possible that changing a display value could cause a
buffer overflow or underrun and allow access to unintended parts of the memory.
Concerns in this area vary widely, and could possibly not be applicable or be
entirely resolved, depending on the language a program is written in (for example,
a memory-safe and type-safe language).

How Knobs Can Be Found and Scored

The simplest way to score configuration options is to have the developer flag each
parameter with a value as they develop the program. While effective at creating
an initial scores, this method does nothing to ensure values are kept up to date -
unlike security vulnerabilities, which do not regularly change once announced,
the effects of configuration parameters can vary as a program continues to be
developed. Existing programs can also have thousands of knobs that would
need to be labelled. Automated methods to assist in labelling would potentially
handle both of these concerns, but would need to be validated.

Static Analysis

Some characteristics lend themselves more obviously to static analysis than
others.

The Scoring Standards

The Uniform Parameter Scoring System (UPSS) captures the effects of changes
to software configuration parameters. It outputs a numerical score indicating
the significance of the consequences of changing the parameter. The v1 score of
a parameter is most useful when compared to the scores of other parameters of
the same program.

We propose these metrics as a starting place and plan to adapt and revise as
there is more real-world use, similar to the eventual development path taken by
CVSS. The development of these standards was inspired by CVSS version 3.1
although there are significant changes to the way CVSS version 4.0 is calculated
which are supposed to make it simpler. [10] (The new CVSS scoring method
relies on expert opinions collected from previous scores and thus is not possible
with a newly created system.)

Initial Metrics

Metrics can be broken down into two categories: the changes intrinsic to the
setting itself, and “external” considerations for the administrator choosing the
correct value.

Intrinsic Characteristics

1. Affects Processor Usage (PU) This metric measures the changes to the
CPU load expected from changing a setting.

Impact Description

Critical ~Changing this setting is expected to have an impact on CPU
(C) usage to the point of likely significantly (positively or negatively)
impacting overall performance.

High (H) Changing this setting is expected to have a measurable impact on
CPU usage to the point of potentially significantly (positively or
negatively) impacting overall performance.

Low (L) Changing this setting is expected to produce a noticeable, but not
critical, change in performance.

None (N) Changing this setting is not expected to produce any (measurable)
changes to performance.

Scoring Guidance: Affects Processor Usage should include settings which
change the expected processor cycles as well as the thread or process count.

Points of interest for Static Analysis:

e A Low score might be appropriate if a setting changes a significant number
of lines of code executed.

e A High score might be appropriate if a setting directly changes the number
of processes, threads, or arbitrary usage controls (i.e. nice parameters)

e A Critical score might only be able to be appropriately decided by an
experienced developer or administrator.

2. Affects Memory Usage (MU) This metric measures the changes to the
RAM/SWAP usage expected from changing a setting.

Impact Description

Critical Changing this setting will allow unrestricted memory usage.
(©)
High (H) Changing this setting is expected to cause a calculated, “human”
measurable (i.e. free -h, gigabyte level) change in memory usage.
Low (L) Changing this setting is expected to cause a change in memory
usage, but not at a scale significant enough to notice.

Impact Description

None (N) Changing this setting is not expected to produce any (measurable)
changes to memory usage.

Scoring Guidance: Affects Memory Usage is Critical if a setting can be
changed that would allow run-away memory usage to the point of crashing the
entire system and other reasonable values could be set which would prevent such
a situation. If there is no value for the setting to limit memory usage, the setting
is not automatically critical.

3. Affects Socket Usage (SU) This metric measures how the program
opens sockets/file descriptors, how many it can open, and in what locations.

Impact Description

Yes (Y) Changing this setting will change the number of open files, types
of open sockets, or locations of open files.
No (N) Changing this setting will not affect file/socket handling.

Points of interest for Static Analysis:

o Network sockets
e Any file handling operations
e Calls to change ulimit

4. Affects Input Sanitizing (IS) This metric measures changes to how the
program sanitizes user input.

Impact Description

Yes (Y) Changing this setting will change whether user input is trusted
and/or how it is sanitized for dangerous values.
No (N) Changing this setting will not affect input handling.

5. Does changing this setting cause the scores of other settings to
change? (CO) This metric measures whether this setting doesn’t fall into
any of the above categories itself, but changing it will cause changes to the other
metrics.

Impact Description

Yes (Y) Changing this setting will likely directly change other metrics.
No (N) Changing this setting will not directly affect other metrics.

Scoring Guidance: A good example of this is the Apache HTTPD MPM model
and .htaccess processing. Besides that, this is open-ended.

Points of interest for Static Analysis:

o Loading DLLs/extensions

External Characteristics

1. Difficulty of Determining the Correct Value (CV) This metric
measures how hard it will be for an administrator who has never used this
software to choose the correct value for this setting.

Impact Description

Critical An administrator experienced in other areas is still likely to have
(C) difficulty choosing the correct value for this setting.

High (H) An administrator experienced in other areas is likely to choose the
correct value for this setting, but a less experienced administrator
will have difficulty.

Low (L) Any administrator will be able to choose the correct value with
minimal difficulty.

None (N) The value of the setting has no practical changes to the program
operation.

Scoring Guidance: Settings in the Display Only category are likely to fall into
the None value of the metric. Settings with a fixed range of values which are
easy to test and change (see the next metric) may also have a None value.

Points of interest for Static Analysis:

o Consider other possible connections (or lack of connections) between diffi-
culty of setting a value and its effect category.

2. Difficulty of Changing the Value Later (CL) This metric measures
the difficulty of changing a setting once it has been set and the program has run.

Impact Description

Critical ~ Once this setting has been set, it may not be possible to change it.
(©)
High (H) Once this setting has been set, it will be a complicated or lengthy
process to change it, or it may require downtime to change.

Low (L) Once this setting has been set, the complexity of changing it may
vary, for example, depending on the length of the the program has
been run (i.e. built-up data)

None (N) This setting can be changed easily and at any time.

10

Scoring Guidance: Consider whether it will be difficult to change this setting later,
either because the steps required to change it are complex or not documented,
or because it will require significant effort, or because there is a high likelihood
of the change going wrong and causing damage to the system or data because it
will directly invalidate or render unreadable previously stored data.

This could also apply to software licensing tied to a particular hardware/software
“thumbprint” (i.e. Windows activation or Proxmox activation) where it will not
be possible to make changes without invalidating the license (this would likely
need to be flagged by a developer, although static analysis of the licensing code
could also find critical values).

Points of interest for Static Analysis:
o Encryption settings - data encrypted at rest may be difficult or impossible

to convert to a new encryption method.

3. Frequency of Change (FQ) This metric measures whether a setting is
often changed. (Obscure settings are often more dangerous and harder to get
support for.)

Impact Description

Never (N) This setting is only used for specific uses (i.e. debugging during
development) and is not intended for regular use.
Low (L) This setting is usually only changed by experts on this program.
High (H) This setting is commonly changed, but may require expertise to
choose the correct value.
Always Anyone who uses this program is expected to change this setting.

(A)

Scoring Guidance: This is like the box on your tax form which says “this will
not apply to most people”.

Points of interest for Static Analysis:

e Is it possible to find a major deviation from a standardized configuration

Communicating the Results

Qualitative Severity Rating Scale

It can be useful to map a numeric score to a textual representation. For the

purposes of this initial version, we will adopt the scale and use policy used by
CVSS. [5)

11

UPSS Score Rating

0.0 None
0.1-3.9 Low
4.0-6.9 Medium
7.0-8.9 High

9.0 - 10.0 Critical

As an example, an UPSS Base Score of 5.0 has an associated severity rating of
Medium. The use of these qualitative severity ratings is optional and there is no
requirement to include them when publishing UPSS scores. They are intended
to help administrators properly assess the consequences of a value change.

Vector String

As inspired by CVSS, the values of each metric can be quickly communi-
cated/transferred with a Vector String.

The UPSS v0.9 vector string begins with the label “UPSS:” and a numeric
representation of the current version, “0.9”. This is followed by /EC: and the
abbreviation of the Effect Category of the setting. Metric information follows
in the form of a set of metrics, each preceded by a forward slash, “/”, acting
as a delimiter. Each metric is a metric name in abbreviated form, a colon, “:”,
and its associated metric value in abbreviated form. The abbreviated forms are

defined above (in parentheses after each metric name and metric value).

For example, a setting which affects only a displayed value, has no effect con-
cerns, is easy to change, and is commonly changed would produce the vector:
UPSS:0.9/EC:GUI/PU:N/MU:N/SU:N/IS:N/C0O:N/CV:N/CL:N/FQ:A.

A setting which turns on debug logging to disk with multiple separate files
concurrently which will cause a significant impact to performance might produce
the vector: UPSS:0.9/EC:PRF/PU:C/MU:L/SU:Y/IS:N/CO:N/CV:N/CL:N/FQ:N

Metric Values and Scoring Equations

The formula for calculating the final numerical score is created by taking multiple
examples of settings from programs we are very familiar with, deciding what
qualitative rating we would expect them to receive, and assigning weights to
each factor so as to achieve the expected results. The scoring algorithm for
UPSS version 1 is still being developed. An excel spreadsheet is available with
more calculation details. [9]

CVSS v3.1 assigned values to each of their metrics using metrics based on real
world vulnerability and usage data which is not (yet) available for UPSS. CVSS
v4.0 makes the math even more complicated using multiple lookup tables which
are also produced with the hindsight of almost 20 years of data.

12

The total score is built from three components:

1. Base-Score: The metrics related to the effects of the setting itself provide
a base score This is currently all of the Intrinsic metrics

2. Effect-Score: The Effect Category of the setting provides a modifier
based on the type of impact of the setting

3. Change-Score: The metrics related to how difficult the setting is to
correct/change This is currently all of the External metrics

The scoring method will be inserted here for UPSS version 1.

Future Work / Expected Revisions

Analysis of Interactions

It is out of scope of this work to determine a standard for evaluating how changes
to one parameter dynamically affect the score of another parameter. We leave
this to future work.

Making Recommendations for Proper/Optimal Values

Unlike vulnerability disclosure, we can also make suggestions to the administrator
of preemptive measures that can be taken based on the known scores of multiple
service running on a single computer. We leave this to future work.

Bibliography

[1] 2023. Common Vulnerability Scoring System version 4.0: Specification
Document. Retrieved December 13, 2023 from https://www.first.org/cvs
s/v4.0/specification-document

2] 2023. Interview with Boeing Product Manager.

[3] Apache Performance Tuning. Retrieved from https://httpd.apache.org/d
ocs/2.4/misc/perf-tuning.html

[4] cPanel - HTTPD Symlink Race Condition Protection. Retrieved from
https://docs.cpanel.net/ead /apache /symlink-race-condition-protection/

[5] CVSS v3.1 Specification Document - Qualitative Scale. Retrieved from
https://www.first.org/cvss/v3.1/specification-document# Qualitative-
Severity- Rating-Scale

[6] European Aviation Safety Agency Certification Specifications for Large
Aeroplanes CS-25. Retrieved from https://www.easa.curopa.eu/en/
document-library/certification-specifications/group/cs-25-large-
aeroplanes#cs-25-large-aeroplanes

[7] Puppet 7 Server - System requirements. Retrieved from https://www.pu
ppet.com/docs/puppet/7/system__requirements#system__requirements

13

https://www.first.org/cvss/v4.0/specification-document
https://www.first.org/cvss/v4.0/specification-document
https://httpd.apache.org/docs/2.4/misc/perf-tuning.html
https://httpd.apache.org/docs/2.4/misc/perf-tuning.html
https://docs.cpanel.net/ea4/apache/symlink-race-condition-protection/
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale
https://www.easa.europa.eu/en/document-library/certification-specifications/group/cs-25-large-aeroplanes#cs-25-large-aeroplanes
https://www.easa.europa.eu/en/document-library/certification-specifications/group/cs-25-large-aeroplanes#cs-25-large-aeroplanes
https://www.easa.europa.eu/en/document-library/certification-specifications/group/cs-25-large-aeroplanes#cs-25-large-aeroplanes
https://www.puppet.com/docs/puppet/7/system_requirements#system_requirements
https://www.puppet.com/docs/puppet/7/system_requirements#system_requirements

8]

[13]

Trampoline Surronded By Broken Glass (AI). Retrieved from https:
//www.cs.umd.edu/~yakatz/research/upss/a-boy-jumping-on-a-
trampoline-surrounded-by-broken-glass.png

UPSS Calculator v0.9. Retrieved from https://www.cs.umd.edu/~yakat
z/research/upss/calc-v0.9.xlsx

Dave Dugal and Dale Rich. Announcing CVSS v4.0. In 35th Annual
FIRST Conference. Retrieved December 31, 2023 from https://www.first
.org/cvss/v4-0/cvss-v40-presentation.pdf

David Jensen. Product Focus: Cockpit Switches. Aviation Today. Re-
trieved from https://www.aviationtoday.com/2004,/03/01/product-focus-
cockpit-switches/

Pontus Johnson, Robert Lagerstrom, Mathias Ekstedt, and Ulrik Franke.
2018. Can the Common Vulnerability Scoring System be Trusted? A
Bayesian Analysis. IEEFE Trans. Dependable and Secure Comput. 15, 6
(November 2018), 1002-1015. https://doi.org/10.1109/TDSC.2016.2644
614

Evangelos Karapanos, Stephan Wensveen, Bart Friederichs, and Jean-
Bernard Martens. 2008. Do knobs have character?: Exploring diversity
in users’ inferences. In CHI ’08 Extended Abstracts on Human Factors
in Computing Systems, April 05, 2008. ACM, Florence Italy, 2907-2912.
https://doi.org/10.1145/1358628.1358782

Lance Sherry, Peter Polson, and Michael Feary. 2002. Designing User-
Interfaces for the Cockpit: Five Common Design Errors and How to Avoid
Them. November 05, 2002. 2002-01-2968. https://doi.org/10.4271/2002-
01-2968

Gideon Singer. 2002. Methods for Validatng Cockpit Design The best
tool for the task. PhD thesis. Institutionen for flygteknik. Retrieved from
https://kth.diva-portal.org/smash /record.jsf?pid=diva2%3A9102&dsw
id=-8939

Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy,
and Rukma Talwadker. 2015. Hey, you have given me too many knobs!:
Understanding and dealing with over-designed configuration in system
software. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, August 30, 2015. ACM, Bergamo Italy, 307-319.
https://doi.org/10.1145/2786805.2786852

14

https://www.cs.umd.edu/~yakatz/research/upss/a-boy-jumping-on-a-trampoline-surrounded-by-broken-glass.png
https://www.cs.umd.edu/~yakatz/research/upss/a-boy-jumping-on-a-trampoline-surrounded-by-broken-glass.png
https://www.cs.umd.edu/~yakatz/research/upss/a-boy-jumping-on-a-trampoline-surrounded-by-broken-glass.png
https://www.cs.umd.edu/~yakatz/research/upss/calc-v0.9.xlsx
https://www.cs.umd.edu/~yakatz/research/upss/calc-v0.9.xlsx
https://www.first.org/cvss/v4-0/cvss-v40-presentation.pdf
https://www.first.org/cvss/v4-0/cvss-v40-presentation.pdf
https://www.aviationtoday.com/2004/03/01/product-focus-cockpit-switches/
https://www.aviationtoday.com/2004/03/01/product-focus-cockpit-switches/
https://doi.org/10.1109/TDSC.2016.2644614
https://doi.org/10.1109/TDSC.2016.2644614
https://doi.org/10.1145/1358628.1358782
https://doi.org/10.4271/2002-01-2968
https://doi.org/10.4271/2002-01-2968
https://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A9102&dswid=-8939
https://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A9102&dswid=-8939
https://doi.org/10.1145/2786805.2786852

	Background
	Comparison to other fields
	Simplification and Demonstration of Need

	How Configuration Affects Performance and Security
	"Effect Categories" of Settings
	1. Settings which only affect a Display value (someone says “Hey, that’s weird.”) (GUI)
	2. Settings which affect the output of the program, but not performance or security (the client says “Hey, it’s broken!”) (OUT)
	3. Settings which affect core functionality (the administrator says “Hey, it’s broken!”) (FNC)
	4a. Most critical (performance) (PRF)
	4b. Most critical (security) (SEC)

	Assumptions

	How Knobs Can Be Found and Scored
	Static Analysis

	The Scoring Standards
	Initial Metrics
	Intrinsic Characteristics
	External Characteristics

	Communicating the Results
	Qualitative Severity Rating Scale
	Vector String
	Metric Values and Scoring Equations

	Future Work / Expected Revisions
	Analysis of Interactions
	Making Recommendations for Proper/Optimal Values

	Bibliography

	Students Full Name Last First Middle: Katz, Yehuda, Aryeh
	Student UID Number: 109464048
	Students UMD Email Address: yakatz@cs.umd.edu
	Month Year Started Entry Year: January 2013
	Title of MS Scholarly Paper: Uniform Parameter Scoring System
	Date2_af_date: 1/3/24
	Advisor Name: Ashok Agrawala

